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INTRODUCTION 

BY R. S. WOODWORTH 

MODERN PROBLEMS and needs are forcing statistical methods and statis
tical ideas more and more to the fore. There are so many things we 
wish to know which cannot be discovered by a single observation. or 
by a single measurement. We wish to envisage the behavior of a man 
who, like all men, is rather a variable quantity, and must be observed 
repeatedly and not once for all. We wish to study the social group, 
composed of individuals differing from one another. We should like to 
be able to compare one group with another, one race with another, as 
well as one individual with another individual, or the individual with the 
norm for" his age, race or class. We wish to trace the curve which pictures 
the growth of a child, or of a population. We wish to disentangle the 
interwoven factors of heredity and environment which influence the 
development of the individual, and to measure the similarly interwoven 
effects of laws, social customs and economic conditions upon public 
health, safety and weifare generally. Even if our statistical appetite is far 
from keen, we all of us should like to know enough to understand, or to 
withstand, the statistics that are constantly being thrown at us in print 
or conversation-much of it pretty bad statistics. The only cure for bad 
statistics is apparently more and better statistics. All in all, it certainly 
appears that the rudiments of sound statistical sense are coming to be an 
essential of a liberal education. 

Now there are different orders of statisticians. There is, first in order, 
the mathematician who invents the method for performing a certain type 
of statistical job. His interest, as a mathematician, is not in the educa- " 
tional, social or psychological problems just alluded to, but in the problem 

. of devising instruments for handling such matters. He is the tool-maker of 

v 
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the statistical industry, and one good tool-maker can supply many skilled 
workers. The latter are quite another order of statisticians. Supply them 
with the mathematician's formulas, map out the procedure for them to 
follow, provide working charts, tables and calculating machines, and 
they will compute from your data the necessary averages,' probable 
errors and correlation coefficients. Their interest, as computers, lies in the 
quick and accurate handling of the tools of the trade. But there is a 
statistician of yet another order, in between the other two. His primary 
interest is psychological, perhaps, or it may be educational. It is he who 
has selected the scientific or practical problem, who has organized. his 
attack upon the problem in such fashion that the data obtained can be 
handled in some sound statistical way. He selects the statistical tools to be 
employed, and, when the computers have done their work, he scrutinizes 
the results for their bearing upon the scientific or practical problem with 
which he started. Such an one, in short, must have a discriminating 
knowledge of the kit of tools which the mathematician has handed him, 
as well as some skill in their actual use. . 

The reader of the present book will quickly discern that it is intended 
primarily for statisticians of the last-mentioned type. It lays out before 
him the tools of the trade; it explains very fully and carefully the manner 
of handling each tool; it affords practice in the use of each. While it has 
little to say of the to<?l-maker's art, it takes great pains to make clear the 
use and limitations of each tool. As anyone can readily see who has 
tried to teach statistics to the class of students who most need to know 
the subject, this book is the product of a genuine teacher's experience, 
and is exceptionally well adapted to the student's use. To an unusual 
degree, it succeeds in meeting th~ student upon his own ground. • 



PREFACE 

TO THE SIXTH EDITION 

LIKE its predecessor, this edition was planned for those students whose 
major interest lies in applying statistical methods to problems in psychol!Jgy 
and education. At the same time, for the benefit of those who wish to 
"go to the sources," a new Chapter 17 provides proofs of several key 
formulas which are illustrated in the text. Furthermore, in this chapter, 
several techniques have been outlined which may be almost essential in 
specific problems, but are·not sufficiently general for inclusion in the main 
body of the book. 

Revisions often have a way of growing quantitatively rather than quali
tatively. For this reason, among others, only a few changes have been 
made in the text itself, and little new material has been added, as the book 
already covers more topics than can easily be taught in one semester. 
Al1alysis of variance is treated briefly, and the value of this attack upon 
certain problems is indicated. But highly sp~ialized techniques such as 
factor analysis have not been included, as these do not properly belong 
in a first course in statistics. 
, In a short course, the first five chapters plus linear correlation are prob
ably all that can be covered In a longer course, topics from Parts II and 
III dealing with mental tests and with individual and group differences 
may be added. 

Suggestions and criticisms offered by' those. who have used the book 
over the years have always been appreciated and often incorporated in 
the text. 

lh:NRy E. GARRE1T 
"May, 1966 
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CHAPTER I 

THE FREQUENCY 
DISTRIBUTION 

............................................ 

I. MEASURES IN GENERAL 

I. Ways of measuring 

Measurement may be of several kinds and may be taken to various 
degrees of precision. When people or objects have been ranked or ar
ranged in an ordinal series with respect to some trait or attribute, we 
have perhaps the simplest sort of measurement. School children may be 
put in 1,2,3 order for height, marks on an examination, or regularity of 
school attendance; salesmen for experience or sales volume over ~he year; 
advertisements for amount of color used, or for cost, or sales appeal. 
Rank order gives us serial position in the group, but it does not provide. 
an exact measurement. We cannot add or subtract ranks as we do inches 
or pounds, as a person's rank is always relative to the ranks of other' 
members of his group and is never absolute, i.e., in terms of some known 
unit. 

Measurement of individual performance by means of tests is usually 
expressed as a score. Scores may be in terms of time taken to complete 
a task or amount done in a given time; less often scores are expressed in 
terms of difficulty of the task or excellence of result. Mental test scores 
vary with performanc~, and changes in score parallel closely changes in 
performance. 

Many mental tests are not scaled in equal units. When scores are 
expressed in equal units they constitute an interval scale. Standard psycho
logical tests are usually interval scales, as they have equal units or equal 
steps; but they do-not possess a true zero. Scaled test scores may be added 

·or subtracted just as we add or subtract inches. But we cannot say that 
a score of 40 is twice as good as a score of 20, as neither is taken from a 
zero of just no ability. ' 
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When measures are expressed in equal units, and are also taken from 
a true zero, they constitute ratio scales. Examples are the "c.g.s." scales 
(centimeters, grams, seconds) found in the physical sciences. Measures 
from c.g.s.-scales may be added and subtracted, and a "score" of 20 inches 
is twice a "score" of 10 inches. Ratio scales are rarely encountered in the 
behavioral sciences. The measurements of certain sensory functions such 
as pitch and loudness, to be sure, may be expressed in ratio scales. But 
in the measurement of mental and social variables and traits we must 
generally be content with interval scales. 

2. Continuous and discrete series 

In measuring mental and phYSical traits, most of the variables It with 
which we deal faU into continuous series. A continuous series is one which 
is capable of any degree of subdivision; though in practice divisions 
smaller than some convenient unit are rarely met. I.Q.'s, for example, are 
usually thought of as increasing by increments of one unit along an 
ability continuum which runs from idiot to genius. But with more refined 
methods of measurement it is 'conceivable that we might get I.Q.'s of 
100.8 or even 100.83. PhYSical measures as well as mental test scores fall 
into continuous series: within the given range any "score," integral or 
fractional, may exist and have meaning. Gaps in a truly continuous series 
can be attributed to failure to get enough data, f or to crudity of the 
measuring instrument, or to some other factor of the same sort, rather 
than to the lack of measures within the gaps. 

Series which e:xhibit real gaps are called discrete. A salary scale in a 
department store, for example, may run from $50 per week to $60 per 
week in units of $1: no one receives, let us say, $57.53 per week. Again, 
the average family in a certain community may be reported to consist of 
2.57 children, though there is obviously a real gap between two children 
and three children. Fortunately, most of the variables dealt with in psy-

, chology and education are continuous or may profitably be treated as con
tinuous. Hence, we shall be concerned in later chapters primarily with 
methods for handling continuous data. 

In the following sections we shall define more precisely what is m$lant 
by a score, and shall show how scores may be classified into what is called 
a frequen,cy distribution. 

o Variables are attributes or qualities which exhibit differences in magnitude, and 
which vary along some dimension. 

t Data are figures, ratings, check lists and other information collected in experi
ments, surveys and descriptive studies. . 
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3. The meaning of test scores in a continuous series 

Scores or other numbers in continuous series are to be thought of as 
distances along a continuum, rather than as discrete points. An inch is 
the linear magnitude between two divisions on a foot rule; and, in like 
manner, a score in a mental test is a unit distance between two limits. A 
score of 150 upon an intelligence examination, for example, represents 
the interval 149.5 up to 150.5. The exact midpoint of this score interval is 
150 as shown below. 

149.5 

Score 150 
150 

150.5 

Other scores may be interpreted in the same way. A score of 12, for 
instance, includes all values from 11.5 to 12.5, i.e., any value from a 
point .5 unit below 12 to a point .5 unit above 12. This means that 11.7, 
12.0 and 12.4 would all be scored 12. The usual mathematical meaning of 
a score is an interval which extends along some dimension from .5 unit 
below to .5 unit above the face value of the score. 

There is another and somewhat different meaning which a test score 
may have. According to this second view, a score of 150 means that an 
individual has done at least 150 items correctly, but not 151. Hence, a 
score of 150 represents any value between 150 and 151. Any fractional 
value greater than 150, but less than 151, e.g., 150.3 or 150.8, since it falls 
within the interval 150-151, is scored simply as 150. The middle of the 
score is 150.5 (see below), 

150 

Score 150 
150.5 

A 151 

Both of these ways of defining a score an~ valid and useful. Which to use 
will depend upon the way in which the test is scored and on the meaning 
of the units of measurement employed. If each of ten boys is recorded as 
having a height of 64 inches this will ordinarily mean that these heights 
fall between 63.5 and 64.5 inches (middle value 64 in.), and not between 
64 and 65 inches (middle value 64.5 in.). On the other hand, the ages of 
tWenty'-five children, all recorded as being 9 years old, will most probably 
lie between 9 and 10' years; will be greater than 9 and less than 10 years 
(middle value 9.5). But "9 years old" must be taken in many studies to 
mean 8.5 up to 9.5 years with a middle value of 9 years. The point to 
remember is that results obtained from treating scores under our second 
definition will always be .5 unit higher than results obtained when scores 
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are taken under the first or mathematical definition. The student will 
often have to decide, sometimes arbitrarily, what meaning a score should 
have. In general, it is safer to take the mathematical meaning of a score 
unless it is clearly indicated otherwise. This is the method followed 
throughout this book. Scores of 62 and 231, for example, will mean 
61.5-62.5 and 230.5-231.5 and not 62 up to 63 and 231 up to 232. 

II. DRAWING UP A FREQUENCY DISTRIBUTION 

J. T abuJating measures or scores 

Data collected from tests and experiments may have little meaning 
to the investigator until they have been arranged or classified in some 
systematic way. The first task, therefore, is to organize our material and 
this leads naturally to a grouping of the scores under subheads or into 
classes. Rules for classifying scores into what is called 'a frequency dis
tribution may be laid down as follows: 

( 1) Determine the range or the gap between the highest and the low
est scores. The highest score in Table 1 (1) is 191 and the lowest is 142, 
so that the range is 55 (Le., 197-142). The 50 scores in Table I represent 
the test performance of 50 college students upon a modified form of the 
Army Alpha intelligence examination. 

(2) Settle upon the number and size of the groupings to be used in 
making a claSSification. Commonly used grouping intervals are 3, 5, 10 
units in length, as these are somewhat easier to work with in later calcu
lations. A good rule is to select by trial a grouping unit whioh will yield 
from 5 to 15 categories. The number of intervals which a given range will 
yield can be determined approximately (wIthin 1 interval) by dividing 
the range by the grouping interval tentatively chosen. In Table 1, for in
stance, 55, the range, divided by 5 (the interval tentatively chosen) gives 
11, which is 1 less than the actual number of intervals shown in 
Table 1 (2), namely, 12. An interval of 3 units will yield 19 classes; an 
interval of 10, 6 classes. An interval of 3 would spread the data out too 
much, thus lOSing the benefit of grouping; whereas an interval of 10 would 
crowd the scores into too coarse categories. Accordingly, an interval of 5 
was chosen as best suited to the data of Table 1. 

(3) Tally the scores in their proper intervals as shown in Table 1 (2). 
In the first column of the table the class intervals have been listed serially 
from the smallest scores at the bottom of the column to the largest scores 
at the top. Each class interval covers 5 scores. The first interval "140 up 
to 145" begins with score 140 and ends with 144, thus including the 
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TABLE I The tabulation of Army Alpha scores made by 50 college students 

1. The original scores ungrouped 

185 166 176 145 166 191 177 164 171 174 
147 178 176 #142 170 158 11:.1 ~67 180 178 
173 ·148 168 187 181 172 165 169 173 184 
175 156 158 187 156 172 162 193 173 183 

. 197 181 151 161 153 172 162 179 188 179 
o Highest score # Lowest score 

2. The same 50 scores grouped into a frequency distribution 

(1) (2) (3) 
Class Intervals Tallies f (frequency) 
195 up to 200 I 1 
190 " " 195 // 2 
185 " " 190 fill 4 
180 « « 185 JH./. 5 
175 " " 180 JH./. //1 8 
170 " " 175 tf.JI. tf.JI. 10 
165 " " 170 '/H..L I 6 
160 " " 165 /11/ 4 
155 " " 160 IIII 4 
150 " " 155 II 2 
145 " " 150 III 3 
140 .. .. 145 / 1 

N=50 

5 scores 140, 141, 142, 143 and 144. The second interval "145 up to 150" 
begins with 145 and ends with ~49, that is, at score 150. The topmost 
interval "195 ~p to 200" begins with score 195 and ends at score 200, thus 
including 195, 196, 197, 198 and 199. In column (2), marked "Tallies," 
the separate scores have been listed opposite their proper intervals. The 
first score of 185 is represented by a tally placed opposite interval "185 
up to 190"; the· second score of 147 by a tally placed opposite interval 
"145 up to 150"; an<;l the third score, 173, by a tally placed opposite 
"170 up to 175." The, remaining scores have been tabulated in the same 
way. When all 50 have been listed, the total .number of tallies on each 
class interval (i.e., the frequency) is written in column (3) headed f 
(frequency). The sum of the f column is called N. When the total fre
quency within each class interval has been tabulated opposite the proper 
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interval, as shown in column (3), our 50 Alpha scores are arranged in a 
frequency distribution. 

The student will note that the beginning score of the first interval in 
the distribution (140 up to 145) has been set at 140 although the lowest 
score in the series is 142. When the interval selected for tabulation is 
5 units it facilitates tabulation as well as computations which come later 
if the score limits of the first interval, and, accordingly, of each successive 
interval, are multiples of 5. A class interval "142 up to 147" is just as good 
theoretically as a class interval "140' up to 145"; but the second is easier to 
handle from the standpOint of the arithmetic involved. 

2. Methods of describing the limits of the dass intervals in a frequency dis-
tribution 

. Table 2 illustrates three ways of expressing the limits of the class 
intervals in a frequency distribution. In (A), the interval "140 up to 145" 
means, as we have already seen, that all scores from 140 up to but not 
including 145 fall within this grouping. The intervals in (B) cover the 
same distances as in (A), but the upper and lower limits of each interval 
are defined more exactly. We have seen (p. 3) that a score of 140 in a 

TABLE 2 Methods of grouping scores into a frequency distribution 

(Data from Table 1, 50 Army Alpha scores) 

(A) (B) (C) 
Class Mid-

f 
Class Mid-

f 
Class Mid-

f Intervals point Interv.als point Intervals point 

195-200 197 1 194.5-199.5 197 1 195-199 197 1 
190--195 192 2 189.5-194.5 192 2 190--194 192 2 
185-190 187 4 184.5-189.5 187 4 185-189 187 4 
180--185 182 5 179.5-184.5 182 5 180-184 182 5 
175-180 177 8 174.5-179.5 177 8 175-179 177 8 
170--175 172 10 169.5-174.5 172 10 170--174 172 10 
165-170 167 6 164.5-169.5 167 6 165-169 167 6 
160--165 162 4 1.59.5-164.5 162 4 160--164 162 . 4 
155-160 157 4 154.5-159.5 157 4 155-159 157 4 
150--155 152 2 149.5-154.5 152 2 150--154 152 2 
145-150 147 3 144.5-149.5 147 3 145-149 147 3 
140--145 142 1 139.5-144.5 142 1 140--144 142 1 

N=50 N=50 N=50 
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continuous series ordinarily means the interval 139.5 up to 140.5; and th 
a score of 144 means 143.5 up to 144.5. Accordingly, to express preCise~t 
the fact that an interval begins with 140 and ends with 144, we may Wri? 
139.5 (the beginning of score 140) as the lower limit, and 144.5 (end ~ 
score 144 01: beginning of score 145) as the uppe~ limit of this step. 1'h 
class intervals in (C) express the same facts more clearly than in (.A) all~ 
less exactly than in (B). Thus, "140-144" means that this interval begi 
with score 140 and- ends with score 144; but the precise limits of u:s 
interval are not given. The diagram below will show how (A), (B), all~ 
(C) are three ways of expressing identically the same facts: 

Class Interval 
140 up to 145 
139.5-144.5 
140-144 

Inte~al 1 2 3 4 5 Interval 
Begms Ends 

139:5iOiii2143i444.5 

For the rapid tabulation of scores within their proper intervals, IDeth d. 
(C) is to be preferred to (B) or (A). In (A) it is fairly easy, even WhO 
one is on guard, to let a score of 160, say, slip into the interval "155 up ~ll 
160," owing simply to the presence of 160 at the upper limit of the interv ~ 
Method (B) is clumsy and time consuming because of the need for Wr~ . 
ing .5 at the beginning and end of every interval. Method (C), wh {~ 
easiest for tabulation, offers the difficulty that in later calculations o

l
e 

must constantly remember that the expressed class limits are not the 
actual class limits: thilt interval "140-144" begins at 139.5 (not 140) a e 
ends at 144.5 (not 144). If this is clearly understood, method (C) is lld 
accurate as (B) or (A). It will be generally used throughout this book, as 

3. The midpoint of an interval in a frequency distribution 

The scores grouped within a given interval in a frequency distributi 
are considered to be spread evenly oyer the entire interval. This asSUlll. On 
tion is made whether th~ i~terval.is 3, ?, or 10 units. If w~ wish to rePr~: 
sent all of the scores Wlth~n a gIven mterval by some smgle value, th 
midpoint of the interval is the logical choice. For example, in the interv e 
175-179 [Table 2, method (C)] all 8 scores upon this interval are rep al 

re~ 
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sented by the single value 177, the midpoint of the intervaJ.O Why 177 is 
the midpoint of this i~terval is shown graphically below: 

Midpoint 
Interval _!__ Interval 
Begins ~ Ends 

174.5 175 176 177 178 179 179.5 

A simple rule for finding the midpoint of an interval is 
. (upper limit - lower limit) . 

Midpomt = lower limit of interval + 2 ; 

In our illustration, 

174.5+ (179.5; 174.5) = 177. 

Since the interval is 5 units, it follows that the m~dpoint must be 2.5 units 
from the lower limit of tpe class, i.e., 174.5 + 2.5; or 2.5 units from the 
upper limit of the class, i.e., 179.5 - 2.5. 

To find interval midpoints, when scores rather than exq.ct limits are used 
in the frequency distribution, i.e., (C), substitute in the formula, 

I t l 'd' b'" I + (upper score -lower score) n erva m} pomt = egmmng mterva score 2 

In the example above, 

M'd . - 175 +' (179 - 175) 177 } pomt - 2 or . 

The assumption that the midpoint is the most representative value 
within an interval holds best when the number of scores in the distribu
tion is large, and when the Intervals are not too broad. But even when 
neither of these conditions fully obtains, the midpoint assumption is not 
greatly in error and is the best that we can make. In the long run, about 
as many scores will fall above as below the various midpoint values; and 
lack of balance in one interval will usually be offset by the opposite con-
dition in another intervaI. ' 

III. THE GRAPHIC REPRESENTATION OF THE FREQUENCY DISTRIBUTION 

Aid in analyzing numerical data may often be obtained from a graphic 
or pictorial treatment of the frequency distribution. The advertiser has 
long used graphic methods because these devices catch the eye and hold 
the attGntion when the most careful array of statistical evidence fails to 

o The same value (namely, 177) is, of course, the midpoint of the interval when 
methods (A) and (B) are used. 
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attract notice. For this and other reasons the research worker also utilizes 
the attention-getting power of visual presentation; and, at the same time, 
seeks to translate numerical facts-often abstract and difficult of interpre
tation-into more concrete and understandable form. 

Four methods of representing a frequency distribution graphically are 
in general use. These methods yield the frequency polygon, the histo
gram, the cumulative frequency graph, and the cumulative percentage 
curve or ogive. The first two graphic devices will be treated in the follow~ 
ing sections; the second two in Chapter 4. 

I. Graphic representation of data; General principles 

Before considering methods of constructing a frequency polygon or 
histogram, we shall review briefly the simple algebraic principles which 
apply to all graphic representation of data. Graphing or plotting is done 
with reference to two lines or coordinate axes, the one the vertical or 
Y axis, the other the horizontal or X axis. These basic lines are perpen
dicular to each other, the point where they intersect being called 0, or 
the origin. Figure 1 represents a system of coordinate axes. 

The origin is the zero point or point of reference for both axes. Dis
tances measured along the X axis to the right of ° are called positive, 

y 

C(-6,+S) 
® 

----~A(+ 4,+3) 
I 
I 

~~~~~~~~~~~~I~~~~~~~X 
o I 

I 
I 
I 
I 
I 
I 
I 
I 
@------ . 
B(-5.~7) 

® 
D(+9,-2) 

FIG. I A system of coordinate axes 
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at the end of the range. Hence, our polygon should be 75% of thirteen, or 
about ten X axis units high. These 10 units (each equal to one interval) 
are laid off on the Y axis. To determine how many scores (1's) should be 
assigned to each unit on the Y axis, we divide 10, the lilrgest f, by 10, the 
number of intervals laid off on Y. The result (i.e., 1) makes each Y unit 
exactly equal to one f or one score, as shown in Figure 2. 

The polygon in Figure 5 is another illustration of how X and Y units 
must be selected so as to preserve balance in the figure. The polygon rep
resents the distribution of 200 scores on a cancellation test shown it! 
Table 3. Exact interval limits have been laid off along the base line or 

TABLE 3 Scores achieved by 200 adults on a cancellation test 

Class interval = 4 

Class Intervals Midpoints 
f (Scores) (X) 

135.5-139.5 137.5 3 
131.5-135.5 133.5 5 
127.5-131.5 129.5 16 
123.5-127.5 125.5 23 
119.5-123.5 121.5 52 
115.5-119.5 117.5 49 
111.5-115.5 113.5 27 
107.5-111.5 109.5 18 
103.5-107.5 105.5 7 

N=200 

-
X axis. In all, there are 10 intervals-9 full intervals plus one-half of an 
interval at the beginning and one-half of an interval at the end of the 
range. Since 75% of 10 is 7.5, the height of our figure could be either 
7 or 8 X axis units. To determine the "best" value for each Y unit, we 
divide 52, the greatest frequency (on 119.5-123.5), by 7, getting 7%; and 
then by 8, getting 6112. Using whole numbers for convenience, evidently 
we may layoff on the Y axis 7 units, each representing 8 scores; or 8 units 
each representing 7 scores. The first combination was chosen because a 
unit of 8 1's is somewhat easier to handle than one of 7. A slightly longer 
Y unit representing 10 1's would perhaps have been still more convenient. 

( e) Area of the polygon. The total frequency (N) of a distribution is 
represented by the area of its polygon; that is, the area bounded by the 
frequency surface and the X axis. That part of the area lying above any 
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. interval however, cannot be taken as proportional to the number gIven , I" 
f cases within the interva , owmg to Irregularities in the frequency sur-

~ace. To show the positions of the mean and the median on the graph, 
have located these points on the X axis as shown in Figures 2 and 4. 

we d h . th. Perpendiculars erecte at t ese pomts on the base line show e approxl-
te frequency of scores at the mean and the median. 

ma d' b Steps to be followe in constnicting a frequency polygon may e sum-
marized as follows: 

(1) Draw two straight lines perpendicular to each other, the vertical line 
near the left side of the paper, the horizontal line near the bottom. Label 
the ve~ticalline (the Y axis) OY, and the horizontal line (the X axis) OX. 
Put the 0 where the two lines intersect. This point is the origin. 

(2) Layoff the score intervals of the frequency distribution at regular dis
tances along the X axis. Begin with the interval next below the lowest in 
the distribution, and end with the interval next above the highest in the 
distribution. Label the successive X distances with the score interval 
limits. Select an X unit which will allow all of the intervals to be repre
sented easily on the graph paper. 

(3) Mark off on the Y axis successive units to represent the scores (the fre
quencies) on the different intervals. Choose a Y scale which will make the 
largest frequency (the height) of the polygon approximately 75% of the 
width of the figure. 

(4) At the midpoint of each interyal on the X axis go up in the Y direction a 
distance equal to the number of SCores on the interval. Place points at 
these locations. 

(5) Join the points plotted in (4) with straight lines to give the frequency 
surface. 

(2) SMOOTWNG THE FREQUENCY POLYGON 

Because the sample is small (N = 50) and the frequency distribution 
somewhat irregular, the polygon in Figure 2 tends to be jagged in outline. 
To iron out chance irregularities, and also get a better notion of how the 
figure might look if the data were more numerous, the frequency polygon 
may be "smoothed" as .shown in Figure 3. In smoothing, a series of "mov
ing" or "running" averages are taken from which new or adjusted fre
quencies are determined. The method is illustrated in Figure 3. To find 
an adjusted or "smoothed" t, we add the t on the given interval and the f's 
on the two adjacent intervals (the interval just b<elow and the interval 
just above) and divide the sum by 3. For example, the smoothed t for 

. 5 + 8 + 10 4 + 4 + 2 interval 175-179 IS 3 or 7.67; for ° interval 155-159 it is --3---

or 3.33. The smoothed f's for the other intervals ~ay be found in the table 
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, 4 
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1 

135140 145 150~55 160 165 170175180185'190 195 200205 
Scores 

FIG. 3 Original and smoothed frequency polygons. The original and 
smoothed l's are given on page 14. 

below (see also Fig. 3). To find the smootl).ed fs for the two intervals at 
the extremes of the distribution, namely, 140-144 and 195-199, a slightly 
different procedure is necessary. First, we add 0, th€l f on the step interval 
below or above, to the f on the given interval and to the f on the adjacent 

. 0+1+3 
interval, and divide by 3. The smoothed f for 140-144 IS 3 

(Data from Table 1) 

Scores f Smoothed f 
200-204 0 .33 
195-199 1 1.00 
190-194 2 2.33 
185-189 4 3.67 
180-184 5 5.67 
175-179 8 7.67 
170-174 10 8.00 
165-169 6 6.67 
160-164 4 4.67 
155-159 4 3.33 
150-154 2 3.00 
145-149 3 2.00 
140-144 1 1.33 
135-139 0 .33 

50 50.00 
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. 2+1+0 
or 1.33; and the smoothed f for 195-199 lS 3 or 1.00. The smoothed 

f for the intervals 135-139 and 200-204, for which the f in the original dis

tribution is 0, is in each case 1 + ~ + 0 or .33. Note that if we omit these 

last two intervals the N for the smoothed distribution will be less than 50, 
as the smoothed distribution has fs outside the range of the original 
distribution. 

If the already smoothed fs in Figure 3 are subjected to a second 
smoothing, the outline of the frequency surface will become more nearly 
a continuous flowing curve. It is doubtful,. however, whether so much 
adjustment of the original fs is often warranted. When an investigator 
presents only the smoothed frequency polygon and-does not give his origi
nal data, it is impossible for a reader to tell with what he started. More
over, smoothing gives a picture of what an investigator might'have gotten 
(not what he did get) if his data had been more numerous, or less subject 
to error than they were. If N is large, smoothing may not greatly change 
the shape of a graph, and hence is often unnecessary. The frequency 
polygon in Figure 5, for example, which represents the distribution of 
200 cancellation test scores, is quite regular without any adjustment of the 
ordinate (i.e., the Y) values. Probably the best course for the beginner to 
follow is to smooth data as little as possible. When smoothing seems to 
be indicated in order better to bring out the facts, one should be careful 
always to present original data along with "adjusted" results. 

3. The histogram or column diagram 

A second way of representing a frequency distribution graphically is 
by means of a histogram or column diagram. This type of graph is illus
trated in Figure 4 for the same distribution of 50 J\.lpha scores depicted 
by the frequency polygon in Figure 2. The two figures are constructed in 
much the same way with this important differen~e. In the frequency poly
gon, all of the scores within a given interval are represented by the mid
point of that interval, whereas in a histogram the scores are assumed to 
be spread uniformly over the entire interval. Within each interval of a 
histogram the freque~cy is shown by a rectangle, the base of which is the 
length of the intervall and the height of which is the number of scores 
within the interval. III Figure 4 the base line is labeled with the score 
intervals rather than with the exact limits. Thus, the first interval in the 
histogram actually begins at 139.5, the exact lower limit of the interval, 
and ends at 144.5, the exact upper li~it of the interval. The one score on 
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FIG. 4 Histogram of the 50 Alpha scQres given in Table I 

interval 14~145 is represented by a rectangle the base of which is the 
length of the interval and the height of which is one unit up on the 
Y axis. The S scores on the next interval are represented by a rectangle 
one interval long and 3 Y units high. The heights of the other rectangles 
vary with the fs on the intervals, the bases all being one interval in 
length. When the same number of scores is found on two or more adja
cent intervals, as in the intervals 155 to 160 and 160 to 165, the rectangles 
are the same height. The highest rectangle, of course, is on interval 170 
to 175 which has 10, the largest f, as its height. In selecting scales for the 
X axis and the Y axis, the same considerations as to height and width 
of figure outlined on page 11 for the frequency polygon should be ob
served. 

While each interval in a histogram is represented by a separate 
rectangle, it is not necessary to project the skIes of the rectangles down to 
the base line as is done in Figure 4. The rise and fall of the boundary line 
shows the increase or de<:rease in the number of scores from interval to 
interval and is usually the important fact to be brought out (see Fig. 5). 
As in a frequency polygon, the total frequency (N) is represented by the 
area of the histogram. In contrast to the frequency polygon, however, the 
area of each rectangle in a histogram is directly proportional to the num
ber of measures within the interval. For this reason, the histogram pre
sents an accurate picture of the relative proportions of the total frequency 
from interval to interval. 

In order to provide a more detailed comparison of the two types of fre
quency graph, the distribution in Table 3 is plotted upon the same 
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coordinate axes in Figure 5 as a frequency polygon an~ as a histogram. 
The increased number of cases and the more symmetrlcal arrangement 
of scores in the distribution make these figures more regular in appear
ance than those in Figures 2 and 4. 

66 

48 

16 

8 

103.5 107.5 l1L5 115.5 119.5 123.5 127.5 131.5 135.5 139.5 
Scores ' 

FIG. 5 Frequency polygon and histogfam of 200 cancellation SCOfes shown 
in Table 3 

4. Plotting two frequency distributions on the same axes, when samples differ 
in size 

Table 4 gives the distributions of scores on an achievement examina
tion made by two groups, A and B, which differ considerably in size. 
Group A has 60 cases, Group B, 160 cases. If the two distributions in 
Table 4 are plotted as polygons or as histograms on the same coordinate 
axes, the fact that the f s of Group B are so much larger than those of 
Gr:oup A makes it hard to compare directly the range and quality of 
achievement in the two groups. A useful device in cases where the N's 
differ in size is to express both distributions in percentage frequencies as 
shown in Table 4. Both N's are now 100, and the fs are comparable from 
interval to interval. For example, we know at once that 26.7% of. Group A 
and 30% of Group B made scores of 50 through 59, and that 5% of 
the A's and 7.57'0 of the B's scored from 70 to 79. Frequency polygons 
t~presenting the two distributions, in which percentage frequencies in
stead of original f's have been plotted on the same axes, are shown in 
Figure 6. These polygons provide an immediate comparison of the rela-
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TABLE 4 

(I) 

Achievement 
Examination 

Scores 

80-89 
70-79 
60-69 
50-59 
40-49 
30-39 
20-29 
10-19 

30 

20 

" 
10 

5 

(2) 

Group A 
f 

o 
3 

10 
16 
12 

9 
6 
4 

60 

(3) 

Group B 
f 

9 
12 
32 
48 
27 
20 
12 
o 

160 

o ~,. 19.5 29.5 39.1 49 • .5 

(4) 

Group A 
Percent 

Frequencies 

0.0 
5.0 

16.7 
26.7 
20.0 
15.0 
10.0 
6.7 

100.1 

(5) 

Group B 
Percent 

Frequencies 

5.6 
7.5 

20.0 
30.0 
17.0 
12.5 
7.5 
0.0 

100.1 

69.5 79.5 89.5 99.' 

FIG. 6 Frequency polygons of the two distributions in Table 4. Scores are 
laid off on the X axis, percentage frequencies on the Y axis. 

tive achievement of our two groups not given by polygons plotted from 
original frequencies. 

Percentage frequencies are readily found by dividing each f by Nand 
multiplying by 100. Thus 3/60 X 100 = 5.0. A simple method of finding 
percentage frequencies when a calculating machine is available is to 
divide 100 by N and, putting this .ligure in the machine, to multiply 
each f in turn by it. 
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For example: 1.667 (i.e., 100(60) X3::: 5.0; 1.667 X 10::: 16.7, etc.; 
.625 (i.e., 100/160) X 9::: 5.6; .625 X 12::: 7.5, etc. What percentage fre
quencies do, in effect, is to scale each distribution down to the same 
total N of 100, thus permitting a comparison of fs for each interval. 

5. When to use the frequency polygon and when to use the histogram 

The question of when to use the frequency polygon and when to use 
the histogram cannot be answered by citing a general rule which will 
cover all cases. The frequency polygon is less precise than the histogram 
in that it does not represent accurately, i.e., in terms of area, the frequency 
upon each interval. In comparing two or more graphs plotted on the 
same axes, however, the frequency polygon is likely to be more useful, 
as the vertical and horizontal lines in the histograms will often coin
cide. 

Both the frequency polygon and the histogram tell the same story and 
both enable us to show in graphic form how the scores in the group are 
distributed-whether they are piled up at the low (or high) end of the 
scale or are evenly and regularly distributed over the scale. If the test is 
too easy, scores accumulate at the high end of the scale, whereas if the 
test is too hard, scores will crowd the low end of the scale. When the test 
is well suited to the abilities of the group, scores will be distributed sym
metrically around the mean, a few individuals scoring quite high, a few 
quite low and the majority falling somewhere near the middle of the 
scale. When this happens the frequency polygon approximates to the 
ideal or normal frequency curve described in Chapter 5. 

IV. STANDARDS OF ACCURACY IN COMPUTATION· 

"How many places" to carry numerical results is a question which arises 
persistently in statistical computation. Sometimes a student, by discard
ing decimals, throws away legitimate data. More often, however, he tends 
to retain too many decimals, a practice which may give a false appear
ance of great precision not always justified by the original material. 

In this section are given so'me of the generally accepted principles 
which apply to statistical calculation. Observance of these rules will lead 
to greater uniformity in calculation. They should be followed carefully in 
solving the problems given in this book. 

o This section should be reviewed frequently, and referred to in solving the prob 
lerns given in succeeding chapters. 
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I. Rounded numbers 

In calculation, numbers are usually "rounded" off to the standard of 
accuracy demanded by the problem. If we round qff 8.6354 'to two deci
mals it becomes 8.64; to one decimal, 8.6; to the nearest integer, 9. Meas
ures of central tendency and variability, coefficients of correlation, and 
other indices are rarely reported to more than two decimal places. A 
mean of 52.6872, for example, is usually reported as 52.69; a standard 
deviation of 12.3841 as 12.38; and a coefficient of correlation of .6350 
as .63, etc. It is very doubtful whether much of the work in mental meas
urement warrants accuracy beyond the second decimal. Convenient .t:nles 
for rounding numbers to two decimals are as follows: When the third 
decimal is less than 5 drop it; when greater than 5, increase the preced
ing figure by 1; when exactly 5, compute the fourth decimal and correct I 

back to the second place; when exactly 5 followed by zeros, drop it ~nd 
make no correction. " 

2. Significant figures 

The measurement 64.3 incbes is assumed to be correct to the nearest 
tenth of an inch, its true value lying somewhere between 64.25 and 
64.35 incMs. Two places to the left of the decimal point and one to the 
right are fixed, and hence 64.3 is said to contain three Significant figures. 
The numbers 643 and .643 also contain three significant figures each. 

In the number .003046 there are four Significant figures, 3, 0, 4 and. 6, 
the first two zeros serving merely to locate the decimal point. When :used· 
to locate a decimal point only, a zero is not considered to be a significant 
figure;/ .004, for example, has only one si"gnificant figure, the two zeros 
simply fixing the position of 4, !he Significant digit. The following illus
trations should make clear the matter of significant figures: 

136 has three significant figures. 
136,000 has three sign#!cant figures also. The true value of this number lies 

between 136,500 and 135,500. Only the first three digits are definitely 
fixed, the zeros serving simply to locate the decimal point or fix the 
size of the number. " 

1360. has four significant figures; the decimal indicates that the zero in the 
fourth place is known-and hence Significant, 

.136 has three significant figures . 
• 1360 has four significant figures; the zero fixes the fourth place . 

. 00136 has three Significant figures; the first two zeros merely locate the deci
mal point. 

2.00136 has six significant figures; the integer, 2, makes the two zeros to the 
right of the decimal point significant. 
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3. Exact and approximate numbers 

It is necessary in calculation to make a distinction between exact and 
apPf0ximate numbers. An exact number is one which is found by count
ing: 10 children, 150 test scores, 20 desks are examples. Approximate 
numbers result from the measurement of variable quantities. Test scores 
and other measures, for example, are approximate since they are repre
sented by intervals and not exact points on some scale. Thus a score of 61 
may be any value from 60.5 up to 61.5 and a measured height of 47.5 
inches may be any value from 47.45 up to 47.55 inches (see p. 3). Cal
culations with exact numbers may, in general, be carried to as many deci
mals as we please, since we may assume as many significant figures as we 
wish. For example, 110 test scores, which means that exactly 110 subjects 
were tested, could be written N = 110.000 . . . i.e., to n significant fig
ures. Calculations based upon approximate numbers depend upon, and 
are limited by, the number of significant figures in the numbers which 
enter into the calculations. This will be made clearer in the follow
ing rules. 

4. Rules for cOl"!1putation 

( 1) ACCURACY OF A PRODUcr 

( a) The number of significant figures in the product of two or more 
approximate numbers will equal the number of significant figures in that 
one of the numbers which contains the smaller (or smallest) number of 
significant figures. To illustrate: ' 

125.5 x 7.0 = 880, not 878.5, because 7.0, the less accurate of the two num
bers, contains only two Significant figures. The number 125.5 
contains four significant figures. 

125.5 X 7.000 = 878.5. Both numbers now contain four significant figures; 
hence their product also contains four significant figures. 

(b) When multiplying an exact number by an approximate number, 
the number of Significant figures in the product is determined by the 
number of significant figures in the approximate numoer. To illustrate: 

If each of 12 children (12 is an axact number) has an M.A. of 8 years 
(8 is an approximate number) the product 12 X 8 must be written either as 
90 or 100, since the approximate number has only one significant digit. If, how
ever, each M.A. of 8 years can be written as 8.0, the product 12 X 8.0 can be 
written as 96, since 8.0 contains two significant digits. 
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(2) ACCURACY OF A QUOTIENT 

(a) When dividing one approximate number by another approximate 
number, the significant figures in the quotient will equal the significant 
figures in that one of the two numbers (dividend or divisor) which is 
less accurate, i.e., which ha~ the smaller number of significant digits. 
Illustrations: 

9.27 should be written .23, not .22609, since 41 (the less accurate number) 
41 contains only two significant figures. 
16 should be written .0034, not .0033869, since 16 (the less accurate num-

4724 ber) has two significant figures. 

( b) In dividing an approximate number by an exact number, the num
ber of Significant figures in the quotie,nt will equal the number of signifi-' 
cant figures in the approximate number. Illustrations: 

9.27 should be written .226, since 9.27, the approximate number, has three 
41 significant figures. The number 41 is an exact number. 

8541 should be written 170.8, not 170.82, since 8541, the approximate num-
50 ber, contains only four significant figures. 

( c) In dealing with exact numbers, quotients may be written to as 
many decimals as one wishes. 

(:3) ACCURACY OF A ROOT OR POWER 

(a) The square root of an approximate number may legitimately con
tain as many significant figures as there are in the number itself. How
ever, the number of figures retained in the root is usually less than the 
number of Significant figures in the number. For example, \1'159.5600 will 
more often be written 12.63 than 12.63171, although the Original number, 
159.5600 contains seven Significant figures. ' 

(b) The square, or higher power, of. an approximate number contai]1s 
as many Significant figures as there are in the original number (and no 
more). For example, (.034)2 = .0012 (two Significant figures) and not 
.001156 (four Significant figures). 

( c) Roots and powers of exact numbers may be taken to as many deci
mal places as one wishes. 

( 4) ACCURACY OF A SUM OR DIFFERENCE 

The number of decimal places to be retained in a sum or difference 
should be no greater than the number qf decimals in the least accurate 
of the numbers added or subtracted. Illustrations: 
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362.2 + 18.225 + 5.3062 = 385.7 not 385.7312, since, the least accurate num
ber (362.2) contains only one decimal 

362.2 - 18.245 = 344.0, not 343.955, since the less accurate num
ber (362.2) contains only one decimal. 

PROBLEMS 

1. Indicate which of the following variables fall into continuous and which 
into discrete series: (a) time; (b) salaries in a larg«;l business firm; (c) sizes 
of elementary school classes; (d) age; (e) census data; (f) distance trav
eled by car; (g) football scores; (h) weight; (i) numbers of pages in 100 
books; (f) mental ages. 

2. Write the exact upper and lower limits of the following scores in accordance 
with the two definitions of a score in continuous series, given on pages 3 
and 4: 

62 
8 

175 
312 

1 
87 

3. Suppose that sets of·scores have the ranges given below. Indicate how large 
an interval, and how many intervals, you would suggest for use in drawing 
up a frequency distribution of each set. 

. Range 
16 to 87 
o to 46 

110 to 212 
63 to 151 
4 to 12 

Size of Interval Number of Intervals 

4. In each 'of the following write (a) the exact lower and upper limits of the 
class intervals (following the first definition of a score, given on p. 3), and 
(b) the midpoint of each interval. 

45-47 
1-4 

162.5-167.5 
80 up to 90 

63-67 
16-17 

0-9 
25-28 

5. (a) Tabulate the following twenty-five scores into two frequency distribu
tions, using (1) an interval of three, and (2) an interval of 5 units. 
Let the first interval begin with score 60. 

72 
81 
67 
83 
61 

75 
78 
82 
71 
67 

77 
65 
76 
63 
84 

67 
86 
76 
72 
69 

72 
73 
70 
72 
64 
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(b) Tabulate the following 100 scores into three frequency distributions, 
using intervals of 3, 5 and 10 units. Let the first interval begin with 45. 

63 78 76 58 95 
78 86 80 96 94 
46 78 92 86 88 
82 101 102 70 50 
74 65 73 72 91 

103 90 87 74 83 
78 75 70 84 98 
86 73 85 99 93 

103 90 79 81 83 
87 86 93 89 76 
73 86 82 '71 94 
95 84 90 73 75 
82 86 83 63 56 
89 76 81 105 73 
73 75 85 74 95 
92 83 72 98 110 
85 103 81 78 98, 
80 86 96 78 71 
81 84 81 83 92 
90 85 85 96 72 

6. The following lists represent the final grades made by two sections of the 
same course in general psychology. 

(a) Tabulate the grades into frequency distributions using an interval of 5. 
Begin with 45 in Section I and 50 in Section II. 

( b) Represent these frequency distributions as frequency polygons on the 
same axes. 

Section I (N = 64) Section II (N = 46) 
70 71 67 90 51 70 90 84 73 78 58 84 
67 79 ~1 81 58 7f3 72 80 74 86 52 74 
51 76 76 90 71 72 62 90 87 92 78 62 
89 90 76 71 88 66 81 82 76 85 85 90 
91 71 65 63 65 76 84 79 54 94 81 
79 80 71 76' 54 80 70 97 65 66 77 
72 63 87 91 90 45 89 69 56 57 
69 66 80 79 71 75 77 78 71 63 
58 50 47 67 67 52 62 95 65 71 
64 88 54 70 80 92 79 85 70 71 

7. (a) Plot frequency polygons for the two distributions of 25 scores found in 
5 (a), using intervals of 3 and of 5 score units. Smooth the second dis-
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tribution (see p. 13) and plot the smoothed fs and the original 
scores on the same axeS'. 

(b) plot a frequency polygon of the 100 scores in 5(b) using an .interval 
of 10 score units. Superimpose a histogram upon the frequency 
polygon, using the same axes. 

8. Reduce the distributions A and B below to percentage frequencies and plot 
them as frequency polygons on the same axes. Is your understanding of the 
achievement of these groups advanced by this treatment of the data? 

Scores Group A Group B 

52-55 1 8 
48-51 0 5 
44-47 5 12 
40-43 10 58 
36--39 20 40 
32-35 12 22 
28-31 8 10 
24-27 2 15 
20-23 3 5 
16-19 4 0 

65 175 

9. (a) Round off the following numbers to two decimals: 

3.5872 74.168 126.83500 
46.9223 25.193 . 81.72558 

(b) How many significant figures in each of the following: 

•. 00046 91.00 1.03 
46.02 18.365 15.0048 

(c) Write the answers to the following: 

127.4 X .0036 = (both numbers approximate) 
200.0 -;- 5.63 ="" " 

62 X .053 = (first number exact, second approximate) 
364.2 + 61.596 = 
364.2 - 61.59~ = 

yf.I7.86 = 
(18.6)2 = 

ANSWERS 

2. 61.5 to 62.5 and 62.0 to 63.0; 174.5 to 175.5 and 175.0 to 176.0; 
7.5 to 8.5 and 8.0 to 9.0; 311.5 to 312.5 and 312.0 to 313.0; 

.5 to 1.5 and 1.0 to 2.0 
86.5 to 87.5 and 87.0 to 88.0 
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3. 

4. 

9. (a) 

(b) 

(c) 

Size of Interval 
5 

3.59 
46.92 

2 
4 

.46 
35.5 

3.3 
425.8 
302.6 

4 or 5 
10 
10 
1 

44.5 to 47.5 
.5 to 4.5 

162.5 to 167.5 
79.5 to 89.5 
62.5 to 67.5 
15.5 to 17.5 
-.5 to 9.5 
24.5 to 28.5 

74.17 
25.19 
4 
5 

6.918 or 6.92 
346 

No. of Intervals 
15 

12 or 10 
11 
9 
9 

Midpoint 
46.0 

2.5 
165.0 
84.5 
65.0 
16.5 
4.5 

26.5 

3 
6 

126.83 
81.73 



CHAPTER 2 

MEASURES OF CENTRAL 
TENDENCY 

7' 60:: 

When scores or other measures have been tabulated into a frequency 
distribution, as shown in Chapter 1, usually the next task is to calculate a 
measure of central tendency, or central position. The value of a measure 
of central tendency is twofold. First, it is an "average" which represents 
all of the scores made by the group, and as such gives a concise descrip
tiOIl of the performance of the group as a whole; and second, it enables 
us to compare two or more groups in terms of typical performance. There 
are three "averages" or measures of central tendency in common use, 
(1) the arithmetic mean, (2) the median, and (3) the mode. The "aver
age" is the popular term for the arithmetic mean. In statistical work, 
however, "average" is the general term for any measure of central 
tendency. 

I. CALCULATION OF MEASURES OF CENTRAL TENDENCY 

I. The arithmetic mean (M) 

( 1) CALCULATION OF THE MEAN WHEN DATA ARE UNGROUPED 

The arithmetic mean or more simply the mean is the sum of the sepa
rate scores or measures divided by their number. If a man earns $3.00, $4.00, 
$3.50, $5.00 and $4.50 on five successive days his mean daily wage ($4.00) 
is obtained by dividing the sum of his daily earnings by the number of 
days he has worked. The formula for the mean (M) of a series of 
ungrouped measures is 

M=IX 
N 

(arithmetic mean calculated from ungrouped data) 

27 
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in which N is the number of measures in the series, X stands for a: score 
or other measure, and the symbol ~ means "sum of," here sum of sepa
rate measures. 

(2) CALCULATION OF THE MEAN FROM DATA GROUPED INTO A FREQUENCY 

DISTRIBUTION 

Whel1 measure~ have been grouped into a frequency distribution, the 
mean is calculated by a slightly different method from that given above. 
The two iIlu~trations in Table 5 will make the difference clear. The first 
example shows the calculation of the mean of the 50 Alpha scores tabu
lated into a frequency distribution in Table 1. First, the fX column is 
found by multiplying the midpoint (here X) of each interval by the 
number of scores (f) on it; the mean (170.80) is then simply the sum of 

TABLE 5 The calculation of the mean, median, and crude mode from data 
grouped into a frequency distribution 

-< 

1. Data from Table 1, 50 Army Alpha scores 
Class interval = 5 

Class 
Intervals Midpoint f fX 

Scores X 
195-199 197 1 197 
190-194 192 2 384 
185-189 187 4 

! 
748 

180-184 '182 5 910 
175-179 177, 8 20 1416 
17(}-174 172 10 1720 
165-169 167 6 20 1002 
16(}-164 162 4 i 648 
155-159 157 4 628 
15(}-154 152 2 304 
145-149 147 3 441 
140-144 142 1 142 

N::;;50 8540, 
N/2::: 25 

(1) M - 'if X - 8540 - 17080 ean - N - 50 - . 

(2) Median = 169.5 + 150 X 5 = 172.00' 

(3) Crude Mode falls on class interval 170-174 or at 172.00· 
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TABLE 5-{Continuec/) 

2. Scores made by 200 adults upon a cancellation test 
Class interval = 4 

Class Intervals Midpoint 
f Scores X 

135.~139.5 137.5 3 
131.~135.5 133.5 5 
127.~131.5 129.5 16 

1 123.~127.5 125.5 23 
119.~123.5 121.5 52 99 
115.~119.5 117.5 49 
1l1.~115.5 113.5 27 52 
107.~111.5 109.5 18 1 103.~107.5 105.5 7 

fX 
412.5 
667.5 

2072.0 
2886.5 
6318.0 
5757.5 
3064.5 
1971.0 
738.5 

N=200 23888.0 

(1) Mean = ~ = 23~~B08.0 = 119.44 

(2) Median = 115.5 + :: X 4 = 119.42 

N/2 = 100 

(3) Crude Mode falls on class interval 119.5 to 123:5 or at 121.50 

the fX (namely, 8540) divided by N (50). Scores grouped into intervals 
lose their identity and must be represented by the midpoint of that par
ticular interval on which they fall. Hence, we multiply the midpoint of 
each interval by the frequency upon that interval; add the fX and divide 
by N to obtain the mean. The,formula is 

M = !'fX 
N 

(2) 

(arithmetic mean calculated. from scores grouped into 
a frequency distribution) 

in which fX is the sum of the midpoints weighted by their frequencies. 
The second examRle in Table 5 is another illustration of the calculation 

of the mean from grouped data. This frequency distribution represents 
200 scores made by a group of adults on a cancellation test. Scores have 
been classmed into 9 intervals; and since the intervals are 4 units in 
length, the midpoints are found by adding o~e-half of 4 to the exact 
lower limit of each. For example, in the first interval, 103.5 + 2.0 = 105.5. 
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The IX column totals 23,888.0; and N is 200. Hence, applying formula (2), 
the mean is found to be 119.44 (to two decimals). 

(3) THE MEAN FROM COMBINED SAMPLES OR GROUPS 

Suppose that on a certain test the mean for a group of 10 children 
is 62, and that on the same test the mean for a group of 40 children is 

. . 62XI0+66X40 
66. Then the mean of the two groups combmed IS 50 

or 65.2. The_formula for the weighted mean of n groups is 

M _ NIMl + N2M2 + ......... +NnMn 
comb - N 1 + N 2 + ....... + N n 

(3) 

(weighted arithmetical mean obtained from combining 
n groups) 

When only two groups are combined, the weighted mean formula 
becomes 

- 2. The median/(Mdn) * 
( 1) CALCULATION OF THE MEDIAN WHEN DATA ARE UNGROUPED 

When ungrouped scores or other measures are arranged in order of 
size, the median is the midpoint in the series. Two situations arise in the 
computation of the median from ungrouped data: (a) when N is odd, 
and (b) when N is even. To consider, first, the case where N is odd, 
suppose we have the following integral "mental ages": 7, 10, 8, 12,9, 11, 
7, calculated from seven performance tests, If we arrange these seven 
scores in order of size 

7 7 8 (9) 10 11 12 

the median is 9.0 since 9.0 is the midpoi~t of that score which lies mid
way in the series. Calculation is as follows: There are three scores above, 
and three below 9, and since a .score of 9 covers the interval 8.5 to 9.5, 
its midpoint is 9.0 .. This is the median. 

Now if we drop the first score of 7 our series contains six scores 

7 8 9 
9.5 
t 10 11 12 

and the median is 9.5. Counting three scores in from the beginning of the 
series, we complete score 9 (which is 8.5 to 9.5) to reach 9.5, the upper 
limit of score 9. In like manner, counting three scores in from the end 

o The median is also designated Md 
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of the series, we move through score 10 (10.5 to 9.5) reaching 9.5, the 
lower limit of score 10. 

A formula for finding the median of a series of ungrouped scores is 

Median. == the (N ; 1) th measure i~ order of size ( 4 ) 

(median from un grouped data) 

b h di' th (7 + 1) 4 h In our first illustration a ove,. t e me an IS on e 2 or t score 

counting in from eith,er end of the series, that is, 9.0 (midpoint 8.5 to 

9.5). In our second illustration, the median is on the (
6 ~- 1) or 3.5th 

score in order of size, that is, 9.5 (upper limit of score 9, or lower limit 
of score 10). 

(2) CALCULATION OF THE MEDIAN WHEN DATA ARE GROUPED INTO A 

FREQUENCY DISTRIBUTION 

'When scores in a continuous series are grouped into a frequency dis
tribution, the median by definition is the 50% point in the distribution. 
To locate the median, therefore, we take 50% (i.e., N /2) of our scores, 
and count into the distribution until the 50% point is reached. The 
method is illustrated in the two examples in Table 5. Since there are 
50 scores in the first distribution, N /2 = 25, and the median is that point 
in our distribution of Alpha scores which has 25 scores on each side of it. 
Beginning at the small-score end of the distribution, and adding up the 
the scores in order, we find that intervals 140-144 to 165-169, inclusive, 
contain just 20 fs-five scores short of the 25 necessary to locate the 
median. The next interval, 170-174, contains 10 scores assumed to be 
spread evenly over the interval (p. 29). In order to get the five extra 
scores needed to make exactly 25, we take 5/10 X 5 (the length of the 
interval) and add this increment (2.5) to 169.5, the beginning of the 
interval 170-174. This puts the Mdn at 169.5 + 2.5 or at 172.0. The stu
dent should note canlfully that the median like the mean is a point and 
not a score. 

A second illustration of the calculation of the median from a frequency 
distribution is given in Table 5 (2). There are 200 scores in this distribu
tion; hence, N /2 = 100, and the median must lie at a point 100 scores dis
tant from either end of the distribution. If we begin at the small-score 
end of the distributIon (103.5-107.5) and add the scores in order, 52 
scores take us through the interval 111.5-115.5. The 49 scores on the next 
interVal (115.5-119.5) plus the 52 already counted off total 10l-one 
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score too many to give us 100, the point at which the median falls. To get 
the 48 scores needed to make exactly 100 we must take 48/49 X 4 (the 
length of the interval) and add this amount (3.92) to ll5.5, the begin
ning of interval 115.5-119.5. This procedure takes us exactly 100 scores 
into the distribution, and locates the median -at 119.42. 

A formula for calculating the Mdn when the data have been classified 
into a frequency distribution is 

(~-F) Mdn = 1+ t:::- i 

(median computed from data grouped into a fre9uency distribution) 

where 

1 = exact lower limit of the class interval upon which the median lies 
N '2 == one-half the total number of scores 

F == sum of the scores on all intervals below I \ 

(5) 

f m = frequency (number of scores) within the interval upon which the median 
falls ' 

i = length of class interval 

To illustrate the use of formula (5), consider the first example in Table 5. 
Here l-= 169.5, N/2 == 25, F = 20, 1m = 10, and i = 5. Hence, the median 

falls at 169.5 + (25 - 20) X 5 or at 172.0. In the second example, 
10 

1 =i 115.5, N/2 == 100, F == 52, fm == 49, and i == 4. The median is 

115.5 + (100 4~ 52) X 4 or 119.4~. I 

The steps involved in computing the Mdn from data tabulated into a 
frequency distribution may be summarized as follows: 

( 1) Find N /2, that is, one-half of the cases in the distribution. 
(2) Begin at the small-score end of the distribution and count off the scores 

in order up to the exact lower limit (l) of the interval ,which contains the 
median. The sum of these scores is F. 

(3) Compute the number of scores necessary to fill out N /2, Le., compute 
N/2 - F. Divide this quantity by the frequency (fm) on the interval 
which contains the median; and multiply the result by the size of the class
interval (i). 

(4) Add the amount obtained by the calculations in (3) to the exact lower 
limit (1) of the interval which contains the Mdn. This procedure will give 
the median of the distribution. 
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The median may also be computed by counting off one-half of the 
scores from the top down in a frequency distribution; but counting up 
from the low score end is usually more convenient. If we count down 
from the top of the distribution, the quantity found in step (3) must be 
subtracted from the exact upper limit of the interval upon which the 
median falls. 

To illustrate with the data of Table 5 (1), counting down in the 
f column, 20 scores complete interval 175-179, and we reach 174.5, the 
exact upper limit of the interval 170--174. Five scores of the 10 on this 

5 
interval are needed to make 25 (N /2). Hence we have 174.5 - 10 X 5 = 

172.0, which checks our first calculation of the median. In Table 5 (2), 

the median found by counting down is 119.5 - ..!_ X 4 or 119.42. 
49 

(3) CALCULATION OF THE Mdn WHEN (a) THE FREQUENCY DISTRIBUTION 

CONTAINS GAPS; AND WHEN (b) THE FIRST OR LAST INTERVAL HAS 

INDETERMINATE LIMITS 

(a) Difficulty arises when it becomes necessary to calculate the median 
from a distribution in which there are gaps or zero frequency upon one 
or more intervals. The method to be followed in such cases is shown in 
Table 6. Since N = 10, and N /2 = 5, we count up the frequency column 

TABLE 6 Computation of the median when there are gaps in the distribution 

Class Intervals 
Scores 

20-21 
18-19 
16-17 
14-15 
12-13 
10-11 

8-9 
6-7 
4-5 
2-3 
0-1 

f 
2 
1 
o 
o 
~} 10-13 

~} 6-9 

1 
1 
1 

N= 10 
Nj2= 5 

o 
Mdn = 9.5 +"2 X 2 = 9.5 
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5 scores through 6-7. Ordinarily, this would put the median at 7.5, the 
exact lower limit of interval 8-9. If we check this median, however, by 
counting down the frequency column five scores, the median falls at 11.5, 
the lower limit of 12-13. Obviously, the discrepancy between these two 
values of the median is due to the two intervals 8-9 and 10-11 (each of 
which has zero frequency) which lie between 6-7 and 12-13. In order to 
have the median come out at the same point, whether computed from the 
top or the bottom of the frequency distribution, the procedure usually 
followed in cases like this to have interval 6-7 include 8-9, thus becoming 
6-9; and to have interval 12-13 include 10-11, becoming 10-13. Length
ening these intervals from two to four units eliminates the zero frequency 
on the adjacent intervals by spreading the numerical frequency over 
them. If now we count off five scores, going up the frequency column 
through 6-9, the median falls at 9.5, the upper limit of this interval. 
Also, counting down the frequency column five scores, we arrive at a 
median value of 9.5, the upper limit of 6-9, or the lower limit of 10-13. 
Computation from the two ends of the series now gives consistent 
results-the median is 9.5 in both instances. 

Table 6 represents an extreme case of a distribution with gaps. When N 
is small (as here) and gaps are numerous, it is always wise to get further 
data before computing a median. The procedure suggested for dealing 
with gaps in a distribution is not to be taken as a substitute for goud data 
in the first instance. 

(b) When scores scatter widely, the last interval in a frequency dis
tribution may be designated as "80 and above" or simply as 80+' This 
means that all scores at or above 80 are thrown into this interval, the 
upper limit of which is indeterminate. The same lumping together of 
scores may occur at the beginning of the ~istribution, when the first 
interval, for example, may be cfesignated "20 and below" or 20-; or a 
number of scores may be put into an interval marked D.N.C. (did not 
complete). The lower limit of the be'ginning interval is now indeter
minate. In incomplete distributions like these, the median is readily com
puted since each score is simply counted as one frequency whether accu-. 
rately classified or not. But it is impossible to calculate the mean exac;tly 
when the midpoint of one or more intervals is unknown. The mean 
depends, upon the absolute size of the scores (or their midpoints) aI)d is 
directly affected by indeterminate interval limits. 

3. The mode 

In a simple ungrouped series of measures the "crude" or "empirical" 
mode is that single measure or score which occurs most frequently. For 
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example, in the series 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, the most often 
recurring measure, namely, 13, is the crude or empirical mode. When 
data are grouped into a frequency distribution, the crude mode is usually 
taken to be the midpoint of that interval which contains the largest fre
quency. In example 1, Table 5, the interval 170-174 contains the largest 
frequency and hence 172.0, its midpoint, is the crude mode. In example 2, 
Table 5, the largest frequency falls on 119.5-123.5 and the crude mode 

_ is at 121.5, the midpoint. 
When calculating the mode from a frequency distribution, we distin

guish between the "true" mode and the crude mode. The true mode is 
the point (or "peak") of greatest concentration in the distribution; that is, 
the point at which more measures fall than at any other point. When the 
scale is divided into finely graduated units, when the frequency polygon 
has been smoothed, and when N is large, the crude mode closely ap
proaches the true mode. Ordinarily, however, the crude mode is only 
approximately' equal to the true mode. A formula for approximating the 
true mode, when the frequency distribution is symmetrical, or at least not 
badly skewed (p. 99) is 

Mode = 3 Mdn - 2 Mean (6) 

(approximation to the true mode calculated from a frequency distribution) 

If we apply this formula to the data in Table 5, the mode is 174.40 for 
the first distribution, and 119.38 for the second. The first mode is some
what larger and the second slightly smaller than the crude modes 
obtained from the same distributions. 

The crude mode is an unstable measure of central tendency. But this 
instability is not so serious a drawback as it might seem. A crude mode 
is usually employed as a simple, inspectional "average," to indicate in a 
rough way the center of concentration in the distribution. For this pur
pose it need not he calculated as exactly as the median or mean. 

II. CALCULATION OF THE MEAN BY THE "ASSUMED MEAN" 
OR SHORT METHOD 

In Table 5 the mean was calculated by multiplying the midpoint (X) 
of each interval by the frequency (number of scores) on the interval, 
summing these values (the fX column) and dividing by N, the number 
of scores. This straightforward method (called the Long Method) gives 
accurate results but often requires the handling of large numbers and 
entails tedious calculation. Because of this, the "Assumed Mean" method, 
or simply the Short Method, has been devised for computing the mean. 
The Short Method does not apply to the calculation of the median or 
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the mode. These measures are always found by the methods previously 
described. 

The most important fact to remember in calculating the mean by the 
Short Method is that we "guess" or "assume" a mean at the outset, and 
later, apply a correction to this assumed value (AM) in order to obtain 
the actual mean (M) (see Table 7). There is no set rule for assuming a 

TABLE 7 The calculation of the mean by the short method 

(Data from Table 1,50 Army Alpha scores) 

(1) (2) (3) ( 4) (5) 

Class Intervals Midpoint 
f x' fx' Scores X 

195-199 197 1 5 5 
190-194 192 2 4 8 
185-189 187 4 3 12 
180-184 182 5 2 10 
175-179 177 8 1 8 
170-174 172 10 0 +43 
165-169 167 6 -1 -6 
160-164 162 4 -2 -8 
155-159 157 4 -3 -12 
150-154 152 2 -4 -8 
145-149 147 3 -5 -15 
140-144 142 1 -6 -6 

N=50 -55 
AM == 172.00 12 

ci = -1.20 c = - 50 = -.240 

M = 170.80 i= 5 
ci = -.240 X 5 = -1.20 

mean. O The best plan is to take the midpoint of an interval somewhere 
near the center of the distribution; and if possible the midpoint of that 
interval which contains the largest frequency. In Table 7, the largest f is 
on interval 170-174, which also happens to be almost in the center of the 
distribution. Hence the AM is taken at 172.0, the middle of this interval. 
The question of the AM settled, we determine the correction which must 
be applied to the AM in order to get M. Steps are as follows: 

o The method outlined here gives consistent results no matter where the mean is 
tentatively placed or assumed. . 
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First, we fill in the x' colunin, (I column (4). Here are entered the devia
tions of the midpoints of the different steps measured from the AM in 
units of class interval. Thus 177, the midpoint of 175-179, deviates from 
172, the AM, by one interval; and a "1" is placed in the x' column oppo
site 177. In like manner, 182 deviates two intervals from 172; and a "2" 
goes in the x' column opposite 182. Reading on up the x' column from 172. 
we find the succeeding entries to be 3, 4 and 5. The last entry, 5, is the 
interval deviation of 197 from 172; the actual score deviation, of course, 
is 25. 

Returning to 172, we find that the x' of this midpoint measured from 
the AM (from itself) is zero; hence a zero is placed in the x' column oppo
site 170-174. Below 172, all of the x' entries are negative, since all of the 
midpoints are less than 172, the AM. So the x' of 167 from 172 is -1 in
terval; and the x' of 162 from 172 is -2 intervals. The other x's are -3, 
-4, -5, and -6 intervals. 

The x' column completed, we compute the fx' column, column (5). The 
fx' entries are found in exactly the same way as are the fX in Table 5. 
Each x' in column (4) is multiplied or "weighted" by the appropriate f in 
column (3). Note again that in the Short Method we multiply each x' by 
its deviation from the AM in units of class interval, instead of by its actual 
deviation. from the mean of the distribution. For this reason, the compu
tation of the fx' column is much more simple than is the calculation of 
the fX column by' the method given on page 000. All fx' on intervals 
above (greater than) the AM are positive; and all lx' on intervals below 
(smaller than) the AM are negative, since the signs of the fx' depend 
upon the signs of the x'. 

(3) From the fx' column the correction is obtained as follows: The sum of 
the positive values in the fx' column is 43; and the sum of the negative 
values in the fx' column is -55. There are, therefore, 12 more minus fx' 
values than plus (the algebraic sum is -12); and -12 divided by 50: (N) 
gives - .240 which is the correction (c) in units of class interval. If we 
multiply c (-.240) by i, the length of the interval (here 5), the result is ci 
( -1.20) the score correction, or the correction in score units. When -_l.20 
is added to 172.00, the AM, the result is the actual mean, 170.80. 

Th~ process of calqulating the mean by the Short Method may be 
summarized as follows: 

(1) Tabulate the scores or measures into a frequency distribution. > 

(2) "Assume" a mean lIS near the center of the distribution as pOSSible, and 
. preferably on the interval containing the largest frequency. 

( 3 ) Find the deviation of the midpoint of each class interval from the AM 
in units of interVal . 

.. x' is regularly used to denote the deviation of a score X from the assumed mean 
(AM); x is the deviation of a score X from the actual mean (M) of the distribution. 
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(4) Multiply or weight each deviation (x') by its appropriate f-the f oppo
site it. 

(5) Find the algebraic sum of the plus and minus fx' and divide this sum 
by N, the number of cases. This gives c, the correction in units of class 
interval. 

(6) Multiply c by the interval length (i) to get ci, the score correction. 
(7) Add ci algebraically to the AM to get the actual mean. Sometimes ci will 

be positive and sometimes negative, depending upon where the mean has 
been assumed. The method works equally well in either case. 

III. WHEN TO USE THE VARIOUS MEASURES OF CENTRAL TENDENCY 

The student of statistical method is often puzzled to know what meas
ure of central tendency is most appropriate for a given problem. The M is 
generally preferred to other averages as it is rigidly defined mathe
matically (lX/N) and is based upon all of the measures. But there are 
instances where the Mdn or the mode is the better statistic. While there 
is no substitute for experience, certain general rules may be set down as 
follows: 

I. Use the mean 

( 1) When the scores are distributed symmetrically around a central 
point, i.e., when the distribution is not badly skewed (p. 99). The 
M is the center of gravity in the distribution, and each score con
tributes to its determination. 

(2) When the measure of central tendency having the greatest stability 
is wanted (p. 185). Why the M is more stable than either the M dn 
or the mode will appear later in Chapter 8. 

(3) When other statistics (e.g., SD, coefficient of correlation) are to 
be computed later. Many statistics are based upon the mean. 

2. Use the median 

( 1) When the exact midpoint of the distribution is wanted-the 500/0 
point. 

(2) When there are extreme scores which would markedly affect the 
mean. Extreme scores do not disturb the median. For example, in 
the series 4, 5, 6, 7and 8, both mean and median are 6. But if 8 is 
repla"ced by 50, the other scores remaining the same, the median is 
still 6 but the mean is 14.4. 

(3) When it is desired that certain scores should influence the central 
tendency, but all that is known about them is that they are above 
or below the median (p. 33). 
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3. Use the mode 

1-

( 1) When a quick and approximate measure of central tendency is all 
that is wanted. 

( 2) When the measure of central tendency should be the most typical 
value. When we describe the style of dress or shoes worn by the 
"average woman," for instance, the modal or most popular fashion 
is usually meant. In like manner, in speaking of the average wage 
in a certain industry, we often mean the modal wage under speci
fied conditions. 

PROBLEMS 

Calculate the mean, median, and mode for the following frequency distri-
butions. Use the Short Method in computing the mean. 

(1) Scores f (2) Scores f 
70-71 2 90-94 2 
68-69 2 85-89 2 
66-67 3 80-84 4 
64-65 4 75-79 8 
62-63 6 70-74 6 
60-61 7 65-69 11 
58-59 5 60-64 9 
56-57 4 55-59 7 
54-55 ·2 50-54 5 
52-53 3 45-49 0 
50-51 1 40-44 2 

N=39 N=56 

(3) Scores f (4) Scores f 
120-122 2 100-109 5 
117-119 2 90-99 9 
114-116 2 80-89 14 
111-113 4 70-79 19 
108-110 5 60-69 21 
105-107 9 50-59 30 
102-104 6 40-49 25 
99-101 3 30-39 15 
9~98 4 20-29 10 
93-95 2 10-19 8 
90-92 1 0-9 6 

N=40 N= 162 
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_ (5) Scores f 
120-139 50 
100-119 150 
80-99 500 
60-79 250 
40-59 50 

N = 1000 

(6) Scores 
15 
14 
13 
12 
11 
10 
9 
8 
7 
6 
5 
4 

f 
1 
2 
3 
6 

12 
15 
22 
31 
18 

6 
2 
2 

N= 120 

2. Compute the mean and the median for each of the two distributions in 
problem 5(a), page 23, tabulated in 3- and 5-unit intervals. Compare 
the two means and the two medians, and explain any discrepancy found. 
(Let the first interval in the first distribution be 61-63; the first interval in 
the sec~md distribution, 60-64.) 

-
3. (a) The same test is given to the three sections of Grade VI. Results are: . 

Section I, M:= 24, N = 32; Section II, M = 31, N = 54; Section III, 
M = 35, N = ·16. What is the general mean for the grade? ' 

(b) The mean score on AGCT in Camp A is 102, N = 1500; and iIi 
Camp B 106, N = 450. What is the mean for Camps A and B com
bined? 

4. (a) Compute the median of the following 16 scores by the. method of 
page 33. 

Scores f 
20-21 2 
18-19 2-
16-17 4 
14-15 0 
12-13 4 
10-11 0 
8-9 4 

N= 16 

(b) In a group of 50 children, the 8 children who took longer than 5 min
utes to complete a performance test were marked D.N.C. (did not 
complete). In computing a measure of central tendency for this dis
tribution of scores, what measure would you use, and why? 

( c ) Find the medians of the following arrays of ungrouped scores by 
formula (4) page 31: 
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(1) 21,24,27,29,29,30,32,33,35,38,42,45. 
(2) 54, 59, 64, 67, 70, 72, 73, 75, 78, 83, 90. 
(3) 7, 8, 9, 9, 10, 11. 

5. The time by your watch is 10:31 o'clock. In checking with two friends, 
you find that their watches give the time as 10:25 and 10:34. Assuming 
that the three watches are equally good timepieces, what do you think 
is probably the "correct time"? 

6. What is meant popularly by the '1aw of averages"? 
7. (a) When one uses the term "in the mode" does he have reference to the 

mode of a distribution? 
(b) What is approximately the-modal time for each of the following meats: 

breakfast, lunch, dinner. Explain your answers. 
(c) Why is the median usually the best measure of the typical contribution 

in a church collection? 
8. Suppose that the mean weekly pay of 5 brothers (after deductions) is $60 

and the median is $50. ' 
(a) How much money do the brothers take home? 
(b) If John, the best paid brother, gets a pay raise of $10 per week, what 

is the new mean? The new median? 

ANSWERS 

1. (1) Mean = 60.76 (2) Mean = 67.36 
Median = 60.79 Median = 66.77 
Mode = 60.85 Mode :::; 65:59 

(3) Mean = 106.00 (4) Mean :::; 55.43 
Median = 105.83 Median = 55.17 
Mode = 105.49 Mode :::; 54.65 

(5) Mean =87.5 (6) Mean =8.85 
Median =87.5 Median =8.55 
Mode =87.5 Mode =7.95 

2. Class interval = 3 Class interval:::; 5 
Mean = 72.92 Mean = 73.00 

Median = 71.75 Median = 72.71 

3. (a) 29.43 (b). 103 (to the nearest whole number) 

4. (a) Median = 14.5 
(c) (1) Median = 31.0 

(2) Median = 72.0 
(3) Median = 9.0 

5. Mean is 10:30. 

8. (a) $300 
(b) $62 $50 



CHAPTER 3 

MEASURES OF VARIABILITY 

I' 

In Chapter 2 the calculation of three measures of central tendency
measures typical or representative of a set of scores as a whole-was 
outlined. Ordinarily, the next step is to find some measure of the vari
ability of our scores, i.e., of the "scatter" or "spread" of the separate 
scores around their central tendency. It will be the task of this chapter to 
show how indices of variability may be computed. 

The usefulness of a statistic which provides a measure of variability 
can be seen from a simple example. Suppose a test of arithmetic reason
ing has been administered to a group of 50 boys and to a group of 
50 girls. The mean scores are, boys, 34.6, and girls, 34.5. So far as the 
means go there is no difference in the performance of the two groups. 
But suppose the boys' scores are found to range from 15 to 51 and the 
girls' scores from 19 to 45. This difference in range shows that in a general 
sense the boys "cover' more territory," are more variable, than the girls; 
and this greater variability may be of more interest than the lack of a 
difference in the means. If a group is homogeneous, that is, made up of 
individuals of nearly the same anility, most of its scores will fall around 
the same point on the scale, the range will be relatively short and the 
variability small. But if the group contains individuals of widely differing 
capacities, scores will be strung out from high to low, the range will be 
relatively wide and the variability large. 

This situation is represented graphically in Figure 7, which shows two.. 
frequency distributions of the same area (N) and same mean (50) but 
of very different variability. Group A ranges from 20 to 80, and Group B 
from 40 to 60. Group A is three times as variable as Group B-spreads 
over three times the distance on .the scale of scores-though both distribu
tions have the same central tendency. 

Four measures have been devised to indicate the variability or disper
sion within a set of measures. These are (1) the range, (2) the quartile 

42 
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FIG. 7 Two distributions of the same area (N) and mean (50) but of very 
different variability 

deviation or Q, (3) the average deviation or AD, and (4) the standard 
deviation or SD. 

I. CALCULATION OF MEASURES OF VARIABILITY 

I. The range 

We have already had occasion to use the range in Table 1. It may be 
defined again simply as that interval between the highest and the lowest \ 
scores. In Figure 7 the range of the boys' scores was 51-15 or 36 and the 
range of the girls' scores 45-19 or 26. The range is the most general meas
ure of spread or scatter, and is computed when we wish to make a rough 
comparison of two or more groups for variability. The range takes account 
of the extremes of the series of scores only, and is unreliable when N is 
small or when there are large gaps (i.e., zero fs) in the frequency dis
tributidn. Suppose that the highest score in a distribution is 120 and there 
is a gap of 20 points before we reach 100, the score next below. If the 
lowest score is 60, the single high score of 120 increases the range from 
40 (100-60) to 60 (120-60). . 

2. The quartile deviatiqn or Q 

The quartile deviation or Q is one-half the scale distance between the 
75th and 25th percentiles in a frequency distribution. The 25th percentile 
or Ql is the first quartile on the score scale, the point below which lie 
25% of the scores. The 75th percentile or Qa is th~ third· quartile on the 
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score scale-the point below which lie 75% of the scores. When we have 
these two points the quartile deviation or Q is found from the formula 

Q _ Q3 :- Ql (7) 
- 2 

(quartile deviation or Q calculated from a frequency distribution) 

To find Q, it is clear that we must first compute the 75th and 25th per
centiles. These statistics are found in exactly the same way as was the 
median, which is, of course, the 50th percentile or Q2' The only difference 
is that 1/4 of N is counted off from the low end of the distribution to 
find Ql and that 3/4 N is counted off to find Q3' The formulas are 

and 

Q -l + . (N/4 - cum 'I) 
1 - I fq (8) 

Q3 = 1 + i (SN/4 - cum 'I) (Q) 
fq 

where 

(quartiles Q1 and Qa computed from a frequency distribution) 

1 = the exact lower limit of the interval in which the quartile falls 
i = the length of the interval 

cum fl = cumulative f up to the interval which contains the quartile 
Iq = the f on the interval containing the quartile 

Table 8 shows the computations needed to get Q' in the distribution of 
50 Alpha scores shown in Table 1. First, to find Q1 we count off 1/4 of N 
or 12.5 from the low-score end ~f the distribution. When the scores are 
added in order, the first 4 intervals (140-144 through 155-159) contain 
10 scores and take us up to 159.5. Ql must fall on the next interval 
( 160-164) which contains 4 scores. From Table 8 we have that 

1 = 159.5, exact lower limit of the interval on which Q1 falls 
, 1/4N= 12.5 

cum II = 10, cumulated scores up to the interval containing Q1 
f q = 4, the f on the interval on which Q1 falls 
i = 5, the length of the interval 

Substituting in formula (8), we have that 

(>1 = 159.5 + 5(12.~ - 10) 

= 16.2.62 

To find Q3, we count off 3/4 N from the low-score end of the distribu
tion. From Table 8 it is clear that 3/4 N is 37.5; and that ,the f's on inter-
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vals 14~144 through 17~174, inclusive, total 30. Qa must fall on the next 
interval (175-179) which contains 8 scores. Substituting the necessary 
data from Table 8 we have that . 

l = 174.5, exact lower limit of interval which contains Qa 
3/4N= 37.5 
cum I, = 30, sum of scores up to interval which contains Qa 

f II = 8, I on the interval containing Qa 
i=5 

and from formula (9) 

Qa = 174.5 + 5(37.5
8
-30) 

= 179.19 

Finally, substituting in formula (7) we have that 

Q = 179.19 - 162.62 
2. 

=8.28 

TABLE 8 The calculation of the Q, AD and SD from data grouped into a 
frequency distributipn 

1. Data from Table 1, p. 5, 50 .AJ:my Alpha s~ores 

(1) (2) (3) (4) (5) (6) 

Intervals Midpoint 
(Scores) X f x Ix fx2 

195-199 197 1 26.20 26.20 686.44 
190-194 192 2 21.20 42.40 898.88 
185-189 187 4 16.20 64.80 1049.76 
180-184 182 5 11.20 56.00 627.20 
175-179 177 8 6.20 49.60 307.52 
170-174 172 10 30 1.20 12.00 14.40 
165-169 167 6 -3.80 -22.80 86.64 
160-164 162 4 -8.80 -35.20 309.76 
155-159 157 4 10 -13.80 -55.20 761.76 
150-154 152 2 -l8.80 -37.60 706.88 
145-149 147 3 -23.80 -71.40 1699.32 
140-144 142 1 -28.80 -28.80 829.44 

N=50 502.00 7978.00 
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TABLE 8-(Continued) 

(1) 
Intervals 
(Scores) 

135.5-139.5 
131.5-135.5 
127.5-131.5 
123.5-127.5 
ll9.5-123.5 
U5.5-ll9.5 
ll1.5-ll5.5 
107.5-ll1.5 
103.5-107.5 

Mean = 170.80 (from Table 5) 

Nj4 = 12.5 and 3Nj4 = 37.5 

Ql = 159.5 + 5(12.5 - 10) = 162.62 
4 

Qa = 174.5 + 5(37.5 - 30) = 179.19 
8 

Q = Qa - Ql = 179.19 - 162.62 = 8.28 
2 2 

AD = !. I tx I = 502.00 = 10.04 
N 50 

SD = ~!.fX2 = ~7978.00 = 12.63 
N 50 

2. Data from Table 3, 200 cancellation scores 

(2) (3) (4) 
Midpoint 

X f :x: 
137.5 3 18.06 
133.5 5 14.06 
129.5 16 10.06 
125.5 23 6.06 
121.5 52 2.06 
ll7.5 49 101 -1.94 
113.5 27 -5.94 

.109.5 18 25 -9.94 
105.5 7 -13.94 

N=200 

Mean = 119.44 (from Table 6) 
Nj4 = 50 and 3Nj4 :::::;,150 

(5) 

f:x: 
54.18 
70.30 

160.96 
139.38 
107.12 

-95.06 
-160.38 
-178.92 

-97.58 
1063.88 

(8) 

(9) 

(7) 

"ell) 

(13) 

(6) 

f~ 
978.49 
988.42 

1619.26 
844.64 
220.67 
184.42 
952.66 

1778.46 
1360.27 
8927.29 

Ql = ll1.5 + 4(50 - 25) = 115.20 (8) 
27 

Qa = ll9.5 + 4(1505~ 101) = 123.27 (9) 

Q = Qa - Ql = 123.27 - ll5.20 = 4.03 (7) 
2 2 

AD=~= 1063.88 =532 (ll) 
N 200 . 

SD = /!.fx
2 

= /8927.29 = 6 68 (IS) 
'\j N '\j 200 . 

, 
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A second illustration of the calculation of Q from a frequency distribu
tion is given in Table 8 (2). To find Qh we count off 1/4 of N (200) or 
50 scores from the low-score end of the distribution. The intervals 103.5-
101.5 and 107.5-111.5, taken together, include 25 scores. Qh therefore, 
must fall on the next interval, 111.5-115.5, which contains 21 scores. These 
27 scores when added tel the 25 counted off total 52-just 2 more than the 
50 wanted. From Table 8 we find that 

1 = 111.5, exact lower limit of the interval containing Ql 
1/4 N = 50 
cum fl = 25, sum of the scores up to the interval upon which Ql falls 

fq = 27, number of scores on the interval containing Ql 
i=4 

Substituting in formula (8) 

Ql = 111.5 + 4(50 - 25) = 115.20 
27 

To find Qa we count off 3/4 of N or 150 from the low-score end of the 
distribution. The first 4 intervals include 101 scores and Qs falls on the 
next interval 119.5-123.5, which contains 52 scores. Data from Table 8 are 

1 = 119.5, exact lower limit of interval containing Qa 
3/4 N = 150, 
cum fl = 101, sum of scores up to interval which contains Qs 

fq = 52, f on the interval on which Qa falls 
i= 4 

Substituting in formula (g) 

Qa = 119.5 + 4 (150 - 101) = 123.27 
52 

Substituting for Qa and Ql in (7) we get a Q of 4.03 (see Table 8). 
The quartiles Ql and Qa mark off the limits of the middle 500/0 of scores 

in the distribution, and the distance between these two points is called 
the interquartile range. Q is 1/2 the range of the middle 50ro or the semi
interquartile range. Since Q measures the average distance of the quartile 
points from the median, it is a good index of s~ore density at the middle 
of the distribution. If the scores in the distribution are packed closely 
together, the quartiles will be near one another and Q will be small. If 
scores are widely scattered, the quartiles will be relatively far apart and 
Q will be large (see Fig. 7). 

When the distribution is symmetrical around the mean-or when it is 
normal-Q marks off exactly the 250/0 of cases just above, and the 25ro of 
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cases just below, the median The median then lies just halfway between 
the two quartiles Qa and Ql' In a nonnal distribution (p. @9) Q is called 
the probable error or PE. The terms Q and PE are sometimes used inter
changeably, but it is best to restrict the term PE to the normal probability 
curve (p. 99). . 

3. The average deviation or AD 

(1) COMPUTATION OF THE AD FROM UNGROUPED SCORES 

The average deviation or AD (also written mean deviation or MD) is 
the mean of the deviations of all of the separate scores in a series taken 
from their mean (occasionally from the median or mode). In averaging 
deviations to find the AD, no account is taken of signs, and all deviations 
whether plus or minus are treated ,as positive. 

An example will make the defin~tion clear. The mean of the 5 scores;, 
6,8, 10, 12 and 14 is 10. And the deviations of the separate scores from 
this mean are 6 - 10 or -4; 8 - 10 or -2; 10 - 10 or 0; 12 - 10 or 2; 
14 - 10 or 4. The sum of these 5 deviations, disregarding signs, is 12; and 
dividing 12 by 5 (N) we get 2.4 as the mean of these 5 deviations froni 
their mean, or the AD. The formula for the AD when scores are un
grouped is 

AD=~ 
N 

(average deviation when scores are ungrouped) 

(10) 

in which the bars I I enclosing the x indicate that signs are disregarded 
in arriving at the sum. As alw~ys, x is a deviation of a score from the 
mean, .i.e., X - M = x. 

(2) CALCULATION OF THE AD FROM GROUPED DATA 

The AD is rarely used in modem statistics, but it is often found in the 
older experimental literature. Should the student find it necessary to com
pute the AD from grouped data, the method shown in Table 8 may be 
followed. In column (4) are entered the deviations (x) of each interval 
midpoint from the "mean of 170.80. The deviation of 197, midpoint of 
195-199, from 170.80 is 197 - 170.80 or 26.20; and all deviations down to 
170-174 are plus, as the midpoints in all cases are numerically higher than 
170.80. From interval 165-169 on down to the beginning of the distribu
tion, the x's are minus, as the midpoints are all numerically smaller than 
170.80. 

Each x deviation in column (4) is now "weighted" by the frequency 
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which it represents to give the fx entries in column (5). The first x of 
26.20 is multiplied by 1; the second x of 21.20 by 2, and so on to the end 
of the column. The sum of the fx column is djvided by N to give the AD. 
The formula is 

AD -!.l.El - N 
(average deviation or AD found from grouped scores) 

Substituting for ~ ~x I in the formula, the AD is 50:000 or 10.04. 

(11) 

In the second problem in Table 8, the sum of the fx column-col (5)-
1063.88 

is 1063.88 and N is 200. Hence, by formula (11), the AD = 200' 

or 5.32. 
In figuring deviations from the mean, it is helpful to remember that the 

mean is always subtracted from the midpoint. That is, X (midpoint) 
minus M (mean) equals x (the deviation). The computation is algebraic: 
plus and minus signs ·are recorded. Hence, when the midpoint is numer
ically greater than the mean, the x will be plus; when numerically less 
than the mean, the x will be minus. 

In the normal distribution (see p. 89), the AD when measured off on 
the scale above and below the mean includes the middle 57.5% of the 
cases. The AD is, therefore, always somewhat larger than the Q which 
includes the middle 50% of cases. 

4. The standard deviation or SD 

The standard deviation or SD is the most stable index of variability 
and is customarily employed in experimental work and in research 
studies. The SD differs from the AD in several respects. In computing the 
AD, we disregard signs and treat all deviations as positive, whereas in 
finding the SD we avoid the difficulty of signs by squaring the separate 
deviations. Again, the squared deviations used in computing the SD are 
always taken from the mean, never from the median or mode. The con· 
ventional symbol for the SD is the Greek letter sigma «T). . 

( 1) CALCULATION OF THE SD FROM UNGROUPED SCORES 

We may illustrate the calculation of the SD for an ungrouped set of 
data with the same 5 scores used on page 48 to demonstrate the com
putation of the AD. The mean of the 5 scores 6, 8, 10, 12 and 14 is 10 
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and the deviations of the separate scores from the mean are -4, -2,0,2 
and 4, respectively. When each of these 5 deviations is squared, we get 
16, 4, 0, 4 and 16; the sum is 40 and N, 'of course, is 5. The formula for a 

when scores are !lngrouped is 

(12) 

(standard deviation calculated from ungrouped data) 

f40 . 
and in our example a = '\Is or 2.M. 

(2) CALCULATION OF SD FROM GROUPED DATA 

Table 8 illustrates the calculation of a when scores are grouped into .. a 
frequency distribution. The process is identical with that used for un
grouped items, except that, in addition to squaring the x of each midpoint 
from the mean, we weight each of these squared deviations by the fre
qUftncy which it represents-that is, by the frequency opposite it. This 
multiplication gives the fx2 column. By s.imple algebra, x Xix = fr; and 
accordingly the easiest way to obtain the entries in column fX2 [col (6)] 
is to multiply the corresponding x's and lx's in columns (4) and (5). The 
first fx2 entry, for example, is 686.44, the product of 26.20 times 26.20; the 
second entry is 898.88, the product of 42.40 times 21.20; and so on to 
the end of the column.' All of the fx2 are necessarily positive since each 
negative x is matched by a negative Ix. The sum of the fX2 column 
(7978.00) divided by N (50) gives the mean of the squared deviations as 
159.56; and the square root of this result is 12.63, the SD. The formula 
for a when data are grouped into a frequency distribution is: 

a- ~ -'\IN 
(SD or rr for data grouped into a frequency distribution) 

(13) 

Problem 2 of Table 8 furnishes another illustration of the calculation 
of u from grouped data. In column (6), the fx2 entries have been ob
tained, as in the previous problem, by multiplying each x by its cor
responding fx. The sum of the fx2 column is 8927.29; and N is 200. Hence, 
applying formula (13) we get 6.68 as the SD. 
. The standard deviation is less affected by sampling errors (p. 196) 
than is the Q or the AD and is a more s~able measure of dispersioy In a 
normal distribution the u, when measured off. above and below the mean, 
marks the limits of the middle 68.26% (roughly the middle/~o-thirds) 



MEASURES OF VARIABILITY· 51 

of the distribution." This is approximately true also of the (T in less 
symmetrical distributions. For example, in the first distribution in 
Table 8 approximately the middle 65% of the scor~s fall between 183 
(170.80+12.63) and 158 (170.80-12.6S).t The SD is larger than the 
AD which is, in tum, larger than Q. These relationships supply a rough 
check upon the accuracy of the measures of variability. 

II. CALCULATION OF THE SO BY THE SHORT METHOD 

I. Calculation of (T from grouped data 

On page 35, the Short Method of calculating the mean was outlined. 
This method consisted essentially in "guessing" or assuming a mean, and 
later applying a correction to give the actual mean. The Short Method 
may also 'be used to advantage in calculating the SD.t It is a decided 

TABLE 9 The calculation of the SD by the short method.§ Data from Table I. 
Calculations by the long method given for comparison 

1. SHORT METHOD 

(1)' (2) (3) (4) (5) (6) 

Scores Midpoint 
, X f x' tx' tx'2 

195-199 197 1 5 5 25 
190-194 192 2 4 8 32 
185-189 187 4 3 12 36 
180-184 182 5 2 10 20 
175-179 177 8 1 8 (+43) 8 
170-174 172 10 0 
165-169 167 6 -1 -6 6 
160-164 162 4 -2 -8 16 
155-159 157 4 -3 -12 36 
150-154 152 2 -4 -8 32 
145-149 147 3 -5 -15 75 
140-144 142 1 -6 -6 (-55) 36 

lY = 50 98 322 
.. See p. 35. 
t See p. 109 for method of calculating the percent of scores falling between two 

points in a frequency distribution, 
t The AD may also be calculated by the assumed mean or Short .Method. The AD 

is used so seldom, however, that a Short Method of calculation (which is neither very 
short nor very satisfactory) is not given. 

§ The calculation of the mean is repeated from Table 7. 



52 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

TABLE 9-(Continuec!) 

1. AM == 172.00 

ci == -1.20 
M == 170.80 

12 
c= - 50 == -.240 ci == -.240 X 5 = -1.20 

c2 == .0576 

2. SD == i ~'S':2 - c2 = 5 ~~~ - .0576 

= 12.63 
2. LONG METHOD 

(1) (2) {3} (4) (5) (6) (7) 
Scores Midpoint 

X f fX x fx fx2 

195-199 197 1 197 26.20 26.20 686.44 
190-194 192 2 384 21.20 42.40 898.88 
185-189 187 4 748 16.20 64.80 1049.76 
180-184 182 5 910 11.20 56.00 627.20 
175-179 177 8 1416 6.20 49.60 307.52 
170-174 172 10 1720 1.20 12.00 14.40 

" 165-169 167 6 1002 -3.80 -22.80 86.64 
160-164 162 4 648 -8.80 -35.20 309.76. 
155-159 157 4 628 -13.80 -55.20 761.76 
150-154 152 2 304 -18.80 -37.60 706.88 
145-149 147 3 441 -23.80 -71.40 1.699.32 . 
140-144 142 1 142 -28.80 -28.80 829.44 

N==50 8540 502.00 7978.00 

L M - 'Sf X _ 8540 - 170 80 
-N-50- . 

2. SD = ~ = ~7978.00 = 12.63 
N 50 

time and labor saver in dealing with grouped data; and is well-nigh indis
pensable in the calculation of u's in a correlation table (p. 135). 

The Short Method of calculating u is illustrated in Table 9. The com
putation of the mean is repeated in the table, as is also the calculation of 
the mean and u by the direct or Long Method. This affords a readier 
comparison of the two techniques. 

The formula for u by the Short Method is 

u=f ---02 . ~IfX'2 
N 

(SD from a frequency distribution when deviations are taken from 
an assumed mean) 

(14) 
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in which 1.fx.12 is the sum of the squared deviations in units of class 
interval, taken from the assumed mean, c2 is the squared correction in 
units of class interval, and i is the class interval. 

The calculation of u by the Short Method may be followed in detail 
from Table 9. Deviations are taken from the assumed mean (172.0) in 
units of class interval and entered in column (4) as x'. In column (5) 
each x' is weighted or multiplied by its f to give the fx'; and in col
umn (6) the fx'2' s are found by multiplying each x' in column (4) by the 
corresponding fx' in column (5). The process is identical with that used 
in the Long Method except that the x"s are all expressed in units of class 
interval. This considerably simplifies the multiplication. The calculation 
of c has aheady been described on page 37: c is the algebraic sum of 
column (5) divided by N. The sum of the fx'2 column is 322, and c2 is 
.0516. Applying formula (14) we get 2.526 X 5 (interval) or 12.63 as 
the u of the distribution. Formula (14) for the calculation of (J' by the 
Short Method holds good no matter what the size of c, the correction in 
units of class interval, or where the mean has beeen assumed. 

2. Calculation of u from the original measures or scores 

It -will often save time and computation to apply the Short Method 
directly to the ungrouped scores. The method is illustrated in Table 10. 
Note that the 10 scores are ungrouped, and that it is not necessary even 
to arrange them in order of size. The assumed mean is taken at zero, and 
each score becomes at once a deviation (x') from this AM, that is, each 
score (X) is unchanged. The correction, c, is the difference between the 
actual mean (M) and the assumed mean (0), i.e., C = M - 0; hence c is 
simply M itself. The mean is calculated, as before, by summing the scores 
and dividing by N. To find u, square the x" s (or the X's i.e., the scores), 
sum to get l(X')2 or W, divide by N, and subtract M2, the correction 
squared. The square ro<;>t of the result gives u. A convenient formula is 

I~X2 
cr= ~N- M2 

or replacing the M2 by '(~r 
v=N=l:=X2,..-----,(=:£X""'),..,..2 

cr= N 

(u calculated from original scores by the Short Method) 

(15) 

(16) 

This method of calculating u is especially useful wnen there are rela
tively few scores, say 50 or less, and when the scores are expressed in not 
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TABLE I 0 To illustrate the calculation of the SD from original scores when 
the assumed mean is taken at zero, and data are ungrouped 

Scores (X) 

18 

x' (or X) 
18 
25 
21 
19 
27 
31 
22 
25 
28 
20 

25 
21 
19 
27 
31 
22 
25 
28 
20 

236 236 

AM=O 

M =236 = 23.6 
10 

c= 23.6- 0 
=23.6 

c2 = 556.96 

N=10 

u = ~r.;;5=~~"-:4'-_-(-23-.6-)-2 
= yII6.44 
;=4.05 

(X')2 or (Xl!) 

324 
625 
441 
361 
729 
961 
484 
625 
784 
400 

5734 

more than two digits,O so that the squares do not become unwieldy. A 
calculating machine and a table of squares will greatly facilitate compu
tation. Simply sum the scores as they stand and divide by N to get M. 
Then enter the squares of the scores in the machfue in order, sum, and 
substitute the result in formula (15) or formula (16). 

3. Effect upon 11 of (al adding a constant to each score, or {h} multiplying each 
score by the same number 

(a') If each score in a frequency distribution is increased by the same 
amount, say 5, the IT is unchanged. The table below prOvides a simple 
illustration. The mean of the original scores is 7 and 11 is 1.41. When each 

.. For the application of this method to the calculation of coefficients of corrrelation, 
and a scheme for reducing the size of the original scores so as to eliminate the need 
for handling large numbers, see pag~ 144. 
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score is increased by 5, the mean is 12 (7 + 5), but u is still 1.41. Adding 
a constant (e.g., 5, 10, 15) to each score simply moves the whole distribu
tion up the scale 5,10, or 15 points. The mean is increased by the amount 
of the constant added, but the variability' ( u) is not affected. If a constant 
is subtracted from each score, the distribution is moved down the scale by 
that amount; the mean is decreased by the amount of the constant, and 
u, again, is unchanged. 

Original scores Original scores 
(X) ,; ,;2 X+5 ,; ,;2 

9 2 4 14 2 4 
8 1 1 13 1 1 
7 0 0 12 0 0 
6 -1 I II -I I 
5 -2 4 10 -2 4 

5~ 10 5~ 10 

M= 7 M== 12 

rr= ~ == 1.41 rr == - == 1.41 ~ 
( b) What happens to the mean and u when each score is multiplied 

by a constant is shown in the table below: 

Original scores (X) 
9 
8 
7 
6 
5 

5~ 
M== 7 

rr == 1.41 

Original scores 
XxlO 

90 
80 
70 
60 
50 

51350 
M = 70 

x 
20 
10 
o 

-10 
-20 

@QQ 
rr == "J ----g- = y'2OO == 14.14 

,;2 

400 
100 
, 0 
100 

,400 
1000 

Each score in the list of five, shown above, has been multiplied by 10; 
and the net effect of th.is operation is to multiply the mean and the u by 10. 

4. The u from ~ombined distributions 

When two sets of scores have been combined into a single lot, it is possi
ble to calculate the u of the total distribution from the u's of the two 
component distributions. The 'fonnula is 
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U'comb = ~N1{cr21 +cfl\) t N2 {U'2 2 + d22) (17) 

(SD of a distribution obtained by combining two frequency distributions) 

in which 

U'1 = SD of distribution 1 
U'2 = SD of distribution 2 
dl = (M1 - M comb ) 

d2 = (M 2 - M comb ) 

N1 and N2 are the numbers of cases in component distributions 1 and 2, 
respectively, and N = (N 1 + N 2)' The M comb is the mean of the combined 
distribution got from formula (3), p. 30. 

An example will illustrate the use of the formula. Suppose we are given 
the means and SD's on an Achievement Test for two classes differing in 
size, and are asked to find the U' of the combined group. Data are as 
follows: 

Class A 
Class B 

First, we find that 

N 
25 
75 

M 
80 
70 

SD 
15 
25 

25 X 80 + 75 X 70 
Mcomb = 100. or 72.50 (see p. 30) 

We then have that d1 = (80 -72.50) and d2
1 = 56.25; that d2 = (70-

72.50) and that d2
2 = 6.25. Substituting in formula (17) for u21, u22, d21, 

d2
2 , Nl and N2 we have that 

_ ~25{225 +.56.25) + 75 {625 + 6.25) 
U'comb - 100 

= 23.32 

Formula (17) may easily be extended to include more than two compo
nent distributions, by adding N 3, 0'3, d3, and so on. 

5. Correcting 0' for grouping error 

When U' is computed from a frequency distribution, the scores in each 
interval are represented by the midpoint of that interval (p. 50). The 
scores on an interval are not always distributed symmetrically about the 
midpoint. In intervals above the mean of the distribution, for example, 
frequencies tend to lie below the midpoint more often than above, 
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whereas in intervals below the mean, the scores tend to lie abov,e the 
midpoint. These opposing tendencies cancel each other out when the 
mean is computed from all of the intervals. But the "grouping error" 
introduced will inHate the u and the more so when intervals are wide and 
N is small. To adjust for grouping, a correction-called Sheppard's cor
rection-is often used. The formula is 

in which 

= yu2 - .083i2 

( Sheppard: s correction for grouping error) 

(T = the SD computed from the fr_equency distribution 

i = the interval length 

(18) 

Sheppard's correction provides a close approximation to the u which 
would be obtained with ungrouped scores .. The correction is negligible 
when the intervals are fairly numerous (e.g., 10 or more). But the cor
rection may be considerable when the intervals are broad and few in 
number. To take an example, suppose that in a group the u = 10 and 
i = 3. Then fTc = ylOO:_ .75 or 9.96. But if i = 18, Uc = y100 - 27 = 8.54, 
and the difference is fairly large. An interval of 18 is, of course, quite 
broad. 

III. THE COEFFICIENT OF VARIATION, I' 

Measures of variability, for example Q or SD, are of necessity expressed 
in terms of the units of the test or measuring scale. The SD of a set of 
LQ.'s is-like the M-in terms of LQ. units, and the SD of a set of heights 
is usually in inches or centimeters. When two groups have achieved 
approximately the same mean score on a test, their u's can be compared 
directly. If, for example, on a science aptitude test 10-year-old boys have 
a M = 62 and u = 10 ilnd 10-year-old girls have a M = 61 and u = 6, it is 
clear that the boys are considerably more variable than the girls. 

It is often desirable to compare variabilities when ( a) means are 
unequal or when (b) units of measurement from test to test are incom
mensurable. A statistjc useful in making such compa.risons is the coeffi
cient of variation or V, sometimes called the coefficient of relative vari
ability. The formula is 

v= 100u 
M 

(coefficient of variation or coefficient of relative variability) 

(19) 
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V gives the percentage which u is of the test mean. It is thus a ratio which 
is independent of the units of measurement. 

V is restricted in its use owing to certain ambiguities in its interpreta
tion. It is defensible when used with ratio scales-scales in which the 
units are equal and there is a true zero or reference pOint (p. 1). For 
example, V may be used without hesitation with physical scales-those 
concerned with linear magnitudes, weight and time (p. 2). Two cases 
arise in the use of V with ratio scales: (1) when units are dissimilar and 
(2) when M's are unequal, the units of the scale being the same. 

( 1) WHEN UNITS ARE UNLIKE 

Suppose that a group of 7 -year-old boys has a mean height of 45 inches 
with a u of 2.5 inches; and a mean weight of 50 pounds with a u of 
() pounds. In which trait is the gIOUp mOIe vaIiable? Obviously, we can
not compare inches and pounds directly, but we can compare the rela
tive variability of the two distributions in terms of V. Thus, 

and 

V - 100 X 2.5 - 5 6 
ht - 45 -. 

V _100 x 6 -12 
wt--;- 50 -

from which it appears that these boys are about twice as variable 
( 12/5.6 = 2.1) in weight as in height. 

(2) WHEN MEANS ARE UNEQUAL, BUT SCALE UNITS ARE THE SAME 

Suppose we have the following data on height for a group of boys and 
a group of men: 

Group 
Boys 
Men 

M 
501bs 

160lbs 

rr 

6 
16 

V 

12 
10 

In terms of their u's, the men are S times as variable as the boys; but rela
tive to their means, the men and boys are about equally variable. This last 
result is the more valuable and informative. 

( 3) CRITICISMS OF V 
Objection has been raised to the use of V when employed to compare 

groups on mental and educational tests. Most standard tests are interval 
scales, i.e., are scaled in equal units (p. 2). But mental tests are never 
ratio scales-the zero or reference point is unknown-and many are not 
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scaled in equal units. How the lack of a true zero affects V may Le seen 
in the following example. Suppose we have administered a vocabulary 
test to a group of school children, and have obtained a mean of 25.0 and 
a u of 5.0. V is 20. Now suppose further that we add 10 very easy items 
to our vocabulary test. It is likely that all of the children will know the 
new words. Hence, the mean score will be increased by 10, whereas the u 

remains unchanged. An increase in the mean from 25 to 35 with no cor
responding increase in u drops V from 20 to 14; and since we could have 
added 20 or 200 items to the test, V is clearly a very unstable sta
tistic. 

The instability of V should cause us to exercise caution in its use rather 
than discard it entirely. V shows what percent the u is of the mean. If the 
range of difficulty in the test is altered, or the units changed, not only V 
but M will change. Accordingly, V is, in a sense, no more arbitrary than 
M and the objections urged against V could be directed with equal force 
against M. V is useful in comparing the variabilities of a group upon the 
same test administered under different conditions, as, for example, when 
a group works at a task with and without distraction. Or V may be used 
to compare two groups on the same test when the groups do not differ 
greatly in mean. 

It is perhaps most difficult to interpret V when the comparative vari
ability of a group upon different mental tests is of interest. If a high school 
class is compared for variability upon tests of paragraph reading and 
arithmetic reasoning, it should be made plain that the V's refer only to 
the specific tests. Other tests of reading and arithmetic may-and prob
ably will-give different results owing to differences in range of difficulty, 
in size of units, and in the reference point. If we restrict V to the specific 
tests used, the coefficient of variation will provide information not other
wise obtainable. 

IV. WHEN TO USE THE VARIOUS MEASURES OF VARIABILITY 

The following rules will serve as useful guides. 

I. Use the range 

( 1) when the data are too scant or too scattered to justify the computa
tion of a more precise measure of variability 

(2) when a knowledge of extreme scores or of total spread is all that is 
wanted. 
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2. Use the Q 

( 1) when the median is the measure of central tendency 
(2) when there are scattered or extreme scores which would influence 

the Sf) disproportionately 
(3) when the concentration around the median-the middle 50ro of 

cases-is of primary interest. 

3. Use the AD 

(1) when it is desired to weight all deviations from the mean accord
ing to their size 

(2) when extreme deviations would influence SD unduly. 

4. Use the SO 

( 1) wh~n the statistic having the greatest stability is sought (p. 196) 
(2) when extreme deviations should exercise a proportionally greater 

effect upon the variability 
(3) when coefficients of correlation and other statistics are subse

quently to be computed. 

PROBLEMS 

1. (a) Calculate the Q and (T for each of the four frequency distributions 
given on page 39 under problem 1, Chapter 2. 

(b) Compute (T for the first two distributiqns using Sheppard's correction. 
2. Calculate the (T of the 25 ungrouped scores given on page 23, problem 

5(a), taking the AM at zero. Cqmpare your result with the (T'S calculated 
from the frequency distributions of the same scores which you tabulated in 
class intervals of three and five units. 

3. For the following list of test scores, 

52, 50, 56, 68, 65, 62, 57, 70 

(a) Find the M and (T by method on page 54. 
(b) Add 6 to each score and recalculate M and (T. 

(c) Subtract 50 from each score, and calculate M and (T. 

(d) Multiply each score by 5 and compute M and (T. 

4. (a) In Sample A (N = 150)., M = 120 and (T = 20; in Sample B (N = 75), 
M = 126 and (T = 22. What are the mean and SD of A and B when 
combined into one distribution of 225 cases? 

(b) What are the mean and SD obtained by combining the following three 
distributions? 
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Distribution 
I 

II 
III 

N 
20 

120 
60 

M 
60 
50 
40 

8 
20 
12 

5. Calculate coefficients of variation for the following traits: 
Unit of 

Group Trait measurement 
Length of mms. 802 males 

Head 

Body Weight pounds 868,445 males 

Tapping M of 5 trials 68 adults, 
Speed 30" each male and female 

Memory No. repeated 263 males 
Span correctly 

General In- Points scored nOl adults 
telligence 

(Otis Croup 
Intell. Scale) 

M (T 

190.52 5.90 

141.54 17.82 

196.91 26.83 

6.60 1.13 

153.3 23.6 

Rank these traits in order fot relative variability. Judged by their V's which 
trait is the most variable? which the least variable? which traits have true 
zeros? 

6. (a) Why is the Q the best measure of variability ""hen there are scattered 
or extreme scores? 

( b) Why does the (T weight extreme deviations more than does the AD? 

ANSWERS 

1. (a) (1) Q = 3.37 (2) Q= 8.12 
(T = 4.99 (T = 11.33 

(3) Q = 4.50 (4) Q = 16.41 
(T = 7.23 (T = 24.13 

(b) (1) (Te = 4.96 (2) (Te= 11.24 

2. (T of ungrouped scores = 6.72 
(T of scores grouped in 3-unit intervals = 6.71 
(T of Scores grouped in 5-unit intervals == 6.78 

3. (a) M=60 (b) M=66 (c) M=10 (d) M = 30Q 
(T = 6.91 (T = 6.91 (T = 6.91 

4. (a) M = 122.0; (T = 20.88 
(b) M = 48.00; (T = 18.05 

(T = 34.55 

5. V's in order are 3.10; 12.59; 13.63; 17.12; 15.39. Ranked for relative vari
ability from most to least: Memory Span; General Intelligence; Tapping 
Speed; Weight; Head Length. Last two traits have true zeros. 



CHAPTER 4 

CUMULATIVE DISTRIBUTIONS, 
GRAPHIC METHODS 
AND PERCENTILES 

In Chapter 1 we learned how to represent the frequency distribution 
by means of the polygon and histogram. In the present chapter, two 
other descriptive methods will be considered-the cumulative frequency 
graph and the cumulative percentage curve or ogive, as well as several 
simple graphical devices. Also, a technique will be outlined for comput
ing percentiles 0 and percentile ranks from frequency distributions and 
directly from graphs. 

I. THE CUMULATIVE FREQUENCY GRAPH 

I. Construction of the cumulative frequency graph 

The cumulative frequency graph is another way of representing a .fre
quency distribution by means of a diagram. Before we can plot a cumu
lative frequency graph, the scores of the distribution must be added 
serially or cumulated, as shown in Table 11, for the two distributions 
taken from Table 5. These two sets of scores have already been used to 
illustrate the frequency polygon,and histogram in Figures 2,4, and 5. The 
first two columns for each of the distributions in Table 11 repeat Table 5 
exactly; but in the third column (Cum. f) scores have been accumulated 
progressively from the bO,ttom of the distribution upward. To illustrate, . 
in the distribution of Alpha scores the first cumulative frequency is 1; 
1 + 3, from the low end of the distribution, gives 4 as the next entry; 
4 + 2 = 6; 6 + 4 = 10, etc. The last cumulative f is equal, of course, to 
50 or N, the total frequency. 

" The term .. centile" is sometimes used for percentile. 

62 
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TABLE II Cumulative freque~cies for the two distributions given in Table 5 

Cancellation 
Alpha Scores , Cum.' Scores , Cum., 

195-199 1 50 135.5-139.5 3 200 
190-194 2 49 131.5-135.5 5 197 
185-189 4 47 127.5-131.5 16 192 
180-184 5 43 123.5-127;5 23 176 
175-179 8 38 119.5-123.5 52 153 
170-174 10 30 115.5-119;5 49 101 
165-169 6 20 111.5-115.5 27 52 
160-164 4 14 107.5-111.5 18 25 
155-159 4 10 103.5-107.5 7 7 
150-154 2 6 N=200 
145-149 3 4 
140-144 1 1 

N=50 

The two cumulative frequency graphs which represent the distributions 
of Jable 11 are shown in Figures 8 and 9. Consider first the graph of the 
50 Alpha scores in Figure 8. The class intervals of the distribution have 
been laid off along the X axis. There are 12 intervals, and by the "75ro 
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FIG. 8 Cumulative frequency graph 

(Data from Table 11) 
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210 

103.5 107.5 111.5 115.5 119.5 123.5 in5 131.5 135.5 139.5 
Scores 

FIG. 9 Cumulative frequency graph 
(Data from Table 11) 

rule" given on page 11 there should be about 9 unit distances (each 
equal to one class interval) laid off on the Y axis. Since the largest cumu
lative frequency is 50, each of these Y units should represent 50/9 or 
6 scores (approximately). Instead of dividing up the total Y distance into 
9 units each representing 6 scores, however, we have, for convenience in 
plotting, divided the total Y distance into 10 units of 5 scores each. This 
does not change significantly the 3:4 relationship of height to width in 
the figure. 

In plotting the frequency polygon the frequency on each interval is 
taken at the midpoint of the class interval (p. 11). But in constructing 
a cumulative frequency curve each cumulative frequency is plotted at 
the exact upper limit of the interval upon which it falls. This is because 
in adding progressively from the bottom up each cumulative frequency 
carries through to the exact upper limit of the interval. The first point on 
the curve is one Y unit (the cumulative frequency on 140-144) above 
144.5; the second point is 4 Y units above 149.5; the third, 6 Y units above 
154.5, and so on to the last point which is SO Y units above 199.5. The 
plotted points are jOined to give the S-shaped cumulative frequency 
graph. In order to have the curve begin on the X axis it is started at 139.5 
(exact upper limit of 134.5-139.5), the cumulative frequency of which 
is O. 

The c.umulative frequency curve in Figure 9 has been plotted from the 
second distribution in Table 11 by the method just described. The curve 
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begins at 103.5, the exact lowe.r limit of the first class interval, (> and el1ds 
at 139.5, the exact upper limit of the last interval; and cumulative fre
quencies, 7, 25, 52, etc., are all plotted at the exact upper limits of their 
respective class intervals. The height of this graph was determined by 
the "75,/,0 rule" as in the case of the curve in Figure 8. There are 9 class 
intervals laid off on the X axis; hence, since 75% of 9 is 7 (approxi
mately), the height of the figure should be about 7 class ~nterval units. To 
determine the score value of each Y unit divide 200 (the largest cumu
lative frequency) by 7 to give 30 (approximately). Each of the 7 Y units 
has been taken to represent 30 scores. 

II. PERCENTILES AND PERCENTILE RANKS 

I. Calculation of percentiles in a frequency distribution 

We have learned (p. 30) that the median is that point in a frequency 
distribution below which lie 50% of the measures or scores; and that Ql 
and Qa mark points in the distribution below which lie, respectively, 25% 
and 75%. of the measures or scores. Using the same method by which the 
median and the quartiles were found, we may compute points below 
which lie 10%, 43%, 85%, or any percent of the scores. These points are 
called percentiles, and are designated, in general, by the symbol PrJ> the p 
referring to the percentages of cases below the given value. P10, for exam
ple, is the point below which lie 10% of the scores; P78, the point below 
which lie 78% of the scores. It is evident that the median, expressed as a 
percentile, is P50; also Ql is P21h and Qa is P70' 

The method of calculating percentiles is essentially the same as that 
employed in finding the median. The formula is 

where 

(
pN - F) . 

Pp = 1 + fp X, 

(percentiles in a frequency distribution, counting from below up) 

p = percentage of the distribution wanted, e.g., 10%, 33%, etc. 
1 = exact lower limit of the class interval upon which PI) lies 

pN = part of N to be counted off in order to reach P p 

F = sum of all scores upon intervals below 1 
fp = number of scores within the interval upon which Pp falls 
i = length of the class interval 

to Or the exact upper limit of the interval just below, i.e., 99.5-103.5. 

(20) 
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TABLE 12 Calculation of certain percentifes in a f~equency distribution 

(Data from Table 1,50 Army Alpha scores) 

Scores f Cum·f Percentiles 
195-199 1 50 P100 = 199.5 
190-194 2 49 
185-189 4 47 P90 = 187.0 
180-184 5 43 PgO = 181.5 
175-179 8 38 P70 = 177.6 
170-174 10 30 P60 = 174.5 
165-169 6 20 P50 = 172.0 
160-164 4 14 P40 = 169.5 
155-159 4 10 Pao = 165.3 
150-154 2 6 P20 = 159.5 
145-149 3 4 P10 = 152.0 
140-144 1 1 

N=50 Po = 139.5 

CALCULATION OF PERCENTILE POINTS 

10% of 50 = 5 

20% of 50 = 10 

30% of 50 = 15 

40% of 50 = 20 

50% of 50 = 25 

60% of 50 = 30 

70% of 50 = 35 

80% of 50= 40 

90% of 50 = 45 

(
5-4) 149.5 + -2- X 5 = 152.0 

159.5 + CO ~ 10) X 5 = 159.5. 

(
15 - 14) 164.5 + 6 X 5 = 165.3 

(
20 - 20) 169.5 + 10 X 5 = 169.5 

- (25 - 20) 169.5 + 10 X 5 = 172.0 (Mdn) 

(
30 - 30) , 174.5 + 8 X 5 = 174.5 

174.5 + C5
; 30) X 5 = 177.6 

179.5 + (40 ~ 38) X 5 = 181.5 

184.5 + (45 ~ 43) X 5 = 187.0 
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In Table 12, the percentile points, PIO to P9(), have been computed by 
formula (20) for the, distribution of scores made by the fifty college stu
dents upon Army Alpha, shown in Table 1. The details of calculation are 
given in Table 12. We may illustrate the method witb P70• Here pN :::; 35 
(70% of 50 = 35), and from the Cum. f we find that 30 scores take us 
through 170-174 up to 174.5, the exact lower limit of the interval next 
above. Hence, P70 falls upon 175-179, and, substituting pN = 35, F = 30, 
f p = 8 (frequency upon 175-179), and i = 5 (class interval) in formula 
-(20), we find that P70 = 177.6 (for detailed calculation, see Table 12). 
This result means that 70% of the 50 students scored below 177.6 in the 
distribution of Alpha scores. The other percentile values are found in 
exactly the same way as P70• The reader should verify the calculations of 
the Pp in Table 12 in order to become thoroughly familiar with the 
metho~. 

It should be noted that Po, which marks the exact lower limit of the 
first interval (namely, 139.5) lies at the beginning of the distribution. 
PlOO marks the exact upper limit of the last interval, and lies at the end of 
the distribution. These two percentiles represent limiting points. Their 
principal value is to indicate the boundaries of the percentile scale. 

2. Calculation of percentile ranks in a frequency distribution 

We have seen in the last section how percentiles, e.g., PI5 or P62, may 
be calculated directly from a frequency distribution. To repeat what has 
been said above, percentiles are points in a continuous distribution below 
which lie given percentages of N. We shall now consider the problem of 
finding an individual's percentile rank (PR.); or the position on a scale 
of 100 to which the subject'S score entitles h~~. The distinction between 
percentile and percentile rank will be clear if the reader remembers that 
in calculating percentiles he starts with a certain percent of N, say 15% 
or 62%. He then count~ into the distribution the given percent and the 
point reached is the required percentile, e.g., P15 or P62 • The procedure 
followed in computing· percentile ranks is the reverse of this process. 
Here we begin with an individual score, and determine the percentage 
of scores which lies below it. If this percentage is 62, say, the score has 
a percentile rank or PR .of 62 on a scale of 100. 

We shall illustrate with Table 12. What is the PR of a man who scores 
163? Score 163 falls on interval 160-164. There are 10 scores up to 159.5, 
exact lower limit of this .interval (see column Cum. f), and 4 scores spread 
over this interval. Dividing 4 by 5 (interval length) gives us .8 score per 
unit of interval. The score of 163, which we are seeking, is 3.5 score units 
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from 159.5, exact lower limit of the interval within which the score of 163 
lies. Multiplying 3.5 by .8 we get 2.8 as the score distance of 163 from 
159.5; and adding 2.8 to 10 (number of scores below 159.5) we get 12.8 
as the part of N . lying below 163. Dividing 12.8 by 50 gives us 25.6% as 
that proportion of N below 163; hence the percentile rank of score 163 
is 26. The diagram below will clarify the calculation: 

1=4 
.8 

159.5 
.8 I .8 I .8 I~!AI .8 

160.5 161.5 162.5 163.5 164.5 
163.0 

Ten scores lie below 159.5. Prorating the 4 scores on 160-164 over the 
interval of 5, we have .8 score per unit of interval. Score 168 is just 
.8 + .8 + .8 +.4 or 2.8 scores from 159.5; or score 163 lies 12.8 scores 
(i.e., 10 + 2.8) or 25.6% (12.8/50) into the distribution. 

The PR of any score may be found in the same way. For example, the 
percentile rank of 181 is 79 (verify it). The reader should note that a 
score of 163 is taken as 163.0, midpoint of the score interval 162.5-163.5. 
This means simply that the midpoint is assumed to be the most repre
sentative value in a score interval. The percentile ranks for several scores 
may be read directly from Table 12. For instance, 152 has a PR of 10, 
172 (median) a PR of 50, and 187 a PR of 90. If we take the percentile 
points as representing approximately the score intervals upon 'which they 
lie, the PR of 160 (upon which 159.5 lies) is approximately 20 (see 
Table 12); the PR of 165 (upon which 165.3 lies) is approxiI!lately 30; 
the PR of 170 is approximately 40; of ).75, .60; of 178, 70; of 182, 80. These 
PR's are not strictly accurate, to be sure, but the error is slight. 

3. Calculating PR's from ordered data 

In many instances, ,individuals and things can be put in 1-2-3 order 
with respect to some trait or characteristic (p. 328) when they cannot 
be measured directly, or measured conveniently. Suppose, for example, 
that 15 salesmen have been ranked from 1 to 15 for selling ability by the 
sales manager. It is possible to convert this order of merit into percentile 
ranks -or '1scores" on a scale of 100. The formula is 

PH= 100 _ (100R - 50) 
N 

(percentile ranks for persons or objects put in order of merit) 

(21) 



CUMULATIVE DISTRIBUTIO~S. GRAPHIC METHODS AND PERCENTILES' 69 

in which R is the rank position, counting # 1 as highest and N as low
est.' In our example, the salesman who ranks # 1 or highest has a 

(100X 1- 50) 
PR = 100 - 15 or 97. The salesman who ranks 5th has a 

(100 X 5 - 50) 
PR = 100 - 15 or 70; and the salesman who ranks 15th has 

a PR of 3. 
If 100 students are ranked for average grade earned throughout the 

school year, each student will occupy one division on the percentile scale. 
Hence, the PR of the best student is 99.5 (midpoint of interval 99-100); 
and the PR of the poorest student is .5 (midpoint of the lowest interval 

. ( 100 X 50 - 50) . 
0-1). The PR of the 50th student IS 100 - 100 pr 50.5, mId-

point of interval 50-51. As a PR is always the midpoint of an interval, it 
follows that no one can have a PR of 0 or 100. These two points consti
tute the boundaries or limits of the percentile scale . 

. PR's are useful when we wish to compare the standing of an individual 
in one test with his standing in another: the N's do not have to be the 
same. For example, suppose that Mary ranks 8th in a class of 22 in Eng
lis'h and 18th in a class of 42 in history. How do these two "standings" 

compare? In English, Mary's PR is 100 - (100 ~ - 50) or 66; and in 

history, her PR is 100 - (100 X:: - 50) or 58. It is evident that relative 

to the members of her class, Mary is better in English than she is in 
history. In many schools, grades in the various subjects are converted into 
PR's, so that a student's standing in classes of different sizes may be com
pared directly. 

III. THE CUMULATIVE pe,RCENTAGE CURVE OR OGIVE 

I. Construction of the ogive 

The cumulative percentage curve or ogive differs from the cumulative 
frequency graph in that frequencies are expressed as cumulative percents 
of N on the Y axis instead of as cumulative frequencies. Table 13 shows 
how cumulative frequencies can be turned into percentages of N. The 
distribution consists of scores made on a reading test by 125 seventh~ 
grade pupils. In columns (1) and (2) class intervals and frequencies are 
listed; and in column (3) the fs have be~n cumulated from the low end 
of the distribution upward as described before on page 62. These 
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TABLE 13 Calculation of cumulative percentages to upper limits of class 
intervals in a frequency distribution 

(The data represent scores on a reading test achieved 
by 125 seventh-grade children.) 

(1) (2) (3) (4) 
Scores , Cum., Cum. Percent, 

74.5-79.5 1 125 100.0 
69·5-74.5 3 124 99.2 
64.5-69.5 6 121 96.8 
59.5-$4.5 12 115 92.0 
54.5-99.5 20 103 82.4 
49.5-54.5 36 8& 66.4 
44.5-49.5 20 47 37.6 
39.5-44.5 15 27 21.6 
34.5-39.5 6 12 9.6 
29.5-34.5 4 6 4.8 
24.5-29.5 2 2 1.6 

N= 125 

1 1 
Rate = - = -. ,= .008 

N 125 

Cum. fs are expressed as percentages of N (125) in column (4). The 
conversion of Cum. fs into cumulative percents can be carried out by 
dividing each cumulative f by N; e.g., 2 -7-125 = .016,.6 -7- 125 = .048, 
and so on. A better method"':'especially when a calculating machine is 
available-is fo determine first the reciprocal, liN, called the Rate" and 
multiply each cumulative fin order by this fraction. As shown in Table 13, 
the Rate is 1/125 or .008. Hence, multiplying 2 by .008, we get .016 or 
1.6%; 6 X .008 = .048 or 4.8%; 12 X .008 = .096 or 9.6%, etc. 

The curve in Figure 10 represents an ogive plotted from the data in 
column (4), Table 13. Exact interval limits have been laid off on the 
X axis, and a scale consisting 'of 10 equal distances, 'each representing 
10'1'0 of the distribution, has been marked off on the Y axis. The firs,t point 
on the ogive is placed 1.6 Y units just above 29.5; the second point is 
4.8 Y units just above 34.5, etc. The last point is 100 Y units above 79.5. 
exact upper limit of the highest class interval. 
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90 

g) 70 P = 54. (approximately) 
.". 62 
~ 60 c 
~ P50 or Mdn 
~ 50 .. 
~ 40 
c 
:; 
E 30 
;:J 

U 
20 

10 

24 • .5 29 • .5 34.5 39 . .5 44-• .5 4-9 . .5 54 . .5 .59 . .5 64 . .5 69.5 74.5 79.5 

Scorlo!s 

FIG. 10 Cumulative percentage curve or ogive plotted from the data of 
Table 13 

2. Computing percentiles and percentile ranks 

( a) From the cumulative percentage distribution. Percentiles may be 
readily determined ,by direct intei"polation in column (4), Table 13. We 
may illustrate by calculating the 7lst percentile. Direct interpolation 
between the percentages in column (4) gives the following: 

66.4% of the distribution up to 54.5 
71.0% ----~-----------------:::-----------~ 55.9 
(given) 82.4% of the distribution,up to 59.5 

16.0.% 5.0 

The 7lst percentile lies 4.6'}'O above 66.4'}'O. By simple proportion, 

1
4
6
.6
0

' = -5x or x = 4.6 X'5 = 1.4 (x is the distance of the 7lst percentile 
. W~ . 

from 54.5). The 7lst percentile, therefore, is, 54.5 + 1.4, or 55.9. 
Certain percentiles can be read directly from column (4). We know, 

for instance, th~t the 5th percentile is approximately 34.5; that the 22nd 
percentile is approximately 44.5; that the 38th percentile is approximately 
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49.5; and that the 92nd percentile is exactly 64.5. Another way of ex
pressing the same facts is to say that 21.670 of the seventh-graders scored 
below 44.5, that 929'0 scored below 64.5, etc. 

Percentile ranks may also be determined from Table 13 by interpola
tion. Suppose, for example, we wish to calculate the PR of score 43. From 
column (4) we find that 9.670 of the scores are below 39.5. Score 43 is 3.5 
( 43.0 - 39.5) from this point. There are 5 score units on the interval 
39.5-44.5 which correspond to 12.0% (21.6 - 9.6) of the distribution; 
hence, 3.5/5 X 12.0 or 8.4 is the.percentage distance of score 43 from 39.5. 
Since 9.670 (up to 39.5) + 8.4% (from 39.5 to 43.0) comprise 189'0 of the 
distribution, this percentage of N lies below score 43. Hence, the PR of 
43 is 18. See detailed calculation below. 

9.6% of distribution up to 39.5 
18.0% ~-------------------'--------~----. score 43.0 

21.6% of distribU:tion up to 44.5 (given) 
12.0% To 

Score 43.0 is 3.5/5 X 12.0% or 8.470 from '39.5; hence score 43.0 ii; 
9.69'0 + 8.4% or 18.070 into the distribution. 

It should be noted that the cumulative percents in column (4) give 
the PR's of the exact upper lim!ts of the class intervals in which the scores 
have been tabulated. The PR of 74.5, for example, is 99.2; of 64.5, 92.0; 
of 44.5,21.6, etc. These PR's are the ranks of given points in'the dis~ribu
tion, and are nbt the PR's of scores. 

(b) From the ogive. Percentiles and percentile ranks may be deter
mined quickly and fairly accurately from the ogive of the frequency dis
tribution plotted in Figure 10. To obtain PlSo, the median, fo~ example, 
draw a line from 50 on the Y scale parallel to the X axis and where this 
line cuts the curve drop a perpendicular' to the X axis: This operation will 
locate the median at 51.5, approximately. The exact median, calculated 
from Table 13, is 51.65. Ql and Qs are found in the same way as the 
pledian. P25 or Ql falls approximately at 45.0 on the X axis, and P75 or Qs 
falls at 57.0. These values should be compared with the calculated Ql 

and Qs, which are 45.56 and 57.19, respectively. Other percentiles are read 
in the same way. To find P62, for instance, begin with 62 on the Y axis, go 
hOrizontally over to the curve, and drop a perpendicular to locate P 62 

approximately at 54. . 
In order to read the percentile rank of a given score from the ogive, 

we reverse the process followed in determining percentiles. Score 71, for 
example, has a PR of 97, approximately (see Fig. 10). Here we start with 
score 71 on the X axis, go vertically up to the ogive, and horizontally 
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acroSs to the Y axis to locate the PR at 97 on the cumulative percentage 
scale. The PR of score 47 is found in the same way to be approximately 30. 

Percentiles and percentile ranks will often be slightly in error when 
read from an ogive. This error, however, can be made very small. When 
the curve is carefully drawn, the diagram fairly large, and the scale divi
sions precisely marked, percentiles and PR's can be read to a degree of 
accuracy sufficient for most purposes. 

3. Other uses of the ogive 

( 1) COMPARISON OF 9ROUPS 

A useful over-all comparison of two or more groups is provided when 
ogives representing their scores on a given test are plotted upon the same 
coordinate axes. An illustration is given in Figure 11, which shows the 
ogives of the scores earned by two groups of children-200 ten-year-old 
boys and 200 ten-year-old girls-upon an arithmetic reasoning test of-
60 items. Data from which these ogives were constructed are given in 
Table 14. 

TABLE 14 Frequency distributions of the scores made by 200 ten-year-old 
boys and 200 ten-year-old girls on an arithmetic reasoning test 

Smoothed Smoothed 

Scores Boys 
Cum·t 

Cum. Cum. Girls Cum., Cum. Cum. 
I %1 Percent- 1 %1 Percent-

age I agel 

60-64 0 200 100.0 100.0 0 200 100.0 100.0 
55-59 2 200 100.0 99.7 1 200 100.0 99.8 
50-54 25 198 99.0 95.2 0 199 99.5 99.7 
45-49 48 173 86.5 82.7 9 199 99.5 98.0 
40-44 47 125 62.5 62.7 27 ]90 95.0 92.0 
35-39 19 78 39.0 43.7 44 163 81.5 78.7 
30-34 26 59 29.5 28.3 43 119 59.5 .59.7 
25-29 15 ,33 16.5 18.3 40 76 38.0 38.5 
20-24 9 18 9.0 10.0 10 36 18.0 23.0 
15-19 7 9 4.5 4.8 20 26 13.0 11.3 
10-14 2 2 1.0 1.8 1 6 3.0 6.2 
5-9 0 0 0 .3 2 5 2.5 2.3 
0-4 0 0 0 0 3 3 1.5 1.3 

200 200 

1 
Rate=-= 005 200 . 
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Several interesting conclusions can be drawn frc;>m Figure 11. The boys' 
o,give lies to the right of t~e girls' over the entire range, showing that the 
boys score consistently higher than the girls. Differences in achievement 
as between the two groups are shown by the distances separating the 
two curves at various levels. It is clear that differences at the extremes
between the very high-scoring and the very low-scoring boys and girls
are not so great as are differences over th,e middle range. This is brought 
out in a comparison of certain points in the distributions. The boys' median 
is approximately 42, the girls' 32; and the difference between these meas
ures is represented in Figure 11 by the line AB. The difference between 
the boys' Ql and the girls' Ql is represented by the line CD; and the dif
ference between the two Qa's is shown by the line EF. It is clear that the 
groups differ more at the median than at either quartile, and are farther 
separated at Q3 than at Ql' 

The extent to which one distribution overlaps another, whether at the 
median or at other designated -points, can be determined quite readily 
from their ogives. By extending the vertical line through B (the boys' 
median) up to the ogive of the girls' scores, it is clear that approxi-

100 

QO 
I 

I 80 r-________ ~Q~ __________ ~E~/~~~ 

H / 
~ ~I 

~ 60 ~~' 
R I 
- 50t-________ ~M~d~n __ ~ ____ A~/--~_l 
.~ 
] 4-0 ::s e 
8 30 

20 

10 

o M 9.5 14..5 19..5 24.5 29.5 34.5 39.5 44.5 49..5, S4.5 59.5 

Scores 

FIG. II Ogives representing scores made by 200 boys and 200 girls on an 
arithmetic'reasoning test 

(See Table 14) 
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mately 880/0 of the girls fall below the boys' median. This means t_hat only 
12% of the girls exceed the median of the boys in arithmetic reasoning. 
Computing overlap from boys to girls, we find that approximately 760/0 
of the boys exceed the girls' median. The vertical line through A (girls' 
median) cuts the boys' ogive at approximately the 24th percentile. There
fore 24% of the boys fall below the girls' median, and 76% are above 
this point. Still another illustration may be helpful. Suppose the problem 
is to determine what percentage of the girls score at or above the boys' 
60th percentile. The answer is found by locating first the point where the 
horizontal line through 60 cuts the boys' ogive. We then find the point 
on the girls' ogive directly above this value, and from here proceed 
acroSS to locate the percentile rank of this point at 93. If 93% of the 
girls fall b~low the boys' 60th percentile, about 7% score above this 
point. 

( 2) PERCENTILE NORMS 

Norms are measures of achievement which represent the typical per
formance of some designated group or groups. The norm for 10-year-old 
boys in height, and the norm for seventh-grade pupils in City X in arith
metic is usually the mean or the median derived from some large refer 
ence group. But norms may be much more detailed and may be reported 
for other points in the distribution as, for example, Q1, Q3, and. various 
percentiles. 

Percentile norms are esp-ecially useful in dealing with educational 
achievement examinations, when one wishes to evaluate and compare 
the achievement of a given student in a number of subject-matter tests. 
If the student earns a score of 63 on an achievement test in arithmetic, 
and a score-of 143 on an achievement test in English, we have no way of 
knowing from the scores alone whether his achievement is good, medium, 
or poor, or how his standing in arithmetic and in English compare. If, 
however, we know that a score of 63 in arithmetic has a PR of 52, and a 
score of 143 in English a PR of 68, we may say at once that this student 
is average in arithmetic (52% of the students score lower than he) and 
good in English (68% score below him). 

Percentile norms may be determined directly from smoothed ogives. 
Figure 12 represents the smoothed ogive_s of the two distributions of 
scores in arithmetic reasoning given in Table 14. Vertical lines drawn to 
the base line from points on the ogive locate the various percentile points. 
In Table 15, selected percentile norms ip the arithmetic reasoning 
test have been tabulated for boys and girls separately. This table of 
norms may, of course, be extended by the addition of other intermediate 
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TABLE 15 Percentile norms for arithmetic reasoning test (Table 14) obtained 
from smoothed ogives in Figure 12 

GmLs Boys 
Cum.%'s Ogive Calculated o give Calculated 

." 
~ 
(1/ 

~ 
~ 

(II 
> ;: 

'" :; 
E 
:::0 

Q 

99 52.0 49.0 57.5 54.5 
95 46.5 44.5 54.5 52.9 
90 43.5 42.7 52.5 50.9 
80 40.0 39.2 49.0 48.1 
70 37.0 36.9 . 46.5 46.1 
60 35.0 34.6 44.0 44.0 
50 32.5 32.5 41.5 41.8 
40 30.0 30.0 39.0 39.7 
30 27.0 27.5 35.0 34.8 
20 23.5 25.0 30.0 30.9 
10 18.5 18.0 24.5 25.2 

5 14.0 15.5 19.5 20.1 
1 3.5 3.3 6.5 14.5 

100 

90 

80 

70 

60 

50 

40 

30 

20 

1O 

o 4.S CJ._; 14.5 \9.5 24.5 leu 34.5 39.5 44.5 oW.'; 54.5 59-5 

Scores 

FIG. 12 Smoothed ogives of the scores in Table 14 
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values. Calculated percentiles are included in the table for comparison 
with percentiles read from the smoothed ogives. These calculated values 
are useful as a check on the graphically determined points, but ordi
narily need not be found. 

It is evident that percentile norms read from an ogive are not strictly 
accurate, but the error is slight except at the top and bottom of the dis
tribution. Estimates of these extreme percentiles from smoothed ogives 
are probably more nearly true values than are the calculated points, since 
the smoothed curve represents what we might expect to get from larger 
groups or in additional samplings. 

The ogives in Figure 12 were smoothed in order to iron out minor 
kinks and irregularities in the curves. Owing to the smoothing process, 
these curves are more regular and continuous than are the original ogives 
in Figure 11. The only difference between the process of smoothing an 
ogive and smoothing a frequency polygon (p. 13) is that we average 
cumulative percentage frequencies in the ogive instead of actual fre
quencies. Smoothed percentage frequencies are given in Table 14. The 
smoothed cumulative percentage frequency to be plotted above 24.5, 

b 'd' t 'b r . 16.5 + 9.0 + 4.5 0 100 f th . t . I ' oys IS n u lOn, IS 3 or.; or e same pom, grr S 

d· 'b' .. 38.0 + 18.0 + 13.0 23 0 COb k 0 h IStri utIon, It IS 0 3 or.. are must e ta en at t e 

extremes of the distribution where the procedure is slightly different. In the 
boys' distribution, for example, the smoothed cumulative percent frequency 

9 5 ' 1.0 + 0.0 + 0.0 3ot. d 595" 99.0 + 100.0 + 100.0 at . IS 3 or , 10, an at ., It IS 3 

or 99.7. At 64.5 and 4.5, respectively, both of which lie outside the boys' 

d' t 'b ti' hI' of' [-100+ 100+ 100J IS n u on, t e cumu ahve percentage requencles are 3 

and [0 + ~ + OJ respectively. Note that the smoothed ogive extends one 

interval beyond the original at both extremes of the distribution. 
There is little justification for smoothing an ogive which is already 

quite regular or an ogive which is very jagged and irregular. In the first 
instance, smoothing accomplishes little; in the second, it may seriously 
mislead. A smoothed curve shows what we might expect to get if the 
test or sampling, or Qoth, were different (and perhaps better) than they 
actually were. Smoothing should never be a substitute for additional data 
or for an improved test. It should certainly be avoided when the group is 
small and the ogive very irregular., Smoothing is perhaps most useful 
when the ogives show small irregularities here and there (see Figure 11) 
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which may reasonably be assumed to have arisen from minor and not 
very important factors. 

IV. SEVERAL GRAPHIC METHODS 

Data showing the changes attributable to growth, practice, learning, 
and fatigue may often be most clearly presented by graphical methods. 
Widely used devices are the line graph, the bar diagram and the pie dia
gram. These are illustrated in this section. 

J. The line graph 

Figure 13 shows an age-progress curve or trend line. The graph repre
sents changes in "logical memory" for a connected passage of prose 
found for boys and girls from 8 to 18 years old. Norms for adults are also 
included at the extremes of the diagram. Age is represented on the hori-

y 

Girls 

BoYS 

ro ~X 
8 9 '10 11 12 13 14 15 16 17 18Adults 

Age 

FIG. J 3 Logical memory. Age is r~presented on X axis (horizontal); score, 
i.e., number of ideas remembered, on Y axis (vertical). 

zontal or X axis and mean number of "ideas" reproduced at each age 
level is marked off on the vertical or Y axis. Memory ability as measured 
by this test rises to a peak at year 15 for both groups, after which there is 
a slight decline followed by a rise at the adult levels. There is a small 
but consistent sex difference, the girls being higher than the boys over the 
entire age range. 

Figure 14 illustrates a learning or practice graph. These trend "lines" 
show the improvement-in sending and receiving telegraphic messages
resulting from successive trials at the same task over a period of 48 weeks. 
Improvement is measured by number of letters sent or received and is 
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indicated along the Y axis. Weeks of practice at the designated tasks are 
represented by equal intervals laid off on the X axis. 

120 

y 

Sending 

o 4 8 U W ~ U ~ ~ M ~ « ~ X 
Weeks of Practice 

FIG. 14 Improvement in telegraphy. Weeks of practice on X axi5~ number of 
letters per minute on Y axis. 

Figure 15 shows performance or practice "curve." It represents 25 suc
cessive trials with a hand dynamometer made by a man and a woman. A 
marked sex difference in strength of grip is apparent throughout the 
practice period. Also, as the experiment progresses, fatigue is noticeable 
in both subjects. 

60 

WI 3 5 7 9 II ~ ~ ~ w n ~ ~ 
Trials 

FIG. 15 Hand dynamometer readings in kilograms for 25 successive grips 
at intervals of ten seconds. Two subjects, a man and a woman. 
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Figure 16 is the famous Ebbinghaus "curve of retention." It represents 
memory retention of nonsense syllables as measured by the percentage 
of the original material retained after the passage of different time inter
vals. Time between learnings and relearnings is shown on the X axis. 
Percent retained is laid off on the Y axis. 

100 

90 

't:l 80 
cv 
.S 70 
.n 60 cv 
~ 50 

1 hr. 9 hr. 24 hr. 48 hr. 144 hr. 

Time between Learning and Relearning 

FIG. 16 Curve of retention. The numbers on the base line give hours elapsed 
from time of learning; numbers along Y axis give percent retained. 

2. The bar diagram 

The bar diagram is often used in psychology to compare the relative 
amounts of some trait (height, intelligence, educational achievement) 
possessed by two or more groups. In education, the bar graph is used to 
compare several different variables. Examples are cost of instruction in 
schools of the same system, distribution of students' time in and out of 
school, teachers' salaries by states or districts, and relative expenditures 
for educational purposes. A cO,mmon form of the bar graph is that in 
which the lengths of the bars are proportional to the amounts' of the vari
able- possessed. For emphaSis, spaces are often left between the hars, 
which may be drawn side by side in the vertical or horizontal direction. 

A horizontal bar graph is shown in Figure 17. These bars represent the 
percentage of officers in the various branches of the military service -who 
received grades of A and B or C upon Army Alpha, a test given during 
World War I. Bars are drawn in order, the service receiving the highest 
percent of A's and B's being placed at the top. The engineers, 'who ranked 
first, received 95% A's and B~s and about 50/0 C's. The veterinarians, who 
ranked last, received only 60% A's and B's ~nd 40% C's. 

Figure 18 shows the percentages of World War II Air Force candidates 
who were eliminated from pilot training, classified according to the 
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FIG. 17 Comparative bar graphs. The bars represent the percentage in 
each division of the military service receiving A's and 8's or C's. 
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FIG. 18 Percentage of candidates eliminated from primary pilot training 
classified according to stanine scores ':~ selection battery 

(Rer.roduced from "Psychological Activities in the Training Command, Army Air 
Forces' by the Staff, Psychological Section, Fort Worth, Texas, in the Psychological 
Bulletin, 1945, Washington, D. C., American Psychological Association, Inc.) 
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scores they received on a selection battery. In terms of stanines (p. 318) 
9 is the highest and 1 is the lowest score. Not more than 5% of the highest 
ranking men, on the selection tests were eliminated from pilot training; 
whereas nearly 80% of the lowest ranking men were eliminated. About 
30% of those falling in the middle of the test distribution (stanine 5) 
were eliminated. 

3.' The pie diagram 

Figure 19 shows the distribution of elementary pupils by race in a 
large western city. Of the total, 60% are white, 25% Negro and 15% Ori
ental. The construction of this pie diagram is quite simple. There are 360 
degrees in the circle .. Hence, 60% of 3600 or 2160 are counted off as 
shown in the diagram; this sector represents the proportion of white 
students. Ninety degrees are counted off for the Negro pupils (25%) 
and 54 degrees for Orientals (15%). The pie diagram is useful when one 
wishes to picture proportions of the total in a striking way. Numbers 
of degrees may be measured off ''by eye" or more accurately with a 
protractor. 

FIG. 19 Distribution by race of pupils in grades 3 through 8 of public schools 
in a .large western city 
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PROBLEMS 

1. The following distributions represent the achievement of two groups, A 
and B, upon a memory tes~. 
(0) Plot cumulative frequency graphs of Group A's and of Group B's 

scores, observing the 75% rule. 
( b) Plot ogives of the two distributions A and B upon the same axes. 
(c) Determine Pao, P60 and P90 graphically from each of the ogives and 

compare graphically determined with calculated values. 
(d) What is the percentile rank of score 55 in Group A's distribution? In 

Group B's distribution? 
(e) A percentile rank of 70 in Group A corresponds to what percentile 

rank in Group B? 
(I) What percent of Group A exceeds the median of Group B?· 

Scores Group A Group B 
79-83 6 8 
74-78 7 8 
69-73 8 9 
64-68 10 16 
59-63 ]2 20 
54-58 15 18 
49-53 23 19 
44-48 16 11 
39-43 10 13 
34-38 12 8 
29-33 6 7 
24-28 3 2 

N:::: 128, N= 139 

2. Construct an ogive for the following distribution of scores: 

Scores 
159.5-169.5 
149.5-159.5 
139.5-149.5 
,129.5-139.5 
,119.5-129.5 
109.5-119.5 
99.5-109.5 

. 89.5- 99.5 
79.5- 89.5 
69.5- 79.5 
59.5- 69.5 
49.5- 59.5 

f 
1 
5 

13 
45 
40 
30 
51 
48 
36 
10 
5 
1 

N::::285 
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Read off percentile norms for the following cumulative percentages: 
99,95,90,80,70,60,50,40,30,20,10,5, and 1. 

3. Given the following data for 5 cities in the United States, represent the 
facts by means of a bar graph. 

Proportion of Population Which Is 

City Native White Foreign Born Negro 
A .65 .30 .05 
B ~O .10 ~O 

C .50 .45 .05 
D .50 .10 .40 
E .30 .10 .60 

4. (a) Twenty children are put in order of merit for ·scores on a learning test. 
Compute the PR for each child. 

( b) If 60 children are put in order of merit for grades in history, what are 
the PR's of the 1st, lOth, 45th and 60th? 

5. (a) John ranks 6th in a class of 30 in mathematics and 6th in a class of 50 
in English. Compare his PR's in the two subjects. 

(b) What would John's rank in mathematics need to be in order for his PR 
in mathematics to equal his PR in English? 

6. In the operation of a school system in a certain city, 70% of the money 
spent goes for instruction, 12% for operation and maintenance, and 18% for 
auxiliary agencies, fixed charges and incidentals. Construct a pie diagram 
to show the relations of these expenditures. 

1. (c) Pso 
P60 

Poo 
(d) 58; 47 

ANSWERS· 

GROUP A 
Ogive CaL 
46.0 45.8! 
56.0 55.77 
74.0 73.64 

GROUP B 
Ogive CaL 
48.5 48.69 
59.75 59.85 
75.5 74.81 

(e) 62 (f) 39-40% of Group A exceed the median of Group B. 

2. Read from ogive: 
Cum. Percents: 99 95 90 80 70 60 50 40 
Percentiles: 159 142.5 137.5 131.5 124.5 116.5 107 102 

20 10 5 1 
91 82.5 79 64.5 

30 
96.5' 

4. (a) PR's in order are: 97.5, 92.5, 87.5, 82.5, 77.5, 72.5, 67.5, 62.5, 57.5, 
52.5,47.5,42.5,37.5,32.5,27.5,22.5,17.5, 12.5,7.5,2.5. 

(b) PR's are 1st, 99.17; lOth 84.17; 45th, 25.83; 60th, .83. 
5. (a) John's PR in mathematics, 81.67 or 82. His PR in English is 89. 

(b ) John's rank must be 4, approximately. 
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ADDITIONAL PROBLEMS ·AND QUESTIONS ON CHAPTERS I .... 

1. Describe the characteristics of those distributions for which the mean is 
not an adequate measure of central tendency. 

2. When is it not advisable to use the coefficient of variation? 
3. What is a multimodal distribution? a bimodal distribution? 
4. A student writes in a theme that through eugenics it would be possible to 

raise the intelligence of the race, so that more people would be above the 
median of 100. Comment on this. 

5. How can the discrepancy between the median and the mean be used as a 
measure of the adequacy of a test? 

6. A class in French has a median of 70 and a mean of 80 on a standard 
examination. Is the "average score" of the class 80? 

7. Why cannot the SD of .oile test be compared directly with the SD of 
another test? 

8. Suppose you made a frequency distribution of the ages of all men apply
ing for a marriage license over the course of a year in a large city. What 
type of distribution would you expect to get? 

9. What effect will an increase in N probably have upon Q? 
10. What is the difference between a percentile and a percent grade used 

in school? 
n. Does a PR of 65 earned by a pupil mean that 65% of the group made 

scores above him; that 65% made scores below him; or that 65% made 
the same score? 

12. Compute the SD for the distribution below with and without Sheppard's 
correction. 

Scores f 
60-69 1 
50-59 4 
40-49 10 
30-39 15 
20-29 8 
10-19 2 

N=40 

13. Compute the mean, median, mode, Q and SD for each of the following 
distributions: 

(1) Scores f (2) Scores f (3) Scores f 
90-99 2 14-15 3 25 1 
80-89 12 12-13 8 24 2 
70-79 22 10-11 15 23 6 
60-69 20 8-9 20 22 8 
50-59 14 6-7 10 21 5 
40-49 4 4-5 4 20 2 
30-39 1 N=60 19 1 

N=75 N=25 
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14. (a) Plot the distribution in 13 (1) as a frequency polygon and histogram 
upon the same coordinate axes. 

(b) Plot the distribution in 13 (2) as an ogive. Locate graphically the 
median, Q1> and Qa. Determine the PR of score 9; of score 12. 

ANSWERS 

12. CT = 11.07 CTc = iO.68 
13. (1) Mean = 68.10 (2) Mean = 9.23 

Median = 68.75 Median = 9.10 
Mode = 70.05 Mode = 8.84 

Q = 9.01 . Q = 1.69 
SD = 12.50 SD = 2.48 

(3) Mean = 22.04 
Median = 22,06 

Mode = 22.10 
Q= .91 

SD = 1.34 
14. (b) Median = 9.0; Ql = 7.5; Qs = 11.0 (Read from ogive) 

PR of 9 = 50; of 12 = 84.5 

/ 
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CHAPTER 5 

THE NORMAL 
DISTRIBUTION 

I. THE MEANING AND IMPORTANCE OF THE NORMAL DISTRIBUTION 

I. Introduction 

In Figure 20 are four diagrams, two polygons and two histograms, 
which represent frequency distributions of data drawn from anthro
pometry, psychology and meteorology. It is apparent, even upon super
ficial examination, that all of these graphs have the same general form
the m~asures are concentrated closely around the center and taper olI 
fr~m this centr3:1 high point or crest to the left and right.' There are rela
tively few measures at the "low-score" end of the scale; an increasi!lg 
number up to a maximum at the middle position; and a progressive 
fal~ing-off toward the "high-score" end of the scale. Ifwe divide the area 

5 

LQ. 140 

1. Form L. l.Q. distribution and best-fitting normal curve, ages 2Yl to 18 (from 
McNemar, Quinn, The Revision of the Stanford-Binet Scale, 1942, p. 19) 

87 
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2 4 6 8 10 12 14 16 
Digit Span 

2. Memory span for digits, 123 adult women students (after Thorndike) 

- 58. 60 62 64 66 68 70 72 74 76 78 
Stature in Inches 

3. Statures of 8585 adult males born in the British Isles (after Yule) 

28.5 29.0 29.5 30.0 30.5 31.0 
Height in Inches 

4. Frequency distribution of barometer heights at Southampton: 4748 observations 
(after Yule) 

FIG. 20 Frequency distributions drawn from different fields 
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under each curve (the area between the curve and the X axis) by a line 
drawn perpendicularly through the central high point to the base line, the 
two parts thus formed will be similar in shape and very nearly equal in area. 
It is clear, therefore, that each figure exhibits almost perfect bilateral sym
metry. The perfectly symmetrical curve, or frequency surface, to which 
all of the graphs in Figure 20 approximate, is shown in Figure 21. This 

Mean 

FIG. 21 Normal probability curve 

bell-shaped figure is called the normal probability curve, or simply the 
normal curve, and is of great value in mental measurement. An under
standing of the characteristics of the frequency distribution represented 
by the normal curve is essential to the student of experimental psychology 
and mental measurement. This chapter, therefore, will be concerned with 
the normal distribution, and its frequency polygon, the normal proba
bility curve. 

2. Elementary principles of probability 

Perhaps the Simplest approach to an understanding of the normal prob
ability curve is through a consideration of the elementary principles of 
probability. As used in statistics, the "probability" of a given event is 
defined as the expected frequency of occurrence of this event among 
events of a like sort. Tllis expected frequency of occurrence may be based 
upon a knowledge of the conditions determining the occurrence of the 
phenomenon, as in dice-throwing or coin-tossing, or upon empirical data, 
as in mental and social measurements. 

The probability of an event may be. stated mathematically as a ratio. 
The probability of an unbiased coin falling heads is 1/2, and the proh-
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ability of a die showing a two-spot is 1/6. These ratios, called probability 
ratios, are defined by that fraction, tbe numerator of which equals the 
desired outcome or outcomes, and the denominator of which equals the 
total possible outcomes. More simply put, the probability of the ap
pearance of any face on a 6-faced· cube (e.g., 4 spots) is 1/6 or the 

desired outcome A b b'li . 1 f 11 b . h 
I f 

. pro a I ty ratIo a ways a s etween t e 
tota number 0 outcomes 
limits .00 (impossibility of occurrence) and 1.00 (certainty of occur
rence). Thus the probability that the sky will fall is .00; that an individual 
now living will some day die is 1.0~. Between these limits are all possible 
degrees of likelihood which may be expressed by appropriate ratios. . 

Let us now apply. these simple principles of probability to the specific 
case of what happens when we toss coins. <> If we toss one coin, obviously 
it must fall either heads (H) or tails (T) 100% of the time; and further
more, since there are only two possible outcomes in a given throw, a head 
or a tail is equnlly probable.' Expressed as a ratio, therefore, the prob
ability of H is 1/2; of T 1/2; and 

(H + T) = 1/2 + 1/2 = 1.00 

If we toss two coins, (a) and (b), at 'the same time, there are four pos
sible arrangements which the coins may take: 

(1) 
a b 
H H 

~2) 
a b 
H T 

(3) 
a b 
T H 

(4) 
a b 
T T 

Both coins (a) and (b) may fall H; (a) may fall Hand (b) T; (b) may 
fall Hand (a) T; or both coins may fall T. Expressed as ratios, the prob
ability of two heads is 1/4 and the probability of two tails 1/4. Also, the 
probability of an HT combination.is 1/4, and of a TH combination 1/4. 
And since it ordinarily makes no difference which coin falls H or which 
lalls T, we may add these two ratios (or d.:mble the one) to obtain 1/2 as 
the probability of an HT combination. The sum of our probability ratios 
is 1/4 + 1/2 + 1/4 or 1.00. 

Suppose we go a step further and increase the number of coins to three. 
If we toss three coins (a), (b), and (c) simultaneously, there are eight 
possi~le outcomes: . 

(1) 
abc 
HHH 

(2) 
abc 
HHT 

(3) 
abc 
HTH 

(4) 
abc 
THH 

(5) 
abc 
HTT 

(6) 
abc 
THT 

(7) 
abc 
TTH 

(8) 
abc 
TTT 

• Coin-tossing and dice-throwing furnish easily understood and often used illus
trations of the so-called "laws of chance." 
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Expressed as ratios, the probability of three heads is 1/8 (combination 1); 
of two heads and one tail 3/8 (combinations 2, 3 and 4); of one head l:lnd 
two tails 3/8 (combinations 5, 6 and 7); and of three tails 1/8 (combina
tion 8). The sum of these probability ratios is 1/8 + 3/8 + 3/8 + 1/8, 
or 1.00. 

By exactly the same method used above for two and for three coins, 
we can determine the probability of different combinations of heads and 
tails when we have four, five or any number of coins. These various out
comes may be obtained in a more direct way, however, than ,by writing 
down all of the different combinations which may occur. If there are n 
independent factors, the probability of the presence or absence of each 
being the same, the "compound" probabilities of various combinations 
will be expressed by expansion of the binomial (p + q )". In this expres
sion p equals the probability tha~ a given event will happen, q the prob
ability that the event will not happen, and the exponent n indicates the 
number of factors (e.g., coins) operating to produce the final result. 0 

If we substitute H for p and T for q (tails = nonheads), we have for two 
coins (H + T)2; and squaring, the binomial (H+ T)2 = H2 + 2HT + T2. 
This expansion may be written, 

1 H2 1 chance in 4 of 2 heads; probability ratio = 1/4 
2 HT 2 chances in 4 of 1 head and r tail; probability ratio = 112 
..!. T2 1 crance in 4 of two tails; probability ratio = 114 

Total = 4 

These outcomes are identical with those obtained above by listing the 
three different combinations possible when two coins are tossed. 

If we have three independent factors operating, the expression 
( p + q ),. becomes for three coins (H + T) 3. Expanding this binomial, 
we get HS + 3H2T + 3HT2 + TS, which may be written, 

1 H3 1 chance in 8 of 3 heads; probability ratio = 1/8 
3 H2T 3 chances in 8 of 2 heads and 1 tail; probability ratio = 3/8 
3 HT2 3 chances in 8 of 1 head and 2 tails; probability ratio = 3/8 
1 T3 1 chance in 8 of 3 tails; probability ratio = 1/8 

Total = 8' 

Ag~in these results are identical with those got ~y listing the four dif
ferent combinations po~sible when three coins are tossed. 

The binomial expan~ion may be applied more usefully to those cases 

o We may, for example! consider our coins to be independent factors, the occur
rence of a head to be the presence of a factor and the occurrence of a tail the absence 
of a factor. Factors will then be "present" or "absent" in the various heads-tails 
combinations. . 
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in which there is a larger number of independent factors operating. If we. 
toss ten coins simultaneously, for instance, we have, by analogy with the 
above, (p + q) 10. This expression may be written (H + T) 10, H standing 
for the probability of a head, T for the probability of a nonhead (tail), 
and 10 for the number of coins tossed. When the binomial (H + T) 10 is 
expanded, the terms are 

HIO + 10HOT + 45H8T2 + 120H7T3 + 21OH6P + 252H5T5 + 21OH4T6 
+ 120H3T'7 + 45H2T8 + 10H'fll + TIO 

which may be summarized as follows: 
Probability 

Ratio 

1 HIO 1 chance in 1024 of all coins falling heads 
1 

1024 

10 HIlTl 10 chances in 1024 of 9 heads and 1 tail. .. 
10 

1024 

45 H8T2 45 chances in 1024 of 8 heads and 2 tails .. 
45 

1024 

120 H7Ts 120 chances in 1024 of 7 heads and 3 tails .. 
120 
1024 

210 H6T4 210 chances in 1024 of 6 heads and 4 tails .. 
210 
1024 

252 H5T5 252 chances in 1024 of 5 heads and 5 tails .. 
252 
1024 

210 H4'f6 210 chances in 1024 of 4 heads and 6 tails .. 
210 
1024 

120 H3T7 120 chances in 1024 of 3 heads and 7 tails .. 
120 

1024 

45 H2T8 45 chances in 1024 of 2 heads and 8 tails .. 
45 

1024 

10 HTu 10 chances in 1024 of 1 head and 9 tails ... 
10 

1024 

1 po 1 chance in 1024 of all coins falling tails .. 
1 

1024 
Total = 1024 

These ,data are represented graphically in Figure 22 by a histogram and 
frequency polygon plotted on the same axes. The eleven terms of the 
expansion have been laid off at equal distances along the X axis, and the 
"chances" of the occurrence of each combination of H's and T's are 
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plotted as frequencies on the Y axis. The result is a symmetrical frequency 
polygon with the greatest concentration in the center and the "scores" 
falling away by corresponding decrements above and below the central 
high point. Figure 22 represents the results to be expected theoretically 
when ten coins are tossed 1024 times. 

Many experiments have been conducted in which coins were tossed or 
dice thrown a great many times, with the idea of checking theoretical 
against actual results. In one well-known experiment,O twelve dice were 

250 

50 

... ~ 
.. ... .. ", .. E-l E-l E-l E-l ~ f-t f-I .. .. ... . t- Eo< .. .. :t: :x: :x: :x: :t: .. .. ..... := := == a ... 

~ 0 C'I 0 ~ ::: 
E-4 0 10 ,.... 10 ~ 

10 0 
== ,.... ~ ... C'I C'I ...... ~ .... 

FIG. 22 Probability surface obtained from the expansion of (H + T)1° 

thrown 4096 times. Each four-, nve- and six-spot combination-was taken 
as a "success" and each one-, two-, and three-spot combination as a 
"failure." Hence the probability of success and the probability of failure 
were the same. In a throw showing the faces 3, 1, 2, 6, 4, 6, 3, 4, 1, 5, 2 
and 3, there would be fi:ve successes and seven failures. The observed fre
quency of the different !;lumbers of successes and the theoretical outcomes 
obtained from the expansion of the binomial expression (p + q ) 12 have. 
been plotted on the same axes in Figure 23. The student will note that 
the observed frequencies correspond quite closely to the theoretical ex
cept for a tendency to shift slightly to the right. If, as an experiment, the 
reader will toss ten coins 1024 times his results will be in close agree
ment with the theoretical outcomes shown in Figure 22. 

Throughout the discussion in this seotion, we have taken the prob-

o Weldon's experiment; see Yule, G. U., An Introduction to the Theory of Statis
tics (London: C. Griffin and Co., 1932), 10th ed., p. 258. 
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1000 

800 

o 1 2 3 4 5 6 7 8 9 10 11 12 

--Theoretical Cllrve -----Aetual Curve 

f-IG. 23 Comparison of observed and theoretical results in throwing twelve 
dice 4096 times 

(After Y~le ) 

ability of occurrence (e.g., H) and the probability of nonoccurrence 
(non-H or T) of a given factor- to be the same. This is not a necessary 
condition, however. For instance, the probability of an event's happen
ing may be only 1/5; of its not happening, 4/5. Any probability ratio is 
is possible as long as (p + q) = 1.00. But distributions obtained from the 
expansion of (p + q)n when p is not equal to q are "skewed" or asym
metrical and are not normal (p. 99). 

3. Use of the probability curve in mental measurement 

The frequency curve plotted in Figure 22 from the expansion of the 
expression (H + T) 10 is a symmetrical many-sided polygon. If the num~ 
ber of factors (e.g., coins) determiiung this polygon were increased from 

I 10 to 20, to SO, and then to 100, say (the base line extent remaining the 
, same), the lines which constitute the sides' of the polygon would increase 

regularly in number, becoming progreSSively shorter. With each in-
crease in the number of factors the points on the frequency surface would. 
move closer together: Finally, when the number of factors became very 
large-when n in the expression (p + q)n became infinite-the p_olygon 
would exhibit. a perfectly smooth surface like that of the curve in Fig
ure 21. This "ideal" polygon represents the frequency of occurrence' of 
various combinations of a very large number of equal, similar, and inde
pendent factors (e.g., coins), when the probability of the appearance 
(e.g., H) or nonappearance (e.g., T) of each factor is the same. The \ 
normal distribution is not an actual distribution of test scores, but is, 
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instead, a mathematical model. As we shall see, frequency distributions 
of scores approach the theoretical distribution as a limit, but the fit is 
rarely perfect. 

If we compare the four graphs plotted from measures of height, intel
ligence, memory span, and barometric readings in Figure 20 with the 
normal probability curve in Figure 21, the similarity of these diagrams to 
the normal curve is clearly evident. The resemblance of these and many 
other distributions to the normal seems to express a general tendency of 
quantitative data to take the symmetrical bell-shaped form. This general 
tendency may be stated in the form of a "principle" as follows: measure
ments of many natural phenomena and of many mental and social traits 
under certain conditions tend to be distributed symmetrically about their 
means in proportions which approximate those of the normal prob
ability distribution. 

Much evidence has accumulated to show that the normal distribution 
serves to describe the frequency of occurrence of many variable facts 
with a relatively high degree of accuracy. Phenomena which follow the 
normal probability curve (at least approximately) may be classified as 
follows: 
, 1. Biological statistics: the proportion of male to female births for the 
same country or community over a period of years; the, proportion of 
different types of plants and animals in cross-fertilization (the Mendelian 
ratios ). 

2. Anthropometrical data: height, weight, cephalic index, etc., for large 
groups of the same age and sex. 

3. Social and economic data: rates of birth, marriage or death under 
certain constant conditions; wages and output of large numbers of 
workers in the same occupation under comparable conditions. 

4. Psychological measurements: • intelligence as measured by standard 
tests; speed of association, perception span, reaction time; educational 
test scores, e.g., in spelling, arith~etic, reading. 

5. Errors of observ_atiqn: measures of height, speed of'movement, linear 
magnitudes, physical and mental traits, and the like contain errors which 
are as likely to cause them to deviate above as below their true values. 
Chance errors of this sort vary in magnitude and sign and occur in fre
quencies which follow qlosely the normal probability curve. t 

It is an interesting speculation that many frequency distributions are 
similar to those obtaine,d by tossing coins or thrOWing dice because the 
former, like the latter, are actually probability distributions. The sym-

OSee p. 87. ' 
t This topic is treated in Chapter 8. 
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metrical normal distribution, as we have seen, represents the probability 
of occurrence of the various possible combinations of a great many factors 
(e.g., coins). In a normal distribution all of the n factors are taken to be 
similar, independent, and equal in strength; and the probability that each 
will be present (e.g., show an H) or absent (e.g., show aT) is the same. 
The appearance on a coin of a head or a tail is undoubtedly determined 
by a large number of small (or "chance") influences as likely to work one 
way as another. The twist with which the coin is spun may be important, 
as well as the height from which it is thrown, the weight of the coin, the 
kind of surface upon which it falls, and many other circumstances of a 
like sort. By analogy, the presence or absence of each one of the large 
number of genetic factors which determine the shape of a man's head, or 
his intelligence, or his personality may depend upon a host of influences 
whose net effect we call "chance." 

The striking similarity of obtained and probability distributions does 
not warrant the conclusion that all distributions of mental and physical 
traits which exhibit the bell-shaped form have necessarily arisen through 
the operation of those principles which govern the appearance of dice or 
coin combinations. The factors which determine musical ability, let us 
say, or mechanical skill are too little known to justify the assumption, 
a priori, that they combine in the same proportions as do the head and 
tail combinations in "chance" distributions of coins. Moreover, the psy
chologist usually constructs his tests with the normal hypothesis definitely 
in mind. The resulting symmetrical distribution is to be taken, then, as 
evidence of the success of his efforts rather than as conclusive proof of 
the "normality" of the trait being measured. 

The selection of the normal rather than some other type curve is suffi
ciently warranted by the fact that this distribution generally does fit the 
data better, and is more useful. But the "theoretical justification and the 
empirical use of the normal curve are two quite different matters." (> 

II. PROPERTIES OF THE NORMAL PROBABILITY DISTRIBUTION 

I. The equation of the normal curve 

The equation of the normal probability curve reads 

N X2 

Y = ---e 20-2 (22) 
u~ 

(equation of the normal probability curve) 
o Jones, D. C., A First Course in Statistics (London: G. Bell and Sons, 1921), 

p.233 
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in which 

x :::: scores (expressed as deviations from the mean) laid off along the base line 
or X axis. 

y :::: the height of the curve above the X axis, i.e., the frequency of a given 
x-value. 

The other terms in the equation are constants: 

i~ == number of cases 
u == standard deviation of the distribution 
'1T:::: 3.1416 (the ratio of the circumference of a circle to its diameter) 
e == 2.7183 (base of the Napierian system of logarithms). 

When Nand u are known, it is possible from equation (22) to com
pute (1) the frequency (or y) of a given value X; and (2) the number, 
or percentage between two points, or above or below a given point in 
the distribution. But these calculations are rarely necessary, as tables are 
available from which this information may be readily obtained. A knowl
edge of these tables (Table A), is indispensable in the solution of a num
ber of problems. For this reason it is very desirable that the construction 
and use of Table A be clearly understood. 

2. Table of areas under the normal curve 

Table A 0 gives the fractional parts of the total area under the normal 
curve found between the mean and ordinates (y's) erected at various 
distances from the mean. The total area under the curve is taken arbi
trarily to be 10,000, because of the greater ease with which fractional 
parts of the total area may then be calculated. 

The first column of the table, xl u, gives distances in tenths of u meas
ured off on the base line of the normal curve from the mean as origin. We 
have already learned that x == X - M, i.e., ,that x measures the deviation of 
a score X from M.lf x is divided by u, deviation from the mean is expressed 
in u units. Such 0" deviation scores are often called sigma-scores or z scores 
(z == xl u ). t Distances from the mean in hundredths of u are given by the 
headings of the columns. To find the number of cases in the normal dis
tribution between the mean and the ordinate erected at a distance of lu 
from the mean, go down the xlO" column until 1.0 is reached, and in the 
next column under .od take the entry opposite 1.0, viz., 3413. This figure 
means that 3413 cases In 10,000, or 34.13% of the entire area of the curve, 
lies between the mean and 1u. Put more exactly, 34.1370 of the cases in 

" Tables A to K appear in the Appendix. 
t See p. 312. 
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a normal distribution fall within the area bounded by the base line of the 
curve, the ordinate erected at the mean, the ordinate erected at a distance 
of 1a from the mean, and the curve itself (see Fig. 21). To find the per
centage of the distribution between the mean and 1.57 a, say, go down 
the xl a column to 1.5, then across horizontally to the column headed .07, 
and take the entry 4418. This means that in a normal distribution, 44.18% 
of the area (N) lies between the mean and 1.57 a. 

We have so far considered only a distances measured in the positive 
directiqn from the mean; that is, we have taken account only of the right 
half of the normal curve. Since the curve is bilaterally, symmetrical, the 
entries in Table A apply to a distances mea-sured in the negative direction 
( to the left) as well as to those measured in the positive direction. To find 
the percentage of the distribution between the mean and -1.26a, for 
instance, take the entry in the column headed .06, opposite 1.2 in the 
xl a column. This entry (3962) means that 39.62% of the cases in the nor
mal distribution fall between the mean and -1.26a. The percentage of 
cases between the mean and -la is 34.13; and the student will now be 
able to verify the statement made on page 50 that 'between the mean 
and ± 1a are 68.26% of the cases in a normal distribution (see also 
Fig. 21). 

vVhile the normal curve does not actually meet the base line until we 
are at infinite distances to the rigbt and' left of the mean, for practical 
purposes the curve may be taken to ena at points -3a and +3a distant 
from the mean. Table A shows that 4986.5 cases in the total 10,000 fall 
between the mean and +3a; and 4986.5 cases will, of course, fall between 
the mean and -3a. Therefore, 9973 cases in 10,000, or 99.73% of the 
entire distribution, lie within the limits -3a and +3a. By cutting off the 
curve at these two points, we disregard .27 of' 1 % of the distribution, a 
negligible amount except in very large samples. 

3'. Relationships among the constants of the normal probability curve 

In the normal probability curve, the mean; the median, and the mode 
all fall exactly at the midpoint of the distribution and are numerically 
equal. Since the normal curve is bilaterally symmetrical, all of the meas
ures of central tendency must coincide at the center of the distribution. 

The measures of variability include certain constant fractions of the 
total area of the normal curve, which may b~ read from Table A. Between 
the mean and ± 1a lie the middle two-thirds (68.269"0 exactly) of the 
cases in the normal distribution., Between the mean and ±2a are found 
95% (approximately) of the distribution; and between the mean and +3a 
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are found 99.7% or very close to 100% of the distribution. There are 
about 68 chances in 100 that a case will lie within ±10" from the mean in 
the normal distribution; there are 95 chances in 100 that it will lie within 
±20" from the mean; and 99.7 chances in 100 that it will lie within +30" 
from the mean. 

Instead of 0" the Q may be used as the unit of measurement in deter
mining areas within given parts of the normal curve. In the normal curve 
the Q (p. 43) is generally called the probable error or PE. The relation
ships between PE and 0" are given in the following equations: 

PE = .6745(1' 
(1' = 1.4826 PE 

from which it is seen that 0" is always about 50% larger than the PE 
(p.4S). 

By interpolation in Table A we find that ±.67450" or ±1 PE includes 
the 25% just above and the 25% just below the mean. This part of the 
curve, sometimes called the "middle 50," is important because it defines 
the range of "normal" performance. The upper 25% is somewhat better, 
and the lowest 25% somewhat poorer than the typical middle or average 
group. From Table A we find also that ±2 PE (or ± 1.34900") from the 
mean includes 82.26% of the measures in the normal curve; that ±3 PE 
(or ±2.02350") includes 97.7070; and that ±4 PE (or ±2.69800") includes 
99.30%. 

III. MEASURING DIVERGENCE FROM NORMALITY 

I. Skewness 

In a frequency polygon or histogram of test scores, usu~lly the first 
thing which strikes the eye is the symmetry or lack of it in the figure. In 
the normal curve model the mean, the median, and the mode all coincide 
and there is perfect baJance between the right and left halves of the fig-

FIG. 24 Negative skewness: to the left 
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FIG. 25 Positive skewness: to the right 

ure. A distribution is said to be "skewed" when the mean and the median 
fall at different pOints in the distribution, and the balance (or center of 
gravity) is shifted to one side or the other-to left or right. In a normal 
distribution, the mean equals the median exactly and the skewness is, of 
course, zero. The more nearly the distribution approaches the normal 
form, the closer together are the mean and median, and the less the skew
ness. Distributions are said to be skewed negatively or to the left when 
scores are massed at the high end of the scale (the right end) and are 
spread out more gradually toward the low end (or left) as shown in 
Figure 24. Distributions are skewed positively or to the right when scores 
are massed at the low (or left) end of the scale, and are spread out grad
ually toward the high or right end as shown in Figure 25. 

Note that the mean is pulled more toward the skewed end of the dis
tribution than is the median. In fact, the greater the gap between mean 
and median, the greater the skewness. Moreover, when skewness is nega
tive, the mean lies to the left of the median; and when skewness .is 
positive, the mean lies to the right of the median. 

A useful index of skewness is given by the formula 

Sk = 3 (mean - median) (23) 
cr 

(a measure of skewness in a frequency distribution) 

If we apply formula (23) to the distribution of 50 Alpha scores in 
Table 9, Sk = - .28. This slight negative skewness in the data may be seen 
by reference to Figure 2. The skewness for the distribution of 200 cancel
lation scores in Table 9 is .009. This negligible degree of positive skewness 
shows how closely this distribution approaches the normal form. The sym
metry of the frequency polygon may be verified from Figure 5. 

A simple measure of skewness in terms of percentiles is 

Sk = (P90 + PlO ) - P
50 

(24) 
2 

(a measure of skewness in terms of percentiles) 
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Applying this formula to the distribution of 50 Alpha scores and 200 can
cellation scores, we obtain for the first Sk::;: -2.50, and for the second 
Sk ::;: .02. These results are numerically different from those obtained by 
formula (23), as the two indices are computed from different reference 
points and are not directly comparable. Both formulas agree, however, 
in indicating some negative skewness for the Alpha scores and near
normality for the 200 cancellation scores. In comparing the skewness of 
two distributions, we should, of course, stick to one formula or the other. 
The more nearly normal a distribution, the closer to zero are the indices 
of skewness given by both formulas. 

The question of how much skewness a distribution must exhibit before 
it can be called Significantly skewed cannot be answered until we have a 
standard error for our index of skewness. Standard errors for formulas 
(23) and (24) are not very satisfactory and will not be given. The meas
ures of skewness, as they stand, are often sufficient for many problems in· 
psychology and education. When more precise indices of skewness are 
required, the student should use those based upon the moments of the 
distribution. Such will be found in more advanced books dealing with 
mathematical statistics. 

2. Kurtosis 

The term "kurtosis" refers to the "peakedness" or flatne~s of a fre
quency distribution as compared with the normal. A frequency distribu
tion more peaked than the normal is said to be leptokurtic; one flatter than 
the normal, platykurtic. Figure 26 shows a leptokurtic distribution and a 
platykurtic distribution plotted on the same diagram around the same 

FIG. 26 Leptokurtic (Al, normal or mesokurtic (Bl, and platykurtic (C) curves 
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mean. A normal curve (called mesokurtic) also has been drawn in on the 
diagram to bring out the contrast in the figures, and to make comparison 
easier. A formula for measuring kurtosis is 

Ku = Q (25) 
(P90 - PIO ) 

(a measure of kurtosis in terms of percentiles) / 

For the normal curve, formula (25) gives Ku = .263." If Ku is greater 

.6745 
Ku = [1.28 _ (-1.28)] = .263 

than .263 the distribution is platykurtic; if less than .263 the distribution 
is leptokurtic. Calculating th~ kurtosis of the distributions of 50 Alpha 
scores and 200 cancellation scores (Table 8), we obtain Ku = .237 for the 
first distribution and Ku = .223 for the second. Both distributions, there
fore, are slightly leptokurtic. 

3. Comparing a given histogram or frequency polygon with a normal curve 
of the same area, M and a 

In this section methods will be described for superimposing on a given 
histogram or frequency polygon a normal curve of the same N, M, and a 

as the actual distribution. Such a model curve is the "best fitting" normal 
distribution for the .given data. The research worker often wishes to com
pare his distribution "by eye" 'with that normal curve which "best fits" the 
data, and such a comparison may ,profitably be made even if no measures 
of divergence from normality are computed. In fact, the direction and 
extent of asymmetry often strike us more com;incingly when seen in a 
graph than when expressed by measures of skewness and kurtosis. It may
be noted that a normal curve can always be readily constructed by fol
lowing the procedures given here, provided the area (N) and varia-
bility (a) are known. . 

Table 16 shows the frequency distribution of scores made on the Thorn
dike Intelligence Examinatjon by 206 college freshmen. The mean is 
81.59, the median 81.00, and the a 12.14. This frequency distribution has 
been plotted in Figure 27, and over it, on the same axes, 'has been drawn 
in the best-fitting normal curve, i.e., the model which best describes·these 
data. :The Thorndike scores are represented by a histogram instead of by 
a frequency polygon in order to prevent coincidence of the surface out
lines and to bring out more clearly agreement and disagreement at dif-

o From Table A, PE( Q) = .6745u, Poo = 1.289', and P,O = -1.28u. Hence by 
formula (25) 
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TABLE 16 Frequency distribution of the scores made by 206 freshmen on the 
Thorndike Intelligence Examination 

Scores f 
115-119 1 
110-114 2 
105-109 4 
100-104 10 Mean = 81.59 
95-99 13 Median = 81.00 
90-94 18 C1' = 12.14 
85-89 34 
80-84 30 
75-79 37 
70-74 27 
65-69 15 
60-64 10 
55-59 2 
50-54 2 
45-49 1 

N=206 

ferent points. To plot a normal curve over this histogram, we first com
pute the height of the maximum ordinate (Yo) or the frequency at the 
middle <:If th~ distribution. The maximum ordinate (Yo) ·t:an be deter
mined from the equation of the normal curve given on page 96. When x 
in this equation is put equal to zero (the x at the mean of the normal 

_x2 1V 
curve is 0), the term e2

0"2' equals ~.OO, and yo ~ CTV'};; In the present prob-

lem, 1V = 206; a = 2.43 (> (in units of class interval), and yz; = 2.51; 
hence. yo = 33.S (see Fig. 27 for calculations). Knowing Yo, we are able to 
compute from Table B the heights of ordinates at given distances from 

NORMAL CURVE ORDINATES AT MEAN,±lo-, ±2u, ±3a 

N 206 
Yo =-- = = 33.8 . uy'2; 2.43 X 2.51 

±lu = .60653 X 33.8 = 20.5 
±2a: = .13534 X 33.8 = 4.6 
±3o-= .01111 X 33.8 = .4 

.. IT = 2.43 x 5 (interval). The IT in interval units is used. in the equation, since the. 
units on the X axis are in terms of class irltervals. 
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FIG. 27 Frequency distribution of the scor~s of 206 freshmen on the Thorn
dike Intelligence Examination, compared with best-fiHing normal 
curve for same data 

(For data, see Table 16.) 

the mean. The entries in Table B give the heights of the ordinates in the 
normal probability curve, at various 0" distances from the mean, expressed 
as fractions of the maximum or middle ordinate taken equal to 1.00000. 
To find, for example, the height of the ordinate at ± 10", we. take the 
~ntry .60653 from the table opposite xlO" = 1.0. This means that when the 
maximum central ordinate (Yo) is 1.00000, the ordinate (i.e., frequency) 
± 10" removed from M is .60653; or the frequency at ± 10" is about 61 % of 
the maximum frequency at the middle of the distribution. In Figure 27 
the ordinates ±10" from Mare .60653 X 33.8 (Yo) or 20.5. The ordinates 
±20" from Mare .13534 X 33.8 or 4.6; and the ordinates ±30" from Mare 
.01111 X 33.8 or .4. 

The normal curve may be sketched in without much difficulty through. 
the ordinates at these seven points. Somewhat greater accuracy will be 
obtained if various intermediilte ordinates, for example, at ± .50", ± 1.50"; 
etc., a.re also plotted. The ordinates for the curve in Figure 27 at -+- .517 
are .88250 X 33.8 or 29.8; at ± 1.50", .32465 X 33.8 or 11.0, etc. 

From formula (24) the skewness of our distribution of 206 scores is 
found to be 1.24. This small value indicates a low degree of positive skew
ness in the data. The kurtosis of the distribution by formula (25) is .244, 
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and the distribution is slightly leptokurtic (this is shown by the "peak" 
rising above the model curve). Neither measure of divergence, however, 
is significant of a "real" discrepancy between our data and those of the 
normal distribution (see p. 104). On the whole, the normal curve plotted 
in Figure 27 fits the obtained distribution well enough to warrant our 
treating these data as sensibly normal. 

IV. APPLICATIONS OF THE NORMAL PROBABILITY CURVE 

This section will consider a number of problems which may readily 
be solved if we can assume that our obtained distributions can be treated 
as nor~al, or as approximately normal. Each general problem will be 
illustrated by several examples. These examples are intended to present 
the issues concretely, and should be carefully worked through by the 
student. Constant reference will be made to Table A; and a knowledge 
of how to use this table is essential. . 

I. To determine the percentage of cases in a normal distribution within given 
limits 

Example (1) Given a distribution of scores with a mean of 12, and 
a tT of 4. Assuming normality, (a) What percentage of the cases fall 
between 8 and 16? (b) What percentage of the cases lie above score 
18? (c) Below score 6? 

( a) A score of 16 (> is 4 points above the mean, and a score of 8 is 
4 points below the mean. If we divide this scale distance of 4 score units 
by the u of the distribution (i.e., by 4) it is clear that 16 is 1u above the 
mean, and that 8 is 1u below the mean (see Fig. 28). There are 68.26% 
of the cases in a normal distribution between the mean and ± 1<1 
(Table A). Hence, 68.260/0 of the scores in our distribution, or approxi
mately the middle two-thirds, fall between 8 and 16. This result may also 
be stated in terms of "chances." Since 68.26% of the cases in the given 
distribution .fall between 8 and 16, the chances are about 68 in 100 that 
any score in the distribution will be found between these points. 

(b) The upper limit of a score of 18, namely, 18.5, is 6.5 score units 
or 1.625<1 above the mean (6.5/4 = 1.625). From Table A we find that 
44.790/0 of the cases ir:t the entire distribution fall between the mean and 
1.625<1. Accordingly, 5.21 % of the cases (50.00 - 44.79) must lie above 
the upper limit of 18 (viz., 18.5) in order to fill out the 50% of cases in 

o A score of 16 is the midpoint of the interval 15.5-16.5. 



106 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

the upper half of the normal curve (Fig. 28). In terms of chances, there 
are about 5 chances in 100 that any score in the distribution will be 
larger than 18. 

(c) The lower limit of a score of 6, namely, 5.5, is -1.625u from the 
mean. Between the mean and 5.5 (-1.625u) are 44.790/0 of the cases 

5.5 8 12 
Mean 

FIG. 28 

16 18.5 

in the whole distribution. Henc~, about- 50/0 of the cases in the distribu
tion lie below 5.5-fill out the 50% below the mean-and the chances are 
about 5 in 100 that any score in the distribution will be less than 6, i.e., 
below the lower limit of score 6. 

Example (2) Given a distribution with a mean of 29.75 and a u 

of 6.75. Assuming normality, what percentage of the distribution will 
lie between 22 and 26? What are the chances that a score will be 
between these two points? 

A score of 224 is 7.75 score units or -1.15u (7.75/6.75 = 1.15) from 
the mean; and a score of 26 is 3.75 or - .56u from the me::in (Fig. 29). 
We know from Table A that 37.49% of the cases in a normal distribution 
lie between the mean and -1.15u; and that 21.23% of the cases lie 
between the mean and -.56u. By simple subtraction, therefore, 16.26% 
of the' cases fall between -1.15u and - .56u or between the scores 22 
and 26. The chances are 16 in 100 that any score in the distribution will 
lie between these two points. 

o A score of 22 is the midpoint of the'intervai 21:5-22.5. 
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FIG. 29 

2. To find the limits in any normal distribution which include a given per
centage of the cases 

Example (3) Given a distribution of scores with a mean of 16.00 
and a (j of 4.00. If we may assume normality, what limits will include 
the middle 75% of the cases? 

The middle 751'0 of the cases in a normal distribution include the 37.5% 
just above, imd the 37.5% just below the mean . ..From Table A we find 
that 3749 cases in 10,000, or 37.51'0 of the distribution, fall between the 
mean and 1.15a; and, of course, 37.5% of the distribution also falls 
between the mean and -l.15a. The'middle 751'0 of the cases, therefore, 
lie between the mean and ± l.15a; or, since (j = 4.00, between the mean 
and ±4.60 score units. Adding ±4.60 to the mean (to 16.00), we find 
that the middle 75ro of the scores in the given distribution lie between 
20.60 and 1l.40 (see Fig. 30). 

Example (4) Given a distribution with a median of 150.00 and a 
PE(Q) of 17. Assuming ~normality, what limits will include the 
highest 20% of the distribution? the lowest 10%? 

We know from page 99 that a = 1.4826 PE; hence the a of this dis
tribution is 25,20 (l.4,826 X 17). The highest 20ro of a normally dis
tributed group will have 30% of the cases between its lower limit and 
the median, since 50% of the cases lie in the right half of the distribu
tion. From Table A we know that 2995 cases in 10,000, or 30ro of the 
distribution, are between the median and .84a. Since the a of the given 
distribution is 25.20 . . 84a will be :84 X 25.20 or 21.17 score units above 
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30 

FIG. 30 

the median, or at 171.17. The lower limit of the highest 20% of the given 
group, therefore, is 171.17; and the upper limit is the highest score in the 
distribution, whatever that may be. 

The lowest 10% of a normally distributed group will have 40% of the 
cases between the median and its upper limit. Almost exactly 400/0 of the 
distribution falls between the median and -1.28IT. Hence, since IT = 25.20, 
-1.28IT must lie at -1.28 X 25.20 or 32.26 score units below the median, 
that is, at 117.74. The upper limit of the lowest 10% of scores in the 
group, accordingly, is 117.74; and the lower limit is the lowest score in 
the distribution. 

'3. To compare two distributions in terms of "overlapping" 

Example (5) Given the distributions of the scores made on a 
logical memory test by 300 boys and 250 girls (Table 17). The 
boys' mean score is 21.49 with a IT of 3.p3. The girls' mean score is 
23.68 with a IT of 5.12. The medians are: boys, 21.41, and girls, 23.66. 
What percentage of boys exceed the median of the girls' distribution? 

On the assumption that these distributions ~re normal, we may solve 
this problem by means of Table A. The girls' median is 23.66 - 21.49 or 
2.17 score units above the boys' mean. Dividing 2.17 by 3.63 (the IT of 
the boys' distribution), we find that the girls' median is .60IT above, 
the mean of the boys' distribution. Table A shows that 23% of a normal 
distribution .lies between the mean and .60IT; hence 27% of the boys 
(50% - 23%) exceed the girls' median. 

This problem may also be solved by direct calculation from the dis-
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tributions of boys' and girls' scores without any assumption as to nor
mality of distribution. The calculations are shown in Table 17; and it is 
interesting to compare the result found by direct calculation with that 
obtained by use of the probability tables. The problem is to find the 
number of boys whose scores exceed 23.66, the girls' median, and then 
turn this number into a percentage. There are 217 boys who score up 
to 23.5 (lower limit of 23.5-27.5). The class interval 23.5-27.5 contains 
68 scores; hence there are 68/4 or 17 scores per scale unit on this interval. 
We wish to reach 23.66 in the boys' distribution. This point is .16 of a 
score (23.66 - 23.50 = .16) above 23.5, or 2.72 (i.e., 17 X .16) score units 
above 23.5. Adding 2.72 to 217, we find that 219.72 of the boys' scores fall 
below 23.66, the girls' median. Since 300 - 219.72 = 80.28, it is clear that 

TABLE 17 To illustrate the method of determining overlapping by direct cal-
culation from the distribution 

Boys 

Scores' f 
27.5-31.5 15 
23.5-27.5 68 
19.5-23.5 128 
15.5-19.5 79 
11.5-15.5 10 

N=300 
N/2 = 150 . 

61 
Mdn = 19.5 + 128 X 4 

= 21.41 
M = 21.49 
cr = 3.63 

GmLS 

Scores f 
31.5-35.5 20 
27.5-31.5 35 
23.5-27.5 73 
19.5-23.5 68 
15.5-19.5 41 
11.5-15.5 13 

N=250 
N/2=125 

3 
Mdn = 23.5 + 73 X 4 

= 23.66 
M = 23.68 
cr = 5.12 

What percent of the boys exceed 23.66, the median of the girls? First, 217 
boys makes scores below. 23.5. The class interval 23.5-27.5 contains 68 scores; 
hence, there are 68/4 or .17 scores per scale unit on this interval. 

The girls' median, 23.66, is .16 above 23.5, lower limit of interval 23.5-27.5. 
If we multiply 17 (number of scores per scale unit) by .16 we obtain 2.72 
which is the distance w~ must go into interval 23.5-27.5 to reach 23.66. 

Adding 217 and 2.72" we obtain 219.72 as that part of the boys' distribution 
which falls below the point 23.66 (girls' median). N is 300; hence 300 - 219.72 
gives 80.28 as that part of the boys' distribution which lies above 23.66. Divid
ing 80.28 by 300, we find that .2676, or apprOximately 27%, of the boys 
exceed the girls' median. 
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80.28 _,_ 300 or 26.769"0 (approximately 279"0) of the boys exceed the 
girls' median. This result is in almost perfect agreement with that obtained 
above. Apparently the assumption of normality of distribution for the 
boys' scores was justified. 

The agreement between the percentage of overlapping found by direct 
calculation from the distribution and that found by use of the probability 
tables will nearly always be close, especially if the groups are large and 
the distributions fairly symmetrical. When the overlapping distributions 
are small and not very regular in outline, it is safer to use the method of 
direct calculation, since no assumption as to form of distribution need 
then be made. 

4. To determine the relative difficulty of test questions. problems. and other 
test items 

Example (6) Given a test question or problem solved by 10% of a 
large unselected group; a second problem solved by 20% of the same 
group; and a third problem solved by 30%. If we assume the capacity 
'measured by the test problems to be distributed normally, what is 
the relative difficulty of questions 1, 2 and 3? 

Our first task is to find for Question 1 a cut in the distribution, such 
that 109"0 of the entire group (the percent passing) lies above, and 
909"0 (the percent failing) lies below the given point. The highest 10% 
in a normally distributed group has 40ro of the cases between its lower 
limit and the mean (see Fig, 31). From Table A we find that 39.979"0 

520 .840 1.2817 

FIG. 31 
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(i.e., 40%) of a normal distrib~tion falls between the mean and' 1.280", 
Hence, Question 1 belongs at a point on the base line of the curve, a dis
tance of 1.28a from the mean; and, accordingly, 1.28a may be set down 
as the difficulty value of this question. 

Question 2, passed by 20% of the group, falls at a point in the distribu
tion 30% above the mean. From Table A it is found that 29.95ro (i.e., 
30ro) of the group falls between the mean and .84a; hence, Question 2 
has a difficulty value of .84a. Question 3, which lies at a point in the dis
b'ibution 20% above the mean, has a difficulty value of .52a, since 19.85% 
of the distribution falls between the mean and .52a. To summarize our 
resplts: 

Question Passed by CF Value CF Difference 

1 10% 1.28 
2 20% .84 - .44 
3 30% .52 ;32 

The a difference in difficulty between Questions 2 and 3 is .32, which is 
roughly 3/4 of the a difference in difficulty between Questions 1 and 2. 
Since the percentage difference is the same in the two comparisons, it is 
evident that when ability is assumed to follow the normal curve, u and 
not percentage differences are the better indices of differences in 
difficulty. 

Example (7) Given three test items, 1, 2, and 3, passed by 50%, 
40%, and 30%, respectively, of a large group. On the assumption of 
normality of distribution, what percentage of this group must pass 
test item 4 in order for it to be as much more difficult than 3 as 2 is 
more difficult than I? 

An item passed by 50% of a group is, of course, failed by 50%; and, 
accordingly, such an item falls exactly in the middle of a normal dis
tribution of "difficulty." Test item 1, therefore, has a a value of .00, since 
it falls exactly at the mean (Fig. 32). Test item 2 lies at a point in the 
distribution lOra above the mean, since 40% of the group passed and 
60% failed this item. Accordingly, the u value of item 2 is .2;5, since from 
Table A we find that 9.87% (roughly 10%) of the cases lie between the 
mean and .25u. Test ite~ 3, passed by 30ro of the group, lies at a point 
20% above the mean, and this item has a difficulty value of .52a, as 
19.85% (20%) of the normal distribution falls between the mean 
and .52a. " 

Since item 2 is .25a farther along on the difficulty scale (toward the 
high-score end of the curve) than item 1, it is clear that Hem 4 must be 
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-1<1 

.25a .52a .77a 

FIG. 32 

.25a above item 3, if it is to be as much harder than item 3 as item 2 is 
harder than item 1. Item 4, therefore, must have a value of .52a + .25a or 
.77a; and from Table A we find that 27.94ro (28%) of the distribution 
falls between the mean and this point. This means that 50ro - 28% or 
22% of the group must pass item 4. To summarize: 

Test Item Passed by u Value u Difference 

I 50% .00 
.25 

2 40% .25 
3 30%' .52 

.25 
4 22% - .77 

A test item, therefore, must be passed by 2270 of the group in order for 
it to be as much more difficult than an item passed by 30ro as an item 
passed by 40% is more difficult than one passed by 50ro. Note again 
that percentage differences are not reliable indices of differences in diffi
culty when the capacity measured is distributed normally. 

5. iTo separate a given group into subgroups according to capacity, when 
the trait is normally distributed 

Example (8) Suppose that we have administered an entrance exam
ination to 100 college students. We wish to classify our group into 
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five subgro\lps A, B, C, D and E according to ability, the range of 
ability to be equal in each subgroup. On the assumption that the trait 
measured by our examination is normally distributed, how many stu
dents should be placed in groups A, B, C, D and E? 

Let us first represent the positions of the five subgroups diagram
matically on a normal curve as shown in Figure 33. If the base line of the 
curve is considered to extend from -3a to +3a, that is, over a range of 
6a, dividing this range by 5 (the number of subgroups) gives 1.2a as 
the base line extent to be allotted'to each group. These five intervals may 
be laid off on the base line as shown in the figure, and perpendiculars 
erected to demarcate the various subgroups. Group A covers the upper 
1.2a; group B the next 1.2a; group C lies .6(1 to the right and .6a to the 
left of the mean; groups D and E occupy the same relative positions in 
the lower half of the curve that B and A occupy in the upper half. 

-Ja -1.8a -.6a .6a 1.8a 3a 

FIG. 33 

To find what percentage of the whole g~oup belongs in A we must find 
what percentage of a normal distribution lies between 3(1 (upper limit 
of the A group) and 1.8a (lower limit of the A group). From Table A 
49.86% of a normal distribution is found to lie between the mean and 
3a; and 46.41 ro between the mean and 1.8a. Hence, 3.5% of the total'area 
under the normal CUl"Je (49.8670 - 46.41 %) lies between 3(1 and 1.8<1; 
and. accordingly, group A comprises 3.570 of the whole group: 

The percentages in the other groups are calculated in the same way. 
Thus, 46.4170 of the normal distribution falls between the mean and 1.8<1 
(upper limit of group B) and 22.5770 falls between the mean and .6a 
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(lower limit of group B). Subtracting, we find that 46.41 % - 22.570/0 or 
23.840/0 of our distribution belongs in subgroup B. Group C lies from .60' 
above to -.60" below the mean. Between the mean and .60" is 22.57% of 
the normal distribution, and the same percent lies between the mean and 
-.60". Group C, therefore, includes 45.14% (22.57 X 2) of the distribu
tion. Finally, subgroup D, which lies between - .60" and '-1.80", contains 
exactly the same percentage of the ·di;tribution as subgroup B; an~ 
group E, which lies between ---1.80" and -~O", contains the same percent of 
the whole distribution as group A. The percentage and number of men 
in each group are given in the following table: 

Groups 
A B C D E 

Percentage of total in each group 3.5 23.8 45 23.8 3.5 
Number in each group 4 or 3 24 45 24 4 or 3 

(l{)O men in all) 

On the assumption that the capacity measured follows the normal 
curve, it is clear that 3 to 4 men in our group of 100 should be placed In 
group A, the "marked" ability group; 24 in group B, the "high average" 
ability group; 45 in group C, the "average" ability group; 24 in group D; 
the.now average" ability group; and 3 or 4 in group E, the "very 10\,," or 
"inferior" group. 

The above procedure may be used to determine how many students in 
a class should be assigned to each of any given number of grade groups. 
The assumption is always made that performance in the subject upon 
which the individuals are being marked can be represented by the normal 
curve. The larger and more unselec,ted the group, and the better the test, 
the more nearly is this assumption justjfied. 

V. WHY FREQUENCY DISTRIBUTIONS DEVIATE FROM THE NORMAL FORM 

It is often important for the research worker to know why his distribu
tions diverge from the normal form, and this is especially true when the 
deviation from normality is large and Significant (p. 100). The reasons 
why distributions exhibit skewness and kurtosis are numerous and often 
complex,obut a careful analysis of the data will often permit the setting, 
up of hypotheses concerning deviation from' normality which may be 
tested experimentally. Common causes of asymmetry, all of which must 
be taken into consideration by the careful experimenter, will be sum
marized in the present section. Further di~cussion of this topic will be 
found in Chapter 8. 
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I. Selection 

Selection is a potent cause of skewness. We should hardly expect the 
distribution of I.Q.'s obtained from a group of 25 superior students to be 
normal; nor would we look for symmetry in the distribution of I.Q.'s got 
from a special class of dull-normal 10-year-old boys, even though the 
group were fairly large. Neither of these groups M; an unbiased selection, 
i.e., a cross section, from some normal group-and in addition, the first 
group is quite small. A small group is not necessarily selected or atypical, 
but more often than not it is apt to be (see p. 207). 

Selection will produce skewnesss and kurtosis in distributions even 
when the test has been adequately constructed and carefully adminis
tered. For example, a group of elementary school pupils which contains 
( a) a large nurflber of bilinguals, (b) many children of very low or 
very high socioeconomic status, and (c) many pupils who are over
age for grade or are accelerated will almost surely return skewed dis
tributions even upon standard intelligence and educational achievement 
examinations. 

Scores made by small and homogeneous groups are likely to yield 
qarrow and leptokurtic distributions; scores from large and heterogeneous 
groups are more likely to be broad and platykurtic in form. A group of 
eighth-graders, all of I.Q. 100, will differ much less in reading than a 
group of unselec~ed eighth-graders. The distributions of scores achieved 
upon an educational test by children throughout the elementary grades 
will probably be somewhat flattened owing to considerable overlap from 
grade to grade. 

Distributions of physical traits such as height, weight, and strength 
are measured on ratio scales (p. 2) and are also influenced by selec
tion. Physical traits when measured in large groups of the same sex, age 
and race will approximate the normal form. But the distribution of height 
for l4-year-old girls of high socioeconomic status or the distribution of 
weight for children froI.ll slum areas will most likely be skewed, as these 
groups are subject to selection in various traits related to height and 
weight. 

2. Unsuitable or poorly made tests 

If a test is too e~sy! scores will pile up at the high-score end of the 
scale, whereas when the test is too hard, scores will pile up at the low· 
score end of the scale. Imagine, for example, that an examination in arith
metic which requires only addition, subtraction, multiplication, and divi· 
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sion has been given to 1000 seventh-graders. The resulting distribution 
will almost certainly be badly skewed to the left (see Fig. 24). On the 
other hand, if the examination contains only problems in complex frac· 
tions, interest, square root, and the like, the score distribution is likely to 
be positively skewed-low scores will be more numerous than intermedi
ate or high scores. It is probable also that both distributions will be some
what more "peaked" (leptokurtic) than the normal. 

Asymmetry in cases like these may be explained in terms of those small 
positive and negative factors which determine the normal distribution. 
Too easy a test excludes from operation some of the factors which would 
make for an extension of the curve at the upper end, such as knowledge 
of more advanced arithmetical processes which the brighter child would 
know. Too hard a test excludes from operation factors which make for 
the extension of the distribution at the low end, such as knowledge of 
those very simple facts which would have permitted the answering of a 
few at least of the easier questions had these been included. In the first 
case we have a number of perfect scores and little discrimination; in the 
second case a number of zero scores and equally poor differentiation. 
Besides the matter of difficulty in the test, asymmetry may be brought 
about by ambiguous or poorly made items and by other technical faults. 

3. Nonnormal distributions 

Skewness or kurtosis or both will appear when there is a real lack of 
normality in the trait being measured. '" Nonnormality of distribution will 
arise, for instance, when some of the hypothetical factors determining 
the strength of a trait are dominant or prepotent over the others, and. 
hence are present more often than chance will allow. Illustrations may 
be found in distributions resulting from the throwing of loaded dice. 
When off-center or biased dice are cast, the resulting distribution will 

i certainly be skewed and probably peaked, owing to the greater likelihood 
of combinations of faces yielding certain scores. The same is true of 
biased coins. Suppose, for example, that the probability of "success" 
( appearance of H) is four times the probability of failure (nonoccurrence' 
of H, or presence of T), so that p = 4/5; q = 1/5, and (p + q) = 1.00, 
If we think of the factors making for success or failure as 3 in number, 

'" There is no reason why all distributions should approach the normal form. Thorn
dike lias written: "There is nothing arbitrary or mysterious about variability which 
makes the so-called normal type of distribution a necessity, or any more rational than 
any other sort, or even more to be expected on a priori grounds. Nature does not 
abhor irregular distributions." Theory of Mental and Social Measurement (New York: 
Teachers College, 1913), pp. 88-89. 
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we'may expand (p + q)3 to nnd the incidence of success and failure in 
varying degree. Thus, (p + q)3 = p3 + 3,rq + 3pq2 + q3, and substi
tuting p = 4/5 and q = 1/5, we have 

64 
(1) p3 = (4/5)3 

125 
48 

3p2q=3(4/5)2'(1I5) =-
125 
12 

3pq2 = 3(4/5)' (115)2 =-
125 
1 

125 

(2) Expressed as a frequency 
distribution: 

"Successes" 
3 
2 
1 
o 

f 
64 
48 
12 

1 
N= 125 

The numerators of the probability ratios (frequency of success) may be 
plotted in the form of a histogram to give Figure 34. 

o I 2 

Successes 

FIG. 34 Histogram of the expansion FIG. 35 U-shaped frequency curve 
(p + q)3, where p = 1, q = i. p is the 
probability of success,' q the prob-
ability of failure 

Note that this distribution is negatively skewed (to the left); that the 
incidence of three "successes" is 64, of two 48, of one 12, and of none 1. 
J-shaped distributions like these are essentially nonnormal. Such curves 
have been found most often by psychologists to describe certain forms of 
social behavior. For example, suppose that we tabulate the number of 
students who appear at a lecture "on time"; and the number who arrive 5, 
10 or 15+ minutes late, If frequency of arrival is plotted against time, the 
distribution will be highest at zero ("on time") on the X axis, and will 
fall off rapidly as we go to the right, i.e., will be positively skewed in an 
extreme fashion. Such curves, when plottea as frequency polygons, are 
called J curves (see Fig. 25). If only the early-comers are tallied, up to 
the "on time" group, the curve will be negatively skewed like those in 
Figures 24 and 34. J curves describe behavior which is essentially non
normal in occurrence. because the many causes of the behavior differ 
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greatly in strength. But J curves may represent frequency distributions 
badly skewed for other reasons. 

Nonnormal curves often occur in medical statistics. The likelihood of 
death due to degenerative disease, for instance, is highest during maturity 
and old age and minimal during the early years. If the age span from 20 
to 80 is laid off on the base line- and the probability of death from cancer 
at each age level plotted on the Y axis, the curve will be negatively 
skewed and will resemble Figure 24. Factors making fo~ d,eath are pre
potent over those making for survival as age increases, and hence the 
curve is essentially asymmetrical. In the case of a childhood disease, the 
probability of death will be positively skewed when plotted against age as 

. the incidence of death becomes less with increase in age. 
Another type of nonnormal distribution, which may be briefly de

scribed, is the U-shaped curve shown in Figure 35. U-shaped distributions, 
like J curves, are rarely encountered in mental and physical measurement. 
They are sometimes found in the measurement of social and personality 
traits, if the group is extremely heterogeneous with respect to some 
attribute, or if the test measures a trait that is likely to be present or 
absent in an all-or-none manner. Thus, in a group composed about equally 
of normals and mentally ill persons, the normals will tend to make low 
scores on a Neurotic Inventory while the abnormals will tend to make 
high scores. This makes for a dip in the center of the distribution, despite 
considerable overlap in score. Again, in tests of suggestibility, if a subject 
yields to suggestion in the first trial he is likely to be suggestible in all 
trials-thus earning a high score. On the other hand, if he resists sugges
tion on the first trial, he is likely to resist in all subsequent trials-thus 
earning a zero (or a very low) score. (I This, all-or-none feature of the 
score makes for a U-shaped distribution. 

4. Errors in the construction and administration of tests 

Various factors in addition to those mentioned make for -distortions in 
score distributions. Differences in the size of the units in which test per
formance has been expressed, for example, will lead to irregularities in 
score distribution. If the items are very easy at _ the beginning and very 
hard later on, an increment of one point of score at the upper end of the 
test scale will be much greater than an increment of one point at the 
low end of the scale. The effect of such unequal or "rubbery" units jams 
the distribution and reduces the spread. Scores tend to pile up at some 
intermediate point and to be stretched out at the low end of the scale. 

o See Hull, C. L., Hypnosis and Suggestibility (New York: Appleton-Century
Crofts, 1938), p. 68. 
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Errors in timing or in giving instructions, errors in the use of scoring 
stencils; large differences in practice or in motivation-all of these factors, 
if they cause some students to score higher and others to score lower than 
they normally would, tend to make for skewness in the distribution. 

PROBLEMS 

1. In two throws of a coin, what is the probability of throwing at least one 
head? 

2. What is the probability of throwing exactly one head in three throws of a 
coin? 

3. Five coins are thrown. What is the prvbability that exactly two of them 
will be heads? 

4. A box contains 10 red, 20 white and 30 blue marbles. After a thorough 
shaking, a blindfolded person draws out 1 marble: What is the pyobability 
that 
(a) it is blue? 
(b) red or blue? 
(c) neither red nor blue? 

5. If 'the probability of answering a certain question correctly is four times 
the probability of answering it incorrectly, what is the probability f 
answering it correctly? 

6. (a) If two unbiased dice are thrown, what is t!te probability that t 
number of spots showing will total 7? 

(b) Draw up a frequency dis\ribution s$bwing the occurrence of co -
binations of from 2 to 12 spots when two dice are thrown. 

7. (a) In an attitude questionnaire containing ,10 statements, each to b 
marked as True or False, what is the probability of getting a perfe t 
score by sheer guesswork? 

(b) Suppose you know 5 statements to be True and 5 False. What is th 
probability that you will mark the right ones True (select the right 
five)? 

8. A rat has five choices to make of alternate routes in order to reach th 
foodbox. If it is true that for each choice the odds are two to one in favo 
of the correct pathvvay, what is the probability that the rat will make a I 
of its choices correc~ly? . 

9. Assuming that trait X is completely determined by 6 factors-all simila 
and independent, and each as likely to be present as absent-plot the dis
tribution which one might expect to get from the measurement of trait 
in an un selected group of 1000 people. 

10. Toss five pennies thirty-two times, and record the number of heads an 
tails after each throw. Plot frequency polygons of obtained and expecte 
occurrences on the same axes. Compare the M's and u's of obtained an 
expected distributions. 
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U. What percentage of a normal distribution is included between the 
(a) mean and 1.54u (d) -3.5PE and LOPE 
(b) mean and -2. 7P E (e) .66a" and 1. 78u 
(c) -1.73u and .56a" (f) -1.8PE and -2.5PE 

12. In a normal distribution 
(a) Determine P27, P46, P54 , and PSt in u units. 
(b) What are the percentile ranks of scores at -1.23u, -.50u, +.84u? 

13. (a) Compute measures of skewness and of kurtosis for the first two fre
quency distributions in Chapter 2, problem 1, page 39. 

(b) Fit normal probability curves to these same .distributions, using the 
method given on page 102. 

(c) For each distribution, compare the percentage of cases lying between 
±Iu with the 68.26% found in the normal distribution. 

14. Suppose that the height of the maximum ordinate (Yo) in a normal curve 
is 50. What is the height to the nearest integer of the ordinate at the x/u 
point which cuts o~ the top 11% of the distribution? top 30%? bottom 
5%? (Use Tables A and B.) 

15. In a sample of 1000 cases the mean of a certain test is 14.40 and u is 2.50. 
Assuming normality of distribution 
(a) How many individuals score between 12 and 16? 
(b) How many score above 18? below 8? 
(c) What are the chances that any individual selected at random will 

score above IS? 
16. In the Army General Classification Test the distribution is essentially nor

mal with a M = 100 and SD = 20. 
(a) What percent of ;cores lie between 85 and I25? 
(b) The middle 60% fall between what two points? 
(c) On what score does Q3 fall? 

17. In a certain achievement test, the seventh-grade mean is 28.00 and SD is 
4.80; and the eighth-grade mean 'is 3l.60 and SD is 4.00. What percent 
of the seventh grade is above the mean of the eighth grade? What percent 
of the eighth grade is below the mean of the seventh grade? 

~8. Two years ago a group of 12-year-olds had a reading ability expressed by 
a mean score of 40.00 and a u of 3.60; and a composition ability expressed 
by a mean of 62.00 and a a" of 9.60. Today the group has gained 12 points 
in reading and 10.8 points in composition. How many times greater is the 
gain in reading than the gain in composition? 

19. In problem 1, Chapter 4, we computed directly from the distribution 
the percent of group A which exceeds the median of group B. Compare 
this value with the percentage of overlapping obtained on the assumption 
of normality in group A. 

~O. Four problems, A, B, C, and D, have been solved by 50%, 60%, 70%, and 
80%, respectively, of a large group. Compare the difference in difficulty 
between A and B with the difference in difficulty between C and D. 

21. In a certain college, ten grades, A+, A, A-; B+, B, B-; C+, C. C-; and 
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D, are assigned. If ability in mathematics is distributed normally, how 
many students in a group of 500 freshmen should receive each grade? 

22. Assume that the distribution of grades in a class of 500 freshmen is normal 
with M = 72 and SD = 10. The instructor wants to give letter grades as 
follows: 10% A's; 30% B's; 40% C's; 15% D's; and 5% F's. Compute 
to the closest score the divisions between A's and B's; B's and C's; C's and 
D's; D's and F's. 

1. 3/4 2. 3/8 
4. (a) 1/2 

(b) 2/3 
(c) 1/3 

5. 4/5 6. (a) 1/6 
7. (a) 1/1024 

(b) 1/252 
8. 32/243 

3. 10/32 

10. For expected distribution 
M = 2.5 er = 1.12 

11. (a) .4383 (d) .7409 
(b) .4656 (e) .2171 
(c) .6705 (f) .0676 

ANSWERS 

12. (a) -.61er, -.10er, .10er, .88er 
(b) 11,31,80 

13. (a) SKEWNESS 

By formula (23) By formula (24) 
(1) -.018 -.28 
(2) .156 1.03 

(c) 66%,67% 
14. 23,44,13 
15. (a) 570 

(b) 50; 3 
(c) 33 in 100 or 1 in 3 

16. (a) 67% 
(b) 83.2 and 116.8 
(c) 113 
23%; 18% 
Three times as great. 
39% as compared with 42%. 

KURTOSIS 

By formula (25) 
.238 
.276 

17. 
18. 
19. 
20. 
21. 

Difference between, A and B is .25er; between C and D, .320-
Grades: A+ A A.:_ B+ B B- C+ C C- D 
Students 
Receiving: 3 14 40 80 113 113 80 40 14 3 

22. 85; 75; 64; 56 



CHAPTER 6 

LINEAR CORRELATION 

I. THE MEANING OF CORRELATION 

I. Correlation as a measure of relationship -

In previous chapters we hav~ been concerned primarily with methods 
of computing statistical measures designed to represent in a reliable way 
the performance of an individual or a group in some defined trait. Fre
quently, however, it is of more importance to examine the relationship 
of one variable to another than to measure performance in either alone. 
Are certain abilities closely related, and others relatively independent? Is 
it true that good pitch discrimination accompanies musical achievement; 
or that bright children tend to be less neurotic than average children? If 
we know the general intelligence of a child, as measured by a standard 
test, can we say anything about his probable scholastic achievement as 
represented by grades? Problems like these and many others which 
involve the relations among abiliti,es can be 'studied by the method of 
correlation. 

When the relationship between two sets of measures is "linear," i.e., 
s::an be described by a straight line,o the correlation between scores may 
'be expressed by the "product-moment" coefficient of correlation, desig
nated by the letter r. The method of calculating r will be outlined in 
Section III. Before taking up the details of calculation, let us make clear 
what correlation means, and how r measures relationship. 

Consider, first, a situation in which relationship is fixed and unchanging. 
The circumference of a circle is always 3.1416 times its diameter 
(C = 3.1416D), and this equation holds no matter how large or how 
small the circle, or in what part of the world we find it. Each time the 
diameter of a circle is increased or decreased, the circumference is 
increased or decreased by just 3.1416 times the same amount. In short, 

• 0" See pp. 152-153 for further discussion of "linear" relationship. 

122 
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the dependence of circumference upon diameter is absolute; the correla
tion between the two dimensions is said to be perfect, and r = 1.00. In 
theory, at least, the relationship between two abilities, as represented by 
test scores, may also be perfect. Suppose that a hundred students have 
exactly the same standing in two tests-the student who scores first in the 
one test scores first in the other, the student who ranks second in the first 
test ranks second in the other, and this one-to-one correspondence holds 
throughout the entire list. The relationship is perfect, since the relative 
position of each subject is exactly the same in one test as' in the other; 
and the coefficient of correlation is 1.00. 

Now let us consider the case in which there is just no correlation pres
ent. Suppose that we have administered to 100 college seniors the Army 
General Classification Test and a simple "tapping test" in which the num
ber of separate taps made in thirty seconds is recorded. Let the mean 
AGCT score for the group be 120, and the mean tapping rate be 185 taps 
in thirty seconds.'Now suppose that when we divide our group into three 
subgroups in accordance with the size of their AGCT scores, the mean 
tapping rate of the superior or "high" group (whose mean AGCT score 
is 130) is 184 taps in thirty seconds; the mean tapping rate of the "middle" 
group (whose mean AGCT score is 110) is 186 taps in thirty seconds; and 
the mean tapping rate of the "low" group (whose mean AGCT score is 
100) is 185 taps in thirty seconds. Since tapping rate is Virtually identical 
in all three groups, it is clear that from tapping rate alone we should be 
unable to draw any conclusion as to a student's probable performance 
upon AGCT. A tapping rate of 185 is as likely to be found with an 
AGCT score of 100 as with one of 120 or even 160. In other words, there 
is no correspondence between the scores made by the members of our 
group upon the two tests, and r, the coefficient of correlation, is zero. (> 

Perfect relationship, then, is expressed by a coefficient of 1.00, and just 
no relationship by a coefficient of .00. Between these two limits, increasing 
degrees of positive relationship are indicated by such coefficients as .33, 
or .65, or .92. A coefficient of correlation falling between .00 and 1.00 
always implies some degree of positive association, the degree of cor
respondence depending upon the size of the coefficient. 

Relationship may also be negative; that is, a high degree of one trait 
may be associated with a low degree of another. When negative or inverse 
relationship is perfect,. r = -1.00. To illustrate, suppose that in a small 
class of ten schoolboys, the boy who stands first in Latin ranks lowest 

o It may be noted that the number of groups (here 3) is unimportant: any con
venient set may be used. The important point is that when the correlation is zero, 
there is no systematic relationship between two sets of scores. 
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(tenth) in shop work; the boy who stands second in Latin ranks next to 
the bottom (ninth) in shop work; and that each boy stands just as far 
from the top of the list in Latin as from the bottom of the list in shop 
work. Here the correspondence between achievement in Latin and per
formance in shop work is regular and definite enough, but the direction 
of relationship is inverse and r = -1.00. Negative coefficients may range 
from -1.00 up to' .00, just as positive coefficients may range from .00 up 
to 1.00. Coefficients of -.20, -.50 or -.80 indicate increasing degrees of 
negative or inverse relationship, just as positive coefficients of .20, .50 
and .80 indicate increasing degrees of positive relationship. 

2. Correlation expressed as agreement between ranks 

The notion underlying correlation can often be most readily compre
hended from a simple graphic treatment. Three examples will be given to 
illustrate values of r of 1.00, -1.00, and approximately .00. Correlation 
is rarely computed when the number of cases is less than 25, so that the 
examples here presented must be considered to have illustrative value 
only. 

Suppose that four tests, A, B, C and D, have been administered to a 
group of five children. The children have been arranged in order of merit 
on Test A and their scores are then compared separately with Tests B 
C and D to give the following three cases: 

CASE 1 CASE 2 CASE 3 
Pupil A B Pupil A C Pupil A D 

a 15 53 a 15 64 a 15 102 
b 14 52 b 14 65 b 14 100 
c 13 51 c -13 66 c 13 104 
d 12 50 d 12 67 d 12 103 
e 11 49 e 11 68 e 11 101 

Now, if the second series of scores under each case (i.e., B, C and D) 
is arranged in order of merit from the highest score down, and the two 
scores earned by each child are connected by a straight line, we have the 
graphs shown on page 125. 

The more nearly the lines connecting the paired scores are horizontal 
and parallel, the higher the positive correlation. The more nearly the con
necting lines tend to intersect in one point, the larger the negative cor· 
relation. When the connecting lines show no systematic trend, the correIa· 
tion apprbaches zero. 



CASE I 

A B 
15 53 
14 52 
13 51 
12 50 
11 49 

All connecting lines are 
horizontal and parallel, 
and the correlation is 
positive and perfect. 
r = 1.00 

3. Summary 

CASE 2 

A C 

15~68 14 67 
13 66 
12 65 
11 64 

All connecting lines in
tersect in one pOint. 
The correlation is nega-

; tive and perfect, and 
r = -1.00 

LINEAR CORRELATION· 125 

CASE 3 

A D 

15~104 14 103 
13 102 
12 101 
11 100 

No system is exhibited 
by the connecting lines, 
but the resemblance is 
closer to Case 2 than 
to Case 1. Correlation 
low and negative 

To summarize our discussion up to this point, coefficients of correlation 
are indices ranging over a scale which extends from -1.00 through .00 to 
1.00. A positive correlation indicates that large amounts of the one vari
able tend to accompany large amounts of the other; a negative correlation 
indicates that small amounts of the one variable tend to accompany large 
amounts of the other. A zero correlation indicates no consistent relation
ship. We have illustrated above only perfect positive, perfect negative, 
and approximately zero relation in order to bring out the meaning of cor
relation·in a striking way. Only rarely, if ever, will a coefficient fall at 
either extreme of the scale, i.e., at 1.00 or -1.00. In most actual problems, 
calcl,llated r's fall at intermediate points, such as .72, -.26, .50, etc. 
Such r's are to be interpreted as "high" or '10w" depending in general 
upon how close they are to ±1.00. Interpretation of the degree of rela
tionship expressed by r in terms of various criteria will be discussed on 
pages 176-177. 

II. THE COEFFICIENT OF CORRELATION· 

I. The coefficierlt of correlation as a ratio 

The product-moment coefficient of correlation may be thought of essen
tially as that ratio which expresses the extent to which changes in one 
variable are accompanied by-or are dependent upon-changes in a sec
ond variable. As an illustration, consider the following simple example 
which gives the paired heights and weights of five college seniors: 

o This section may be taken up after Section III. 
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(1) - (2) 

STU-
HT. 

IN 
DENT 

INCHES 

X 

a 72 
b 69 
c, 66 
d 70 
e 68 

Mx= 69 in. 
My = 1701bs. 

(3) (4) (5) (6) (7) (8) (9) 
WT. 

IN 

LBS. 

Y 
x __g_ (~ .1L) x y xy -

0'", 0'11 0'", 0'11 

170 3 0 0 1.34 .00 .00 
165 0 -5 0 .00 -.37 .00 
150 -3 -20 60 -1.34 -1.46 1.96 
180, 1 10 10 .45 .73 .33 
185 -1 15 -15 -.45 1.10 -.49 

55 1.80 

O'_ = 2.24 in.- ",",(3_ . !L) 180 ~ L..J O'fI! 0' • 
0'11 = 13.69 lbs. correlation = . 1/ = -- = .36 

N 5 

From the X and Y columns it is evident. that tall students tend to be 
somewhat heavier than short students, and hence the correlation between 
height and weight is almost certainly positive. The mean height is 
69 inches, the mean weight 170 pounds, and the a'S are 2.24 inches and 
13.69 pounds, respectively. In column (4) are given the deviations (x's) 
of each man's height from the mean height, and in column (5) the devi
ations (y's) of each man's weight from the mean weight. The product of 
these paired deviations (xy' s) in column (6) is a measure of the agree
ment between individual heights and weights, and the larger the sum of 
the xy column the higher the degree of correspondence. When agreement 
is perfect (and l' = 1.00) the '1xy column has its maximum value. One 

may inquire why the sum of xts (i.e., ~) would not yield a suitable 

measure of relationship between x and y. Thereason is that such an aver
age is not a stable measure, as it is not independent of the units in which 
height and weight have been expressed. In consequence, this ratio will 
vary if centimeters and kilograms (as shown in the example below) are 
employed instead of inches and pounds. One way to avoid the trouble
some matter of differences in units is to divide each x and each y by its 
own 17, i.e., express each deviation as a 17 score. Each x and y deviation is 
then expressed as a ratio, and is a pure number, independent of the fest 
units. The sum of the products of the 17 scores-column (9) -divided by 
N yields a ratio which, as we shall see lat~r, is a stable expression of rela-

o For calculation of tr'S see p. 191. 
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tionship. This ratio is the "product-moment" (> coefficient of correlation. 
In our example, its value of .36 indicates a fairly high positive correlation 
between height and weight in this small sample. The student should note 
that our ratio or coefficient is simply the average product of the a scores 
of corresponding X and Y measures. . 

Let us now investigate the effect upon our ratio of changing the units 
in terms Of which X and Y have been expressed. In the example below, 
the heights and weights of the same five students are expressed (to the 
nearest whole number) in centimeters and kilograms instead of in inches 
and pounds: 

(1) 

STU
DENT 

a 
b 
c 
d 
e 

(2) 
HT. 
IN 

eMS. 

X 

183 
175 
168 
178 
173 

Mx= 175 ems. 
M y = 77 kgs. 

(3)' (4) (5) (6) (7) (8) (9) 
WT. 
IN 

KGS. 

Y 
x .'J_ (x y) x y xy -

aID a" a'aJ tT1I 

77 8 0 0 1043 .00 .00 
75 0 -2 0 .00 -.32 .00 
68 -7 -9 63 -1.25 -1.43 1.79 
82- 3 5 15 .53 .79 .42 
84 -2 7 -14 -.36 1.11 -040 

64 1.81 

a", = 5.61 ems. L:( __:_ . .!L) 181 
all = 6.30 kgs. correlation = aNa y = -s-- = .36 

The meim height of our group is now 175 ems. and the mean weight 
77 kgs.; the a'S are 5.61 ems. and 6.30 kgs., respectively. Note that the 
sum of the xy column, namely, 64, differs by 9 from the sum of the xy's in 
the example above, in which inches and pounds were the units of measure
ment. However, when deviations are expressed as a scores, the. sum of 

their products (.!_ . J_) divided by N equals .36 as before . 
. (1", a" 

The quotient 

.. The sum 01 the' deviations from the mean (raised to some power) and divided 
by N is called a "moment." When corresponding deviations in x and yare multiplied 

together, summed, and divided by N (to give '1:::) the term -"product-moment" is 

used. 
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is a measure of relationship which remains constant for a given set ot 
data, no matter in what units X and Yare expressed. When this ratio 

is written ~ it becomes the well-known expression for r, the product-
LVUa;U1I 

moment coefficient of correlation. I) 

2. The scatter diagram and the correlation table 

When N is small, the ratio method described in the preceding section 
may be employed for computing the coefficient of correlation between 
two sets of data. But when N is large, much time and labor will be saved 
by arranging the data in the form of a diagram or chart, and then calcu
lating deviations from assumed, instead of from actual, means. Let us con-

FIG. 36 

72-73 

~ 70-71 

!6~9 
11 66-67 
-5 
oS 
.E 64-65 

J 62-63 

60-61 

I", 
M", 

Weight in Pounds (X-Variable) 
100- 110- 120- 130- 140- 150- 160- 170-
109 119 129 139 149 159 169 179 I" 

1 1 
I 

1 3 3 " 2 3 16 
I /11 1/1 //II II III 

4 11 6 3 2 2 28 
1111 1HI:1/II.1 1HL1 III 1/ II 

33 2 9 11 8 2 1 
II 11/1.1111 flm.1HL1 fIm. III 1/ I 

26 1 ftm..5 7 fim.l~ 3 
I 1HLII //I 

13 1 2 7 1 2 
I 11 1m. II I 11 

1 1 1 3 
I I I 

3 10 28 87 22 9 5 6 120 

62.5 64.1 65.4 66.6 67.0 68.9 68.9 70.2 

A scattergram and correlation table showing the 
and weights of 120 students 

M...c 

174.6 

152.0 

142.4 

135.1 

128.0 

125.S~ 

117.8 

paired heights 

sider the diagram in Figure 36. This chart, called a "scatter diagram" ~or 
"scatter gram," represents the paired heights and weights of 120 college 
students. It is, in fact, a bivariate distribution, since it represents the 

I) The coefficient of correlation, r~ is often called the "Pearson r" after Professor 
Karl Pearson who developed the produot-moment method, following the earlier work 
of Galton and Bravais. See Walker, H. M., Studies in the History of Statistical Method 
(Baltimore: Williams and Wilkins Co., 1929), Chapter 5, pp. 96-111. 
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SUMMARY 

Weight Mean ht. for given Height 
Mean wt. for given 

wt. interval ht. interval 

170-179 70.2 72-73 174.5 .,; 
160-169 .,; 68.9 d 70-71 d 152.0 ;3 ..c ..... 
150-159 ....l 68.9 ...... 68-69 C'I 142.4 t-

140-149 0 67.0 t- 66-67 
.-I 135.1 <:0 

t- r..: Q) 10 

130-139 Q) 66.6 Q) 64-65 00 128.0 Q) c 
00 00 ~ 

00 

120-129 c 65.4 c 62-63 ~ 125.3 c 
~ ~ ~ 

1l0-1l9 ~ 64.1 ~ 60-61 117.8 ~ 

100-109 62.5 

joint distribution of two variables. The construction of a scattergram is 
relatively simple. Along the left-hand margin from bottom to top are laid 
off the class intervals of the height distribution, measurement expressed 
in inches; and along the top of the diagram from left to right are laid off 
the class intervals of the weight distribution, measurement expressed in 
pounds. Each of the 120 men is represented on the diagram with respect 
to height and weight. Suppose that a man weighs 150 pounds and is 
69 inches tall. His weight locates him in the sixth ,column from the left, 
and his height in the third row from the top. Accordingly, a "tally" is 
placed in the third cell of the sixth column. There are three tallies in all in 
this cell, that is, there are three men who weigh from 150 to 159 pounds, 
and are 68-69 inches tall. Each of the 120 men is represented by a tally 
in a cell or square of the table in accordance with the two characteristics, 
height and weight. Along the bottom of the diagram in the tl}) row is tabu
lated the number of men who fall in each weight interval; while along 
the right-hand margin in the til column is tabulated the number of men 
who fall in each height interval. The f 11 column and f I}) row must each 
total 120, the number' of men in all. After all of the tallies have been 
listed, the frequency ih each cell is added and entered on the diagram. 
The scattergram is then a correlation table. 

Several interesting facts may be gleaned from the correlation table as 
it stands. For example, all of the men of a given weight interval may be 
studied with respect tb the distribution of their heights. In the third col
umn from the left there are twenty-eight men all of whom weigh 120-129 
pounds. One of the twenty-eight is 70-71 inches tall; four are 68-69 inches 
tall; nine are 66-67 inches tall; seven are 64-65 inches tall; and seven are 
62-63 inches tall. In the same way, we may classify all of the men of a 
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given height interval with respect to weight distribution. Thus, in the 
row next to the bottom, there are thirteen men all of whom are 62-63 
inches tall. Of this group one weighs 100-109 pounds; two weigh 110-119 
pounds; seven weigh 120-129 pounds; one weighs 130-139 pounds; and 
two weigh 140-149 pounds. It is fairly clear that the "drift" of paired 
heights and weights is from the upper right-hand section of the diagram 
to the lower left-hand section. Even a superficial examination of the dia
gram reveals a fairly marked tendency for heavy, medium and light men 
to be tall, medium and short, respectively; and this general relationship 
holds in spite of the scatter of heights and weights within any given 
"array" (an array is the distribution of cases within a given column or 
row). Even before making any calculations, then, we should probably be 
willing to guess that the correlation between height and weight is positive 
and fairly high. 

Let us now go a step further and calculate the mean height of the three 
men who weigh 100-109 pounds, the men in column one. The mean 
height of this group (using the assumed mean method described in Chap
ter 2, p. 35) is 62.5 inches, and this figure has been written in at the 
bottom of the correlation table. In the same way, the mean heights of the 
'men who fall in each of the succeeding weight intervals have been writ
ten in at the bottom of the diagram. These data have been tabulated in a 

. somewhat more convenient form below the diagram. From this summary, 
it appears that an actual weight increase of approximately 70 pounds 
(104.s.-:174.5) corresponds to an increase in mean height of 7.7 inches; 
that is, the increase from the lightest to the heaviest man is parallel by 
an increase of approximately eight inches in height. It seems clear, there
fore, that the correlation between height and weight is positive. 

Let us now shift from l1eight to weight, and applying_~he -rpethod used 
above, find the change in mean weight which corresponds to the given 
change in height. 0 The mean weight of the three men in the bottom row 

:of the diagram is 117.8 pounds. The mean weight of the thirteen men in 
the next row from the bottom (who are 62-63 inches tall) is 125.3 pounds. 
The mean weights of the men who fall in the other rows have been writ
ten in their appropriate places in the Mwt column. In the summary of 
results we find that in this group of 120 men an increase of about 12 inches 
in height is accompanied by an increase of about 56.7 pounds in mean 
weight. ~hus it appears that the taller the man the heavier he tends to be~ 
and again the correlation between height and weight is seen to be 
positive. 

o This change corresponds to the second regression line in the correlation diagram 
(see p. 152). 
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3. The graphic representation of the correlation coefficient 

It is often helpful in understanding how the correlation coefficient 
measures relationship to see how a correlation of .00 or .50, say, looks 
graphically. Figure 37 (1) pictures a correlation of .50. The data in the 

(1) (2) 

X-Test Row 
0-9 10-1920-2930-3940-49 lu Mean. 

X-Test Row 
0-9 10-19 20-29 30-3940-49/" Meana 

40-49 1 i 1 4 84.6 049 1,)( 4 44.6 

10-19 

2 6) 6 .. vf" 
1 6 ht 6 1 

VC{ 
v v 

6 6 2 

16 29.6 
30-39 .. 

24 24.6 ~ 20-29 
>< 

16 19.6 
10-19 

lAs 
l;t 

l)?a' 

80-39 
16 34.li 

24 24.6 

1614.6 

0-9 
1 ;{ 1 4 14.5 0-9 lX .. 4Ji 

I", 4 16 24 16 4 64 Is 4 16 24 16 " 64 
Col. Means 14.6 19.6 24.6 29.6 34.6 Col. Means 4.6 14.6 24.6 34.6 U.6 

40-49 

30-39 .. 
~ 20-29 

::. 
10-19 

0-9 

r=.50 

(3) 
X-Test 

0-9 10-1920-2930-39 40-49 III~::". 

1 i 1 4 24.6 

1 4 f 4 1 16 24.6 

r-~- -~-H-t-~-t-~- 24 24.6 

1 4 

* 
4 1 16 24.6 

1 t 1 4 24.6 

Iz:" 16 24 16 "64 

40-49 

SI!-39 
... 
~ 20-29 
::. 

10-19 

0-9 

1'=1.00 

(4) 
X-Test 

0-9 10-19 20-2930-3340-49 III:::'" 
\ 

t-....2 '2 4 9.6 
...... 
~ 2 6 16 17.0 

6 ~ 6 24 24.5 

6 ~ ,2 16 82.0 
\ ...... 

2 2 " 39.5 
Is 4 16 24 16 4 64 

Col. Mean. 24.6 24.5 24.6 24.6 24.6 Col. Mean. 39.6 32.0 24.6 17.0 9.6 

r=.oo r=-.75 

FIG. 37 The graphic representation of the correlation coefficient 

table are artificial, and were selected to bring out the relationship in as 
unequivocal a fashion as possible. The scores laid off along the top of the 
correlation table from left to right will be referred to simply as the 
X-test "scores," and the scores laid off at the left of the table from bottom 
to top as the Y-test "scores." As was done in Figure 36, the mean of each 
Y row is entered on the chart, and the means of the X columns are entered 
at the bottom of the diagram. 

The means of each Y array, that is, the means of the "scores" falling in 
each X column, are indicated on the chart by small crosses. Through these 
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crosses a line, called a regression line, G has been drawn. This line repre
sents the change in the mean value of Y over the given range of X. In 
similar fashion, the means of each X array, i.e., the means of the scores in 
each Y row, are designated on the chart by small circles, through which 
another line has been drawn. This second regression line shows the 
change in the mean value of X over the given range of Y. These two lines 
together represent the linear or straight-line relationship between the vari
ables X and Y. 

The closeness of association or degree of correspondence between the 
X and Y tests is indicated by the relative positions of these two regression 
lines. When the correlation is positive and perfect, the two regression 
lines close up like a pair of scissors to form one line. Chart (2) in Fig
ure 37 shows how the two regression lines look when r = 1.00, and the 
correlation is perfect. Note that the entries in Chart (2) are concentrated 
along the diagonal from the upper right- to the lower left-hand section of 
the diagram. There is no "scatter" of scores in the successive columns or 
rows, all of the scores in a given array being concentrated within one cell. 
If Chart (2) represented a correlation table of height and weight, we 
should know that the tallest man was the heaviest, the next tallest man 
the next heaviest, and that throughout the group the correspondence of 
height and weight was perfect. . 

A very different picture from that of perfect correlation is presented 
in Chart (3) where the correlation is .00. Here the two regression lines, 
through the means of the columns and rows, have spread out until they 
are perpendicular to each other. There is no change in the mean Y score 
over the whole range of X, and no change ill the mean X score over the 
whole range of Y. This is analogous to the situation described on page 123, 
in which the mean tapping rate of a group of students was the same for 

t those with "high," "middle," and "low" AGCT scores. When the correla
tion is zero, there is no way of telling from a subject's performance in one 
test what his performance will be in the other test. The best one can 
do is to select the mean as the most probable value of the unknown 
score. 

Chart (4) in Figure 37 represents a correlation coefficient of -.75. 
Negative relationship is shown by the fact that the regression lines, 

. through the means of the columns and rows, run from the upper left- to 
the lower right-hand section of the diagram. The regression lines are 
closer together than in Chart (1) where the correlation is .50, but are still 
separated. If this chart represented a correlation table of height and 

"Regression lines have important properties; they will be denned and discussed 
more fully in Chapter 7. 
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weight, we should know that the tendency was strong for tall men to be 
light, and for short men to be heavy. 

The charts in Figure 37 represent the linear relationship between sets 
of artificial test scores. The data were selected so as to be symmetrical 
around the means of each column and row, and hence the regression lines 
go through all of the crosses and through all of the circles in the succes
sive columns and rows. It is rarely if ever true, however, that the regres
sion lines pass through all of the means of the columns and rows in a 
correlation table which represents actual test scores. Figure 38 which 

'l2-'1'8 

,"0-71 

8 68-69 

m .c:: .a 66-67 

.s 

60-61 

Weight in Pounds (X) 
100- 110- 120- 180- 140- 150- 160- 170-
~ m m m m rn ~ m .~ 

r-----~----~----~----.-----~~._----,___,h Menl 

1 174.6 

8 ISZ.0 

4 28 142.' 

2 33 135.1 

s 26 128.0 

2 13 125.8 

8 117.8 

fez 3 10 28 87 2Z 9 5 6 120 

Col. Means 6Z05 Gil 65.4 66.6 67.0 68.9 68.9 70.3 

FIG. 38 Graphic representation of the correlation between height and weight 
in a group of , 20 college students (Fig. 361 

reproduces the correlation table of heights and weights given on page 128, 
shows what happens wi~h real data. The mean heights of the men in the 
weight (X) columns are indicated by crosses, and the mean weights of 
the men in the height (Y) rows by circles, as in Figure 37. Note that the 
series of short lines joining the successive crosses or circles presents a 
decidedly jagged appearance. Two straight lines have been drawn in to 
describe the general trend of these irregular lines. These two lines go 
through, or as close as possible to, the crosses or the circles, more consid
eration being given to those pOints near the middle of the chart (because 
they are based upon more data) than to those at the extremes (which are 
based upon fe~ scores). Regression lines are called lines of "best fit" 
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because they satisfy certain mathematical criteria to be given later 
(p. 162). Such lines describe better:'than any other straight lines the 
"run" or "drift" of the crosses and circles across the chart. 

In Chapter 7 we shall develop equations for the "best fitting" lines and 
show how they may be drawn in to describe the trend of irregular points 
on a correlation table. For the present, the important fact to get clearly 
in mind is that when correlation is linear, the means of the columns and 
rows in a correlation table can be adequately described by two straight 
lines and the closer together these two lines, the higher the correlation. 

III. THE CALCULATION OF THE COEFFICIENT OF CORRELATION 
BY THE PRODUCT-MOMENT METHOD 

I. The calculation of , from a correlation table 

On page 128 it was stated that when N is large, time and computational 
labor are saved by calculating r from a correlation table. Figure 39 will 
serve as an illustration of the calculations required. This diagram gives 
the paired heights and weights of 120 college students, and is derived 
from the scattergram for the same data shown in Figure 36, The follow
ing outline of the steps to be fonowed in calculating r will be best under
stood if the student will constantly refer to Figure 39 as he reads through 
each step. 

Step 1 

Construct a scattergram for the two variables to be correlated, and 
from it draw up a correlation table as described on page 128. 

Step 2 

The distribution of heights for the 120 men falls in the f y column at 
the right of the diagram. Assume a mean for the height distribution, using 
the rules given in Chapter 2, page 35, and draw double lines to mark off 
the row in which the assumed mean (ht) falls. The mean for the height 
distribution has been taken at 66.5 in. (midpoint of interval 66-61) and 
the y's have been taken from this point. The prime (') of the x"s and y"s 
indicates that these deviations are taken from the assumed means of the 
X and Y distributions (see p. 37). Now fill in the fy' and fy'2 columns. 
From the first column ClI , the correction in units of interval, is obtained; 
and this correction together with the sum of the fy'2 will give the t:T of the 
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height distribution, (Ty. As sho}Vn by the calculations in Figure 39, the 
value of (Ty is 2.62 inches. 

The distribution of the weights of the 120 men is found in the f:D row at 
the bottom of the diagram. Assume a mean for the weight distribution, 
and draw double lines to designate the column under the assumed mean 
( wt). The mean for the weight distribution is taken at 134.5 pounds 
(midpoint of interval 130-139), and the x" s are taken from this pOint. 
Fill in the ix' and the fX'2 rows; from the first calculate c"" the correction 
in units of interval, and from the second calculate (T3J, the (T of the entire 
weight distribution. In Figure 39, the value of CT3J is found to be 15.55 
pounds. 

Step 3 

The calculations in Step 2 simply repeat the now familiar process of 
calculating (T by the Assumed Mean method. Our first new task is to fill 
in the lx' y' column at the right of the chart. Since the entries in this 
column may be either + or -, two columns are provided under lx'y'. 
Calculation of the entries in the lx'y' column may be illustrated by con~ 
sidering, first, the single entry in the only occupied cell in the topmost 
lOW. The deviation of this cell from the AM of the weight distribution, 
that is, its x', is four intervals, and its deviation from the AM of the height 
distribution, that is, its y', is three intervals. Hence, the product of the 
deviation~ of this cell from the two AM's is 4 X 3 or 12; and a small figure 
( 12) is placed in the upper right-hand corner of the cell." The "product 
deviation" of the one entry in this cell is 1 ( 4 X 3) or 12 also, and hence 
a figure 12 is placed in the lower left-hand corner of the cell. This figure 
shows the product of the deviations of this single entry from the AM's of 
the two distributions. Since there are-no other entries in the cells of this 
row, 12 is placed at once under the + sign in the lx'y' column. 

Consider now the next row from the top, taking the cells in order from 
right to left. The cell immediately below the one for which we have just 
found the product deviation also deviates four intervals from the AM 
( wt) (its x' is 4), but its deviation from the AM (ht) is only two intervals 
(its y' is 2). The product deviation of this cell, therefore, is 4 X 2 or 8, 
~s shown by the small figure (8) in the upper right-hand comer of the 
cell. There are three entries in this cell, and since each has a product devi-

"We may consider the coordinates of this cell to be x' = 4, y' = 3. The x' is 
obtained by counting over four intervals from the vertical column containing the AM 
( wt ), and the y' by counting up three intervals from the horizontal row containing 
the AM (lit). The unit of measurement is the class interval. 
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ation of 8, the final entry in the lower left-hand corner of the cell is 
3( 4 X 2.) or 24. The product deviation of the second cell in this row is 6 
(its x' is 3 and its y' is 2) and since there are two entries in the cell, the 
final entry is 2 (3 X 2) or 12. Each of the four entries in the third cell over 
has a product deviation of 4 (since x' = 2 and y' = 2) and the final entry 
is 16. In the fourth cell, each of the three entries has a product deviation 
of 2 (x' = 1 and y' = 2) and the cell entry is 6. The entry in the fifth 
cell over, the cel1 in the AM (wt) column, is 0, since x' is 0, and accord
ingly 3(2 X 0) must be O. Note carefully _,!he entry (-2) in the last cell of 
the row. Since the deviations of this cel1 are x' = -1, and y' = 2, the 
product 1( -1 X 2) = -2, and the final entry is negative. Now we may 
total up the plus and minus entries in this row and enter the results, 
58 and -2, in the lx'y' column under the appropriate signs. 

The final entries in the cells for the other rows of the table and the 
sums of the product deviations of each row are obtained as illustrated for 
the two rows above. The column and row selected Jor the two AM's 
divide the correlation table into 4 quadrants a~ shown below: 

y 
2 1 

-+ ++ 
x 

+-
3 4 

The student should bear in mind in calculating x'y"s that the product 
deviations of all entries in the cells in the first and third quadrants of the 
table are positive, while the product deviations of all entries in the second 
and fourth quadrants are negative (p. 9). It should be remembered, 
too, that all entries either in the column headed by the AMx or the row 
headed by the AMy have zero product deviations, since in the one case 
the x' and in the other the y' equals zero. 

All entries in a given row have the same y', so that the arithmetic of 
calculating x'y"s may often be considerably reduced if each entry in a 
row cell is first multiplied by its x', and the sum of these deviations (~x') 
multiplied once for all by the common y', viz., the y' of the row. The last 
two columns lx' and lx'y' contain the entries for the rows. To illustrate 
the method of calculation, in the second row from the bottom, taking the 
cells in order from right to left, and multiplying the entry in each cell by 
its x', we have (2 XI) + (1 XO) + (7 X-I) + (2 X -2) + (1 X -3) 
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or -12. If we multiply this "deviation sum" by the y' of the whole row 
(i.e., by -2) the result is 24 which is the final entry in the lry' column. 
Note that this entry checks the 28 and -4 entered separately in the 
lry' column by the longer method. This shorter method is often em
ployed in printed correlation charts and is recommended for use as soon 
as the student understands fully how the cell entries are obtained. 

Step 4 (Checks) 

The lx'y' may be checked by computing the product deviations and 
summing for columns instead of rows. The two I;OWS at the bottom of the 
diagram, ly' and lx'y', show how this is done. We may illustrate with the 
first column on the left, taking the cells from top to bottom. Multiplying 
the entry in each cell by its appropriate y', we have (1 X -1) + 
(1 X -2) + (1 X -3) or -6. When this entry in the ly' row is multi
plied by the common x' of the column (i.e., by -3) the final entry in 
the lry' row is 18. The sum of the x'y' computed from the rows should 
check the sum of the x'y' computed from the columns. 

Two other useful checks are shown in Figure 39. The fy' will equal the 
ly' and the fx' will equal the lx' if no error has been made. The fy',and 
the jx' are the same as the ly' and lx'; although these columns and rows 
are designated differently, they denote in each case the sum of deviations 
around their AM. 

Step 5 

When all of the entries in the lx'y' column have been made, and the 
column totaled, the coefficient of correlation may be calculated by the 
formula 

/ 
r=--,----,--,

UxU y 

(coefficient of correlation when deviations are taken from 
the assumed means of the two distributions) .. 

(26) 

Substituting 146 for lx'y'; .02 for CII; .18 for Cx ; 1.31 for (T'II; 1.55 for (T'",; anq 
120 for N, r is f(lund to be .60 (see Fig. 39). ' 

It is important to remember, that c"" CII, (T'"" and (T'y are all in units of 
.. This formula for r differs slightly from the ratio formula developed on page 127. 

The fact that deviations are taken from assumed rather. than from actual means 
makes it necessary to correct 'I.x'y' by subtracting the product of the two corrections 
cz and c •. 
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class interval in formula (26). This is desirable because all product devi
ations (x'y"s) are in interval units, and it is simpler therefore to keep all 
of the terms in the formula in interval units. Leaving the corrections and 
the two u's in units of class interval (u"s) facilitates computation, and 
does not change the result (i.e., the value of the coefficient of correlation). 

2. The calculation of r from ungrouped data 

(1) THE FORMULA FOR r WHEN DEVIATIONS ARE TAKEN FROM THE MEANS 

OF THE TWO DISTRmUTIONS X AND Y 
In formula (26) x' and y' deviations are taken from assumed means; 

lx'y' 
and hence it is necessary to correct N by the product of the two cor-

rections, CIG and CII (p. 138). When deviations have been taken from the 
actual means of the two distributions, instead of from assumed means, no 
correction is needed, as both Cx and ell are zero. Under these conditions, 
formula (26) becomes ~. 

(coefficient of correlation when deviations are taken from 
the means of the two distributi0!1s) 

(27) 

which is the ratio for measuring correlation developed on page 127. If we 
liX2 /ly2 

write '\IN for 0'1l! and '\IN for 0'11' the N's cancel and formula (27) 

becomes 

r = lxy 
VlX2 X ly2 

(28) 

(coefficient Qf correlation when deviations are taken from 
the means of the two distributions,) 

in which x and yare deviations from the actual means as in (27) and 
lx2 and ly2 are the slims of the squared deviations in x and y taken from 
the two means. 

When N is fairly large, so that the data can be grouped into a correla
tion table, formula (26) is always used in preference to formulas (27) or 
(28) as it entails much less calculation. Formulas (27) and (28) may be 
used to good advantage, however, in finding the correlation between 
short, un grouped series (say, twenty-five cases or so). It is not necessary 
to tabulate the scores into a frequency distribution. An illustration of the 
use of formula (28) is given in Table 18. The problem is to .find the 
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correlation between the scores made by twelve adults on two tests of 
controlled association. 

The steps in computing r may be outlined as follows: 

Step I 

Find the mean of Test 1 (X) and the mean of Test 2 (Y). The means 
in Table 18 are 62.5 and 30.4, respectively. 

Step 2 

Find the deviation of each score on Test 1 from its mean, 62.5, and 
enter it in column x. Next find the deviation of each score in Test 2 from 
its mean, 30.4, and enter it in column y. 

Step 3 

Square all of the x's and all of the y's and enter these squares in col
umns x2 and y2, respectively. Total these columns to obtain lr and ly2. 

TABLE 18 To illustrate the calculation of r from ungrouped scores when 
deviations are taken from the means of the series 

TEST 1 TEST 2 
Subject X Y x y x2 y2 xy 

A 50 22 -12.5 -8.4 156.25 70.56 105.00 
B 54 25 -8.5 -5.4 72.25 29.16 45.90 
C 56 34 -6.5 3.6 42.25. 12.96 -23.40 
D 59 28 -3.5 -,2.4 12.25 5.76 8.40 
E 60 26 -2.5 -4.4 _ 6.25 19.36 11.00 
F 62 30 -.5 -.4 .25 .16 .20 
G 61 32· -1.5 1.6 2.25 2.56 -2.40 
H 65 30 2.5 -.4 6.25 .16 -1.00 
I 67 28 4.5 -2.4 20.25 5.76 -10.80 
J 71 34 8.5 3.6 72.25 12.96 30.60 
K 71 36 8.5 5.6 72.25 31.36 47.60 
L 74 40 U.5 9.6 132.25 92.16 UO.40 

750 365 595.00 282.92 321.50 
(tx2) (ty2) (txy) 

Mx =62.5 My = 30.4 

r= 
txy_ 321.50 

ytx2 X ty2 :: yl595 X 282.92 = .78 (28) 
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Step 4 

Multiply the x's and y's in the same rows, and enter these products 
(with due regard for sign).in the xy column. Total the xy column, taking 
account of sign, to get lxy. 

Step 5 

Substitute for lxy, 321.50; for lx2, 595; and for ly2, 282.92 in formula 
(.28), as shown in Table 18, and solve for r. 

Formula (28) is useful in calculating r directly from two ungrouped 
series of scores, but it has the same disadvantage as the '10ng method" 
of calculating means and a's described in Chapters 2 and 3. The devia
tions x and y when taken from actual means are usually decimals and 

TABLE 19 To illustrate the calculation of r from ungrouped scores when devi
ations are taken from the assumed means of the series 

TEST 1 TEST 2 
Subject X Y x' y' x'2 y'2 x'y' 

A 50 22 -10 -8 100 64 80 
B 54 25 -6 -5 36 25 30 
C 56 34 -4 4 1,6 16 -16 
D 59 28 -1 -2 1 4 2 
E 60 26 0 -4 0 16 0 
F 62 30 2 0 4 0 0 
G 61 32 1 2 1 4 2 
H 65 30 5 0 25 0 0 
I 67 28 7 -2 49 4 -14 
J 71 34 11 4 121 16 44 
K 71 36 11 6 121 36 66 
L 74 40 14 10 196 100 140 

750 365 670 285 334 
(!x'2) (!y'2) (!x'y') 

AMx= 60.0 AMy = 30.0 
Mx= 62.5 My = 30.4 

e.,= 2.5 ell = .4 3
1
3
2
4 - 1.00 

e2 - 6.25 e2 - .16 .,- 1/-
r= (26) 7.04 X 4.86 

~670 
U., = 12 - 6.25 ~285 

u1/ = 12 - .16 

= 7.04 =4.86 r= .78 
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the multiplication and squaring of these values is often a tedious task. For 
this reason-even when working with short ungrouped series-it is often 
easier to assume means, calculate deviations from these AM's, and apply 
formula (26). The procedure is illustrated in Table 19 with the same data 
given in Table 18. Note that the two means, Mx and My, are first calcu
lated. The corrections, Gz and Gv, are found by subtracting AMx from Mx 
and AMy from My (p. 38). Since deviations are taken from assumed 
means, fractions are avoided; and the calculations of ~x'2, ~y'2, ~x'y', 

are readily made. Substitution in formula (26) then gives r. 

(2) THE CALCULATION OF r FROM RAW SCORES WHEN DEVIATIONS ARE 

TAKEN FROM ZERO 

The calculation of r may often be carried out most readily-especially 
when a calculating machine is available-by means of the following 
formula which is based upon "raw" or obtained scores: 

l:XY - NMxMy 
r == -;;::;:;:;;;;;::=;;;;:;;::::::;:;;~=::;:;;::;;;:~ 

y['iX2 - NM2.rl[!.y2 - NM2y] 

(coefficient of correlation calculated from raw OT obtained scores) 

(29) 

In this formula, X and Yare obtained scores, and Mx and My are the 
means of the X and Y series, respectively. ~X2 and ~y2 are the sums of 
the squared X and Y values, and N is the number of cases. 
I Formula (29) is derived directly from formula (26) by assuming the 
means of the X and Y tests to be zero. If AMx and AMy are zero, each 
X and Y score is a deviation from its AM as it stands, and hence we work 
with the scores themselves. Since, the corr~ction, c, always equals 
M - AM, it follows that when the AM equals 0, G., = Mx, CII = My and 
C.,C1J = MxMy. Furthermore, when G",,;; Mx, and C1J = My and the "scores" 
ar,e "deviations," the formula 

cr., == ~'i':2 _ c2 IlJ X interval 

( see p. 52) becomes 

. ~~p and a1J for the same reason equals N'" M2y. If we substitute these 

equivalents for G",C1J, UIl:, and all in formula (26), the formula for r in terms 
of raw scores given in (29) is obtained. 
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An alternate form of (29) is often more useful in practice. This is 

N!XY -tX X tY 
r = -V7T[N~!:;=;X~2=_=r=( t;T,X"") 2iP.i][7-N;;;;nm2r_===r;;( !~Y~) 2ii'i} 

(30) 

(coefficient of correlation calculated from raw DT obtained scores) 

This formula is obtained from (29) by substituting ~ for M x , and .~ 
for My in numerator and denominator, and canceling the N's. 

The calculation of r from original scores is shown in Table 20. The data 
are again the two sets of twelve scores obtained on the controlled associ
ation tests, the correlation for which was found to be .78 in Table 18. 
This short example is for the purpose of illustrating the arithmetic and 
must not be taken as a recommendation that formula (29) be used only 
with short series. As a matter of fact, formula (29) or (30) is most useful", 
perhaps, with long series, especially if one is working with a calculating 
machine. 

TABLE 20 To illustrate the calculation of r from ungrouped data when devi
atio~s are original scores (AM's = 0) 

TEST 1 TEST 2 
Subject X Y X2 y2 XY 

A 50 22 2500 484 1100 
B 54 25 2916 625 1350 
C 56 34 3136 1156 1904 
D 59 28 3481 784 1652 
E 60 26 3600 676 1560 
F 62 30 3844 900 1860 
G 61 32 3721 1024 1952 
H 65 30 4225 900 1950 
I 67 28 4489 784 1876 
J 71 34 5041 1156 2414 
K 71 36 5041 1296 2556 
L 74 40 5476 1600 2960 

750 365 47470 11385 23134 

Mx= 62.50 
(means to two decimals) My = 30.42 

23134 _ 12 X 62.50 X 30.42 
(29) r= 

yI[47470 ~ 12 X (62.50)2][11385 _ 12 X (30.42)21 
r= .78 
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The computation by formula (80) is straightforward and the method 
easy to follow, but the calculations become tedious if the scores are 
expressed in more than two digits. When using formula (30), therefore, 
it will often greatly lessen the arithmetical work, if we first "reduce" the 
original scores by subtracting a constant quantity from each of the origi
nal X and Y scores. In Table 21, the same two series of twelve scores have 
been reduced by subtracting 65 from each of the X scores, and 25 from 

TABLE 21 To illustrate the calculation of , from ungrouped data when devi. 
ations are original scores (AM's = 0) 

(Scores are "reduced" by the subtraction of 65 from each X, and 25 
from each Y to give X' and Y'.) 

TEST TEST 

1 2 
Sub- X Y X' Y' X'2 yl2 X'Y' ject ... 

A 50 22 -15 -3 225 9 45 
B 54 25 -11 0 121 0 0 
C 56 34 -9 9 81 81 -81 
D 59 28 -6 3 36 9 -18 
E 60 26 -5 1 25 1 -5 
F 62 30 -3 5 9 25 -15 
G 61 32 -4 7 16 49 -28 
H 65 30 0 5 0 25 0 
I 67 28 2 3 4 9 6 

J 71 34 6 9 36 81 54· 
K 71 36 6 11 36 121 66 
L 74 40 9 15 81 225 135 

750 365 -30(~X') 65(-~Y') 670(~X'2) 635(~Y'2) 159(1X'Y') 

Mx = !X' + 65 !y' 
N MY =N+ 25 

= _ 30 +65 65 
=-+25 

12 12 
=62.5 =30.4 

T= 
(12 X 159) - (-30 X 65) 

y[12 X 670 - (-30)2](12 X 635 - (65)2] 
(30) 

3858 
- 4923 
=.78 
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each of the Y scores. The reduced scores, entered in the table under X' 
and Y', are first squared to give lX'2 and lY'2, and then multiplied by rows 
to give lX'Y'. Substitution of these values in formula (SO) gives the coeffi
cient of correlation r. If the means of the two series are wanted, these may 

readily be found by adding to lX' and lY' the amounts by which the X 
N N 

and Y scores were reduced (see computations in Table 21). 
The method of computing r by first reducing the scores is usualiy 

superior to the method of applying formula (29) or (SO) directly to the 
raw scores. For one thing, we deal with smaller whole numbers, and much 
of the arithmetic can be done mentally. Again, when raw scores have more 
than two digits, they are cumbersome to square and multiply unless re
duced. Note that instead of 65 and 25 other constants might have been 
used to reduce the X and Y scores. If the smallest X and Y scores had been 
subtracted, namely, 50 and 22, all of the X' and Y' would, of course, have 
been positive. This is an advantage in machine calculation but these re
duced scores would have been somewhat larger numerically than are the 
reduced scores in Table 21. In general, the best plan in reducing scores is 
to subtract constants which are close to the means. The reduced scores are 
then both plus and minus, but are numerically about as small as we can 
make them. 

(S) TIlE CALCULATION OF r BY TIIE DIFFERENCE FORMULA 

It is apparent from the preceding sections that the product-moment 
formula for r may be written in several ways, depending upon whether 
deviations are taken from actual or assumed means and upon whether 
raw scores or deviations are employed. The present section contributes 
still another formula for calculating r-namely, the difference formula. 
This formula will co~plete our list of expressions for r. The student who 
understands the meaning and use of the correlation formulas given so far 
will have no difficulty with other variations should he encounter them. 

The formul!} for r by the difference method is 

r 
__ !X2 + !y2 - !d2 

2Y!X2 X !y2 

(coefficient of correlation by difference formula, deviations 
from the means of the distributions) 

in which ld2 = l(x - y)2. 

(SI) 

The principal advantage of the difference formula is that no cross 
products (xy's) need be computed. For this reason, this formula is 
employed in several of the printed correlation charts. Formula (S1) is 
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illustrated in Table 22 with the same data used in Table 19 and elsewhere 
in this chapter. Note that the x, y, X2, and y2 columns repeat Table 19. 
The d or (x - y) column is found by subtracting algebraically each 
y deviation from its corresponding x deviation. These differences are then 
squared and entered in the d2 or (x - y)2 column. Substitution of l.x~, 
ly2, and ld2 in formula (31) gives r == .78. . 

TABLE 22 To illustrate the calculation of r from ungroup.ed data by the 
difference formula, deviations from the means 

TEST 1 TEST 2 d d2 

Subject X Y x Y (x - y) x2 y2 (x - y)2 

A 50 22 -12.5 -8.4 -4.1 156.25 70.56 16.81 
B 54 25 -8.5 -5.4 -3.1 72.25 29.16 9.61 
C 56 34 -6.5 3.6 -10.1 42.25 12.96 102.01 
D 59 28 -'3.5 -204 -1.1 12.25 5.76 1.21 
E 60 26 -2.5 -4.4 1.9 6.25 19.36 3.61 
F 62 30 -.5 -.4 -.1 .25 .16 .01 
G 61 32 -1.5 1.6 -3.1 2.25 2.56 9.61 
H 65 30 2.5 -A 2.9 6.25 .16 8041 
I 67 28 4.5 -2.4 6.9 20.25 5.76 47.61 

J 71 34 8.5 3.6 4.9 72.25 12.96 24.01 
K 71 36 8.5 5.6 2.9 72.25 31.36 8.41 
L 74 40 11.5 9.6 1.9 132.25 92.16 3.61 

595.00 282.92 234.92 
Mx = 62.5 

595.00 + 282.92 - 234.92 
(31) r= 

My = 3004 
2y159!5 X 282.92 

=.78 

/ 
Another variation of the difference formula is often useful in machine 

calculation. This version makes use of raw or obtained scores: 

r == N[!X2 + !Y2 - !(X - y)2] - 2(!X) X (!Y) (32) 
2y[NIX2 - (IX)2][NIy2 - (IY)2] 

(coefficient of correlation by difference formula, calculation 
from raw or obtained scores) 

in which l.(X - y)2 is the sum of the squared differences between the 
two sets of scores. 
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PROBLEMS 

1. Find the correlation between the two s~ts of scores given below, using the 
ratio method (p. 125). 

Subjects X Y 
a 15 40 
b 18 42 
c 22 50 
d 17 45 
e 19 43 
f 20 46 
g 16 41 
h 21 41 

2. The scores given below were achieved upon a group intelligence test and 
typewriting tests by 100 students in a typewriting class. The typewriting 
scores are in number of words written per minute, with certain penalties. 
Find the coefficient of correlation. Use an interval of 5 units for Y and an 
interval of 10 units for X. 

Typing (Y) Test (X) Typing (Y) Test (X) Typing (Y) Test (X) 
46 152 26 164 40 120 
31 96 33 127 36 140 
46 171 44 144 43 141 
40 172 35 160 48 143 
42 138 49 106 45 138 
41 154 40 95 .58 149 
39 127 57 146 23 142 
46 156 23 175 45 166 
34 156 51 126 44 138 
48 1S3 35 120 47 150 
48 173 41 154 29 148 
38 134 28 146 46 166 
26 179 32 154 46 146 
37 159 50 159 39 167 
34 167 29 175 49 139 
51 136 41 164 34 183 
47 153 32 III 41 150 
39 145 49 164 49 179 
32 134 58 119 31 138 
37 184 35 160 47 136 
26 154 48 149 40 172 
40 90 40 149 30 145 
53 143 43 143 40 109 
46 173 38 159 38 158 
39 168 37 157 29 115 
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Typing (Y) Test (X) Typing (Y) Test (X) Typing (Y) Test (X) 

52 187 41 153 43 93 
47 166 51 149 55 163 
31 172 40 163 37 147 
33 189 35 175 52 169 
22 147 31 133 38 75 
46 150 23 178 39 152 
44 150 37 168 32. 159 
37 143 46 156 42 150 
31 133 

3. In the correlation table given below compute the coefficient of correlation. 

Boys: AGES 4.5 TO 5.5 YEARS 

Weight in Pounds (X) 

24-28 29-33 34-38 39-43 44-48 49-58 Totals 

- 45-47 I 2 3 
~ 

<fl 42-44 4 35 21 5 65 
<ll 

..t:: 
39-41 5 87 90 7 I 190 (.) 

i:l ...... 
.S 36-38 1 18 72 8 99 
.:d 33-35 5 15 5 25 
.';;P 
<ll 

30-32 2 2 lI: 

Totals 8 38 169 133 30 6 384 

4. In the following correlation table compute the coefficient of correlation. 

Group Test I.Q:s 

School 84 and 85- 90- 95- 100- 105- 1l0- 115- 120- 125 Totals Marks lower 89 94 99 104 109 114 119 124 over 
- - - ----------

90 andover 3 3 15 12 9 9 5 56 
- - - ---- r-----

85-89 8 17 15 24 13 6 6 89 
- - - ----------

.80-84 4 6 22 21 20 10 5 I 89 - - - ----------
75-79 7 25 33 23 10 7 4 109 - - - ----------
70-74 4 10 18 14 22 12 1 1 82 

- - - ----------
65-69" I 3 3 12 7 8 8 1 43 

- - - -------- -
60-64 2 5 3 1 1 12 

- - - ---------
Totals 1 7 26 77 99 105 87 41 25 12 480 
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5. Compute the coefficient of correlation in the table below: 

35-37 

32-34 
,...... 
C 29-31 
bO 
.S 
"0 26-28 "" ClJ 
tJ:: 

23-25 

20-22 

Totals 

12-
13 

---

---

---

---
2 

---
3 

5 

14-
15 

---

--
I 

---
4 

---
1 

--
2 

8 

Arithmetic (X) 

16-
17 

--

2 
--

4 

--
6 

1 

13 

18-
19 

---

6 
---

6 
---

5 

1 

18 

20-
21 

1 

6 

8 

11 
---

4 

SO 

22-
23 

3 

1 

4 

---
1 

9 

24-
25 

1 

1 

-

---

2 

Totals 

2 

9 
--

18 
---

30 
---

19 
---

7 

85 
--

6. Compute the coefficient of correlation between the Algebra Test scores and 
I.Q.'s shown in the table below. 

Algebra Test Scores 

l30~ 35- 40- 45- 50- 55- 60- 65- Totals 34 39 44 49 54 59 64 69 
------------

130- 1 1 1 3 139 
----------

120- 1 1 2 1 5 129 
------------

110- 1 2 5 6 11 6 3 2 36 ,'" 119 cY ------------,_; 
100-
109 3 7 9 17 13 5 1 1 56 

------------
90- 4 10 16 12 5 1 48 99 _---------
80- 4 9 8 2 2 25 89 

------------
Totals 12 28 39 38 32 15 5 4 173 
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7. C<;lmpute the correlation between the two sets of scores given below 
(a) when deviations are taken from the means of the two series I use 

formula (28)]; 
(b) when the means are taken at zero. First reduce the scores by subtract

ing 150 from each of the scores in Test 1, and 40 from each of the 
scores in Test 2. 

Test 1 Test 2 Test 1 Test 2 

150 60 139 41 
126 40 155 43 
135 45 147 37 
176 50 162 58 
138 56 156 48 
142 43 146 39 
151 57 133 31 
163 38 168 46 
137 41 153 52 
178 55 150 57 

8. Find the correlation between the two sets of memory-span scores given 
below (the first series is arranged in order of size) (a) when deviations are 
taken from assumed means [formula (26)], (b) by the difference method 
given on page 145. 

1. r = .65 
2. r= -.05 
3. r = .71 
4. 1'=.46 

Test 1 
(digit span) 

15 
14 
13 
12 
11 
11 
11 
10 
10 
10 

9 
9 
8 
7 
7 

Test 2 
(letter span) 

ANSWERS 

5. 1'= .54 
6. 1'= .52 
7. r = .41 
8. 1'= .78 

12 
14 
10. 
8 

12 
9 

12. 
8 

10 
9 
8 
7 
7 
8 
6 



CHAPTER 7 

REGRESSION AND PREDICTION 

I. THE REGRESSION EQUATIONS 

I. Problem of predicting one variable from another 

Suppose that in a group of 120 college students (p. 128), we wish to 
estimate a certain man's height knowing his weight to be 153 pounds. 
The best possible "guess" that we can make of this man's height is the 
mean height of all of the men who fall in the 150;-159 weight interval. 
In Figure 40 the mean height of the nine men i'n this column is 68.9 
inches, which is, therefore, the most likely height of a man who weighs 
153 pounds. In the same way, the most probable height of a m~n who 
weighs 136 pounds is 66.6 inches, the mean height of the thirty-seven men 
who fall in weight column 130-139 pounds. And, in general, the most 
probable height of any man in the group is the mean of the heights of 
all of the men who weigh the same (or approximately the same) as he, 
Le., who fall within the same weight column. 

Turning to weight, we can make the same kind of estimates. Thus, the 
best possible "guess" that we can make of a man's weight knowing his 
height to be 66.5 inches is 135.1 pounds, viz., the mean weight of the 
thirty-three men who fall in the height interval 66-67 inches. Again, in 
general, the most probable weight of any man in the group is the mean 
weight of all of the men who are of the same (or approximately the same) 
height. 

Our illustration shows that from the scatter diagram alone it is possible 
to "predict" one variable from another. But the prediction is rough, and is 
obviously subject to a large "error of estimate." 0 

OSee p. 160. 

151 
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Weight in Pounds (X) 
100- 110- 120- 180- 140- 160- 100.. 170-
109 119 129 139 149 159 169 

179 I" , / --1 , ,........ 
70-71 1 

, 3, SJ ~ 2 ~-' 16 

I fs ?s-;::: ~x/ , 11' , 2 2 Z8 

--- -2-- 1--9- ~ ~ -2- -1-- -- 33 

I -/( V;t /101 3 
1 

26 

'ix/ A 
, 

2 I, 2 , 13 

1 1 11 
I 

80-61 

/z 3 10 Z8 37 22 II 5 6 1210 

FIG. 40 Illustrating positions of regression lines and calculation of the regres
sion equations (see Fig. 38) 

r= .60 
Mx = 136.3 pounds 
My = 66.5 inches 

For plotting on the chart, regression 
equations are written with U ID and U II 

in class-interval units, viz.-
y = .51x lsee 
x = .71y Jp. 157 

CALCULATION OF REGRESSION EQUATIONS 

I. Deviation Form 

(1) 
2.62 

Tj = .60 X 15,55 x = .10x 

(2) 
15.55 

x = .60 X 2.62 Y = 3.56y 

II. Score Form 

(33) 

(34) 

(1) Y - 66.5 = .10(X - 136.3) or Y = .lOX + 52.9 (35) 
(2) X - 136.3 = 3.56(Y - 66.5) or X = 3.56Y - 100.4 (36) 

CALCULATION OF STANDARD ERRORS OF ESTIMATE 

u(ed Y) = 2.62Y1 - .602 = 2.10 inches 
U(ed X) = 15.55Y1 - .602 = 12.43 pounds 

(37)' 
(38) 

Moreover, while we have made use of the fact that the means are the 
most probable points in our armys (columns or rows), we have made no 
use of our knowledge concerning the over-all relationship between the 
two variables. The two regression lines in Figure 40 are determined by 
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the correlation between height and weight and their degree of separation 
indicates the size of the correlation coefficient" (p. 131). Consequently, 
these lines describe more regularly, and in a more generalized fashion 
than do the series of short straight lines joining the means, the relation
ship between height and weight over the whole range (see also p. 129). 
A knowledge of the equations of the regression lines is necessary if we are 
to make a prediction based upon all of our data. Given the weight (X) 
of a man comparable to those in our group, for example, if we substitute 
for X in the equation connecting Y and X we are able to predict this man's 
height more accurately than if we simply took the mean of his height 
array. The task of the next section will be to develop equations for the 
two regression lines by means of which predictions from X to Y or from 
Y to X can be made. 

2. The regression equations in deviation form 

(1) WHAT THE REGRESSION EQUATIONS DO 

The equations of the two regression lines in a correlation table repre
sent the straight lines which "best fit" the means of the successive columns 
and rows in the table. Using as a definition of "best fit" the criterion of 
"least squares," t Pearson worked out the equation of the line which goes 
through, or as close as possible to, more of t~e column means than any 
other straight line; and the equation of the line which goes through, or as 
close as possible to, more of the row means than any other straight line. 
These two lines are "best fitting" in a mathematical sense, the one to the 
observations of the columns and the other to the observations of the rows. 

The equation of the first regression line, the line drawn to represent 
the trend of the crosses in Figure 40, is as follows: 

U y=r.:..JL X x (33) 
Ux 

(regression equation of y on x, deviations taken from 
the means of Y and X) 

.. The term "regression" was first used by Francis Galton with reference to the 
inheritance of stature. Galton found that children of tall parents tend to be less tall, 
and children of short parents less short, than their parents. In other words, the heights 
of the offspring tend to "move back" toward the mean height of the general popula
tion. This tendency toward maintaining the "mean height" Galton called the principle 
of regression, and the line <1escribing the relationship of height in parent and offspring 
was called a "regression line." The term is still employed, although its original mean
ing of "stepping back" to some stationary average is not necessarily implied (see 
p.174). • 

t For an elementary mathematical treatment of the method of least squares as 
applied to the problem of fitting regression lines, see Walker, H. M., Elementary Sta
tistical Method (New York: Henry Holt and Co., 1943), pp. 308-310. 
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The factor r fY1I is called the regression coefficient, and is often replaced 
fYiC 

in (33) by the term b1liC or b12 so that formula (33) may be written 
if = byx X x, or y = b12 X x. The bar over the y (y) means that our esti
mate is an average value. 

If we substitute in formula (33) the values of r, O'y, and 0'"" obtained 
from Figure 40, we have 

2.62 
1] = .60 X 15.55 x, or 

1]= .10x 

This equation gives the relationship of deviations from mean height to 
deviations from mean weight. When x = +1.00, y= ±.10; and a devia
tion of 1 pound from the mean of the X's (weight) is accompanied by a 
deviation of .10 inch from the mean of the y's (height). The man who 
stands 1 pound above the mean weight of the group, therefore, is most 
probably .10 inch above the mean height. Since this man's weight is 137.3 
pounds ( 136.3 + 1.00), ~is height is most probably 66.6 inches 
(66.5 + .10). Again, the man who weighs 120 pounds, i.e., is 16.3 pounds 
below the mean of the group, is most probably 64.9 inches tall-or about 
1.6 inches below the mean height of the group. To get this last value, sub
stitute x = -16.3 in the equation above to get y = -1.63, and refer this 
value to its means. The regression equation is a generalized expression of 
relatioQship. It tells us that the most probable deviation of an individual 
in our group from the Mht is just .10 of his deviation from the Mwt• 

The equation TJ = r fYy X x gives the relationship between Y and X in 
fY", 

deviation form. This designation is appropriate since the ~o variables 
are expressed as deviations from their respective means (i.e., as x and y); 
hence, for a given deviation from Mx the equation gives the most prob

lable accompanying deviation from My. 
The equation of the second regression line, the line drawn through the 

circles (i.e., the means) of the rows in Figure 40, is 
CT x=r 2 X y (34) 
CTy 

(regression equation of x on y, deviations taken from 
the means of X and Y) 

As in the first regression equation, the regression coefficient r CT", is often 
fY1I 

replaced by the expression b"'lJ or b21 and formula (34) written 
x= b"," X y orY= b21 X y. 
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If we substitute for r, 0'"" and O'y, in formula (34), we have 

15.55 
x= .60 x 2.62 y or 

x = 3.56y 

from which it is evident that a deviation of 1 inch from the M"t, from 
66.5 inches, is accompanied by a deviation of 3.56 pounds from the Mwt, 

or from 136.3 pounds. Expressed generally, the most probable deviation 
of any man from the mean weight is just 3.56 times his deviation from 
the mean height. Accordingly, a man 67 inches tall or .5 inch above the 
mean height (66.5 +.5 = 67) most probably weighs 138.1 pounds, or is 
1.8 pounds above the mean weight (136.3 + 1.8). (Substitute y = .5 in 
the equation and x = 1.8.) 

Equation x = r!:.:. X y gives the relationship between X and Y in devia-
O'y 

tion form. That is to say, it gives the most probable deviation of an 
X measure from Mx corresponding to a known deviation in the Y measure 
from My. 

(2) WHY THERE ARE TWO REGRESSION LINES 

Although both regression equations involve x and y, the two equations 
cannot be used interchangeably-neither can be employed to predict both 
x and y. This is an important fact which the student must bear in mind 

constantly. The first regression equation y= r O'y X x can be used only 
0'", 

when y is to Qe predicted from a given x (when y is the "dependent" 

variable)." The second regression equation Y = r!:.:. X y can be used 
<Ty 

only when x is to be predicted from a known y (when x is the dependent 
variable ). 

In summary, there are two regression equations in a correlation table, 
the one through the means of the columns and the other through the 
means of the rows. This is always true unless the correlation is perfect. 

When r = 1.00, Y = r<Ty x becomes y = O'y X x or YO':Jj = XO'y. Moreover, 
Ux u~ 

when r = 1.00, x = rO':)Jy becomesx= O'aJ X y orxo-y = YO'x. In short, when 
O'y O'y 

" The dependent variable takes its value from the other or independent variable in 
the regression equation. For example, in the linear equation.. y= 5x -10, y depends for 
its value upon the number assigned x. Hence, y is the dependent variable and x is 
the independent. 
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the correlation is perfect, the two equations are identical and the two 
regression lines coincide. To illustrate this situation, suppose that the 
correlation between height and weight in Figure 40 were perfect. Then 

the first regression li~e would be y= 1.00 X 2.62
5 

x or 1] = .17x; and the 
15.5 

second equation, -x = 1.00 X 1
2
5.55 y, or x = 5.93y. Algebraically, the equa-
.62 

tion x = 5.93y equals y = .17x. For if we write x = yl.17, x = 5.93y. When 
r = ± 1.00 there is only one equation and a single regression line. More
over, if r = -+-1.00, and in addition' (TIC = (Til' the single regression line 
makes an angle of 45 0 or 1350 with the horizontal axis, since y = -+-x 
(see p. 157) .. 

3. PloHing the regression lines in a correlation table * 
In Figure 40, the coordinate axes have been drawn in on the correla

tion table through the means of the X and Y distributions. The vertical 
axis is drawn through 136.3 pounds ( M wt ), and the horizontal axis 
through 66.5 inches (Milt). These axes intersect close to the center of the 

o A brief review of the equation of a straight line, and of the method of plotting 
a simple linear equation is given here in order to simplify the plotting of the regres
sion equations. 

In Figure 41, let X and Y be coordinate axes, or axes of reference. Now suppose 
that we are given the equation y = 2% and are required to represent the relation 
between % and y graphically. To do this we assign values to % in the equation and 
compute the corresponding values of y. When % = 2, for example, y = 2 X 2 or 4; 
when % = 3, Y = 2 X 3 or 6. In the same way, given any % value we can 
compute the value of y which will "satisfy" the equation, that is, make the left side 
equal to the right. If the series of % and y values found from the equation are plotted 
on the diagram with respect to the X and Y coordinates (as in Fig. 41) they will be 
found to fall along a straight line. This straight line pictures the relation y = 2%. 
It goes through the origin, since when x = 0, y = O. The equation y = 2% rep
resents, then, a straight line which passes through the origin; and the relation of its 

~ordinates (points lying along the line) is such that !!., called the slope of the line, is 
% 

always equal to 2. 
The general equation of any straight line which passes through the origin may 

be written y = m%, where m is the slope of the line. If we replace m in the general 

formula by 1" 0', it is clear that the regression line in deviation form, namely, 
h _ 

fj= r u. %, is Simply the equation of a straight line which goes through the origin. For 
0'. 

the same reason, when the general equation of a straight line through the origin is 
0'. . 

written % = my, Y = r - y is also seen to be a straight line through the origin, its 
0', 

0'. 
slope being r-. 

u, 
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chart. Equations (33) and (34) define straight lines which pass through 
the origin or point of intersection of these coordinate axes. It is a com
paratively simple task to plot in our regression lines on the correlation 
chart with reference to the given coordinate axes. 

Correlation charts are usually laid out with equal distances represent
ing the X and Y class intervals (the printed correlation charts are always 
so constructed) although the intervals expressed in terms of the variables 
themselves may be, and often are, unequal and incommensurable. This is 
true in Figure 40. In this diagram, the intervals in X and Y appear to be 
equal, although the actual interval for height is 2 inches, and the actual 
interval for weight is 10 pounds. Because of this difference in interval 
length it is important that we express (Tx and (Ty in our regression equa
tions in class-interval units before plotting the regression lines on the 
chart. Otherwise we must equate our X and Y intervals by laying out our 
diagram in such a way as to make the X interval five times the Y inter
val. This latter method of equating intervals is impractical, and is rarely 
used, since all we need do in order to use correlation charts drawn up 

FIG. '41 Plot of the straight line, y = 2x 

with equal intervals is to express (Tx and (Ty in formulas (33) and (34) in 
units of interval. WheQ this is done, and the interval, not the score, is the 
unit, the first regression equation becomes 

1.31 5 y= .60 1.55 x ory=. Ix 

and the second 
1.55 

x= .60 1.31 Y orY= .71y 

Since each regression line goes through the origin, only one other point 
(besides the origin) .is needed in order to determine its course. In the 
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first regression equation, if x = 10,11 = 5.1; and the two points (0, 0) and 
(10, 5.1) locate the line. In the second regression equation, if y = 10, 
x= 7.1; and the two points (0, 0) and (7.1, 10) determine the second 
line. In plotting points on a diagram any convenient scale may be 
employed. A millimeter rule is useful. 

It is important for the student to remember that when the two IT'S are 
expressed in interval units, regression equations do not give the relation
ship between the X and Y score deviations. These special forms of the 
regression equation should not be used except when plotting the equa
tions on a correlation chart. \Vhenever the most probable deviation in the 
one variable corresponding to a known deviation in the other is wanted, 
formulas (33) and (34), in which the IT'S are expressed in score units, 
must be employed. 

4. The regression equations in score form 

In the preceding sections it was pointed out that formulas (SS) and 
(34) give the. equations of the regression lines in deviation form-that 
values of x and y substituted in these equations are deviations from the 
means of the X and Y distributions, and are not scores. Regression equa
tions in deviation form are actually all that one needs in order to pass 
from one variable to another, but it is decidedly convenient to be able 
to estimate an individual's actual score in Y, directly from the score in X. 
without first converting the X score into a deviation from Mx. This can 
be done by using the score form of the regression equation. The conver
sion of deviation form to score form is made as follows: Denoting the 
mean of the Y's by My and any Y score simply by Y, we may write the 
deviation of any individual from the mean as Y - My or, in general, 
y = Y - My. In the same way, x = X-- Mx when x is the deviation of any 
X score from the mean X. If we substitute Y - My for y, and X - Mx 
!for x, in formulas (33) and (34), the 'two regression equations 
become 

or 

and 

Y-My=r~ (X-Mx) 
ITa; 

Y=r~ (X-Mx) +My 
ITa; 

X-Mx=rlTm (Y-My) 
IT'll 

(35) 
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or 

X=r<Tm (Y-My) +Mx (36) 
<Ty 

(regression equations of Y on X and X on Y in score form) 

These two equations are said to be in score form, since the X and Y in 
both equations represent actual scores, and not depiations from the means 
of the two distributions . 
. If we substitute in (35) the values of My, r, <Ty , <Tx, and Mx obtained 

from Figure 40, the regression of height on weight in score form becomes 

Y = .60 X ~5~! (X - 136.3) + 6~.5 
or 'upon reduction 

Y = .10X + 52.9 

To illustrate the use of this equation, suppose that a man in our group 
weighs 160 pounds and we wish to estimate his most probable height. 
Substituting 160 for X in the equation, Y = 69 inches; and accordingly, 
the most probable height of a man who weighs 160 pounds is 69 inches. 

If the problem is to predict weight instead of height, we must use the 
second regression equation, formula (36). Substituting for M x, r, u"', U!I' 

and Mr in (36) we have 

- 15.55 ) 
X = .60 X 2.62 (Y - 66.5 + 136.3 

or 
x = 3.56Y - 100.4 

Now, if a man is 71 inches tall, we find, on replacing Y by 71 in the 
equation, that X = 152.4. Hence the most probable weight of a man who 
is 71 inches tall is about 152Yt pounds. 

5. The meaning of a "prediction" from the regression equation 

It may seem strange, perhaps, to talk of "predicting" a man's weight 
from his height, when !:he heights and weights of the 120 men in our 
group are already known. When we have measures of both variables it is 
unnecessary, of course, to estimate one from the other. But suppose that 
all we know about a gi"'en individual is his height and the fact that he 
falls within the age range of our group of 120 men. Since we know the 
correlation between height and weight to be .60, it is possible from the 
regression equation to predict the most probable weight of our subject in 
lieu of actually measuring him. Furthermore, the regression equation may 
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he employed to estimate the ~eight of other men in the population from 
which our group is chosen, provided our sample is an unbiased selection 
from the larger group. A regression equation holds, of course, only for the 
population from which the sample group was drawn. We cannot forecast 
the weights of children from a regression equation which decribes the 
relationship between height and weight for men aged 30 to 40. Con
versely, we cannot expect a regression equation established upon ele
mentary school children to hold for an adult group. 
Perh~ps height and weight, as both are so easily measured, do not 

demonstrate the usefulness of prediction via the regression equation so 
clearly as do mental and educational tests. Height and weight were 
chosen for our "model" problem because they are objective, measurable, 
and definite in meaning. To consider a problem of more direct psycho
logical interest, suppose that for a group of 300 high school freshmen, the 
correlation between a battery of achievement tests given at the beginning 
of the school year and average grade over the first year is .60. Now, if the 
same battery of tests is administered at the start of the following year, we 
can forecast the probable scholastic achievement of the new class by 
means of the regression equation established the previous year. Forecasts 
of this sort are useful in educational guidance and prognosis. The same is 
true in vocational guidance or in the selection of workers in office and 
factory. We can often predict from a battery of aptitude tests the prob
able success of an individual who plans to enter a given trade or profes~ 
sion. Advice on such a basis is measurably better than subjective 
judgment. 

II. THE ACCURACY OF PREDICTIONS FROM REGRESSION EQUATIONS 

I. The standard error of estimate (a-eat) 

Values of X and Y predicted by way of the regression equation haye 
been constantly referred to above as being the most probable values of 
the dependent variable which can be obtained from a given value of the 
independent variable. It is important that we have clearly in mind what 
"most probable" means in the present connection. A forecast may well be 
the best we can make under existing condtions, and at the same time 
not be precise enough to be of much practical value. In Figure 40, fourth 
column from the right, there are 22 men all of whom weigh 144.5 pounds 
(midpoint of the interval 140-149). These same 22 men vary in height 
from 62.5 to 70.5 inches, but our best forecast of the height of anyone of 
them chosen at random is the Y given by the regression line which passes 



~_' .\ REGRESSION AND PREDICTION· 161 

through or c!lo'se~t~''t11e mean of 'the given column (see Fig. 40). It is clear 

that some men will be shorter and some taller than our Y estimate, and 
the question arises of how accurate is our most probable estimate. To 
answer this query we need some index of the goodness of our forecast, 
and such a measure is the standard error of est~mate (aest). 

The formula for the SE of estimate when Y scores are predicted from 
X scores is 

IT(est y) = lTyyl - r2 (37) 

(standard error of a Y measure predicted from an X score 
in the regression equation) 

in which 
IT 11 = the SD of the Y distribution 

and 
r = the coefficient of correlation between X and Y 

From the formula for the regression of Y on X (p. 159), we computed 
the most probable height of a man weighing 160 pounds to be 69 inches. 
And from the same equation, we predict the height of a man weighing 
144.5 pounds to be 67 inches. In order to determine the accuracy of these 
forecasts, substitute for ITht = 2.62 inches and r = .60 in formula (37) 
to get 

IT(est Y) = 2.62Yl - .602 

= 2.1 inches 

We can now say that the most probable height of a man weighing 160 
pounds is 69 inches with a SE of estimate of 2.1 inches. And by the same 
token, the most probable height of a man weighing 144.5 pounds is 
67 inches with a aleRt y) of 2.1 inches. The SE(es! Y) may be interpreted 
generally to mean that in predicting the heights of 100 men, 68 of our 
estimates should not miss the man's actual height by more than ±2.1 
inches-Le., by more than ±la(est Y) (see p. 163). 

When X scores are predicted from Y scores, the standard error of esti
mate is 

(38) 

(standard error-of an X measure predicted from a regression equation) 

in which 
IT (# = the SD of the X distribution 

and 
r = the coefficient of correlation between X and Y. 
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On page 159 we estimated from the regression equation that the most 
probable weight (X) of a man 71 inches tall is 152.4 pounds. The U(e8t X) 

of this forecast is 

<T(ed X) = 15.55y11- .602 = 12.4lbs 

and our best estimate of the weight of any man in our group of 120 has a 
standard error of 12.4 pounds. The chances are about 2 in 3 (68 in 100) 
that any given estimate will not miss the man's actual weight by more 
than about 12 pounds (p. 163). 

2. ~ssumptions made in using the Sf (est) formula 

Three assumptions ~re made in predicting via the regression equation, 
and unless these conditions are satisfied the regression equation and the 
<T(ed) will not give accurate inforomation. The first and most general 
assumption is that of linearity-namely, that the relationship between X 
and Y can be described by a straight line. Linearity of regression is 
generally found in mental and educational measurement. But true non
linearity is sometimes encountered in the relations between mental and 
social-personality variables. In a college class, for example, the Band C 
students are often more active in extracurricular activities than are either 
the straight A or the failing students. H«:lnce, the relationship between 
marks and extracurricular activities in this situation would be curvilinear 
(see p. 396). Whenever relationship is not clearly curvilinear, straight
line relation is the simplest and often the most reasonable hypothesis. 

A second assumption made when we use the regression line for predic
tion is that the distributions in X and Yare riormal-or at least not badly 
skewed (p. 100). Reference to Ute "ideal" diagrams on page 131 shows 
that when the X and Y distributions are normal, the subdistributions in 

I the columns or rows (the "arrays") are also normal and spread out sym
metrically around a central point. Figure 42 represents schematically the 
spread of scores in the columns of a correlation table, and shows the re
gression of Y on X. Note that the distribution in each of the columns is 
normal, and that the regression line passes through the mean of each of 
the small column distributions. As we shall see later, the SE (ed) is the 
standard deviation of the distributions in the columns. 0 

-

Th~ third assumption made in regression-line prediction is that the 
spread or scatter is the same for each column (or row) in the correlation 

o The SE( ... y) is a standard deviation when it gives the spread of the scores in 
the individual columns. It is a standard error when used to give the range allowable 
ip a forec~st JIlade fr_om the regression equation. 
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table. This condition is called homoscedasticity (the word means "equal 
scattering"). Equal scatter in the columns, as shown in Figure 42, enable~s 
us to substitute one measure of spread [namely, SE(fst n] for the SD's of 
the separate columns. Figure 42 shows how for a given X, we locate the 
most probable Y (1') from the regression line. The range of allowable. 
fluctuation in the prediction of any Y is given by the SErest y) and is the 

X Variable 
x 

Regression of Y on X 

± 10e .. t y includes 
68 r. of scores 
in any array / 

FIG. 42 How forecasts are made from the regression line. Only the columns 
of the correlation table and one regression line are represented. 
Homoscedasticity is shown by the equal spread (SD's) in each col
umn. The SD in any column is U(e8t y). 

same for all columns under the assumption of homoscedasticity. Only the 
range of .±lu(08t Y) is marked off in Figure 42. The probability is higher, of 
course, for wider intervals. Thus the chances are about 95 in 100 that a 
predicted Y will not be in error by more than +2U(.8t y); and the chances 
are almost 100% (99.7) that a predicted Y will not miss its aetual value 
by more than +3O'(e8t y). 

The requirement that there be equal scatter in the' columns (and rows) 
of a correlation table (i.e., homoscedasticity) often strikes the student as 
a stringent one, not likely to be realized with real data. To be sure, some 
variation in the SD'S of the columns of a correlation table is nearly always 
found. But in the correlation of mental and educational tests, especially 
when N is large, the assumption of equal scatter in columns (or rows) is 
reasonable. Suppose, for example, that we compute the SD's of the col
umns in the correlation diagram in Figure 40. These are 
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X Variable 

100- 110- 120- 130- 140- 150- 160- 170-
109 119 129 139 149 159 169 179 

SD: 1.63 1.79 2.48 2.23 2.30 1.63 1.55 1.41 
N: 3 10 28 37 22 9 5 6 

The SD's of the eight separate columns range from 1.41 to 2.48. The 
weighted mean is 2.1 (to 1 decimal), i.e., is equal to the <T(e8t Y) which is, 
of course, computed from the all-over relationship between X and Y. This 
single figure, SD or <T(e8t Yb is a better (i.e., more general) measure of the 
true scatter in the separate columns, since it is based upon all of the data 
in the table. 

Figure 42 gives the range of prediction of Y from X when (1.) regres
sion is linear, when (2) distributions in X and Yare normal, and when 
(3) the scatter in the columns is equal. SE (eat 1') provides a generalized 
estimate of the spread in the columns. The forecasts of Yare made from 

the regression line, Tj = r <T" • x, for fixed values of X at the heads of the 
<Till 

columns. The variability of the separate columns is always less than 
the variability of the entire Y distribution, except when r = .00 [see 
formula (37)]. 

3. The accuracy of individual predictions from the regression equation 

When the three a~sumptions described in the preceding section. are 
satisfied, the SE(e8t) provides an accurate measure of the range in an indi
vidual forecast-i.e., the error made' in taking the predicted measure 
iItstead of the actual measure. o The siZe of the standard error of estimate 
depends upon the SD of the dependent variable (the variable we are 
predicting) and upon the extent of correlation between X and Y. If the 
r = 1.00, clearly yr=-? is .00, and the SE(ed) is also zero-there is no 
error of estimate, and each score is predicted exactly (see diagram 2 in 
Fig. 37). At the other correlational extreme, when r = .00, y'[=? is 
1.00, and the error of estimate equals the SD of the distribution i?to 
which prediction is made, i.e., the distribution of the dependent variable. 
When the correlation is zero, the regression equation is, of course, of no 
value in enabling us to make a better forecast: each individual's most 

o It can be shown mathematically that when Y is the predicted score and Y is the 
actual score, the SD of the distribution of the differences (Y - Y) is SE( ... Flo 
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probable score (his Y) is simply My (see diagram 3, Fig. 37). In this sit
uation, all that we can say with assurance is that a person's predicted 
score will fall som.ewhere in the Y (or X) distribution. The SE c•,t) equals 
the SD of the distribution. 

If the variability in Y is small and the correlation coefficient is high, 
Y can be predicted quite adequately from, known measures in X. But 
when the variability of the dependent variable is large or the correlation 
low, or when both conditions exist, estimates may be so unreliable as to 
be virtually worthless. Even when r is fairly high, forecasts may have an 
uncomfortably large SE(e8t) (see p. 169). We have seen (p. 159) that in 
spite of an r of .60 between height and weight (Fig. 39) our forecast of a 
oman's weight from his height has a SE( .. t) of about 12 pounds. Further
more, heights predicted from weights will in 1/3 of the cases be in error 
by slightly more than 2 inches, i.e., lie outside of the limits ± lSE (est). In 
the example in Figure 43, the high correlation offsets to some extent the 
fairly large SD's, thus permitting reasonably good prediction (p. 170). 

When an investigator uses the regression equation for forecasting, he 
should always give the SE(est). The value of the prediction will depend 
primarily upon the error of estimate. But it will also depend upon the 
units in which the test variables are expressed, and the purpose for which 
the prediction is made (p. 176). 

,4. The accuracy of group predictions 

We have seen in the preceding section that only when r = LOO and 
yr=-rz is .00 can the estimate of an individual's score lbe made without 
error. The correlation coefficient must be .87 before ~ is .50, i.e., 
before the SE(e.t) is reduced 50% below the SD of the whole test. Obvi
ously, then, unless r is large (larger than we often get in practice) the 

I 

regression equation may offer little aid in enabling us to forecast accu-
rately what a person can be expected to do. This fact has led many to 
discount unwisely the value of correlation in prediction and to conclude 
that computation of ~he regression equation is not worth the trouble. 
This decision is unfortunate, as even a small reduction (as little as 10%) 
in the error with which performance in a criterion can be forecast, may 
represent a distinct saving in time and money, as the experience in indus
try and the Armed Forces has amply shown. 

Correlation makes a better shOWing in forecasting the probable per
formance of groups than in predicting the likely achievement of a 
selected individual. In attempting to predict the success of a youngster 
entering college or of a new worker in a factory, the psychologist is in 
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much the same position as is the insurance actuary. The actuary cannot 
tell how long Sam Brown, aged 20, will live. But from his experience 
tables the actuary can tell quite accurately how many in a group of 
10,000 Sam Browns. or their counterparts, aged 20, wiU live to be 30, 40, 
50, etc. In the same manner, the psychologist may be qUite uncertain 
[large SE (e8t)] concerning the probable performance of a specific Sam 
Brown. But knowing the correlation between a battery of tests and a cri
terion of performance, he can tell with some assurance how many of a 
given group .( whose test scores are known) will be successful in terms of 
the criterion. The improvement in forecasting depends solely upon 'the 
size of the correlation coefficient between test battery and criterion. 

To illustrate "actuarial prediction," let us suppose that 280 (i.e., 70%) 
of a freshman class of 400 students achieve grades in their first year of 
college above the minimum passing standard, and may, therefore, be con
sidered "satisfactory." Suppose further that the correlation between a 
standard intelligence test given at the beginning of the term and freshman 
grades is .50. Now, if we had selected only the upper 50ro of our entering 
group (i.e., the 200 who performed best on the intelligence test) at· the 
start of the term, how many of these selected 200 should have proved to 
be satisfactory in terms of passing grades? From Table 23, it is found that 
168 of the 200 "best" freshmen, or 84%, ought to be in the satisfactory 
gro,-!-p (the upper 70%) with respect to college grades. The entry .84 is 
found in the column headed .50 (proportion of the test distribution 
chosen) opposite the correlation coefficient .50. The number, 168, should 
be compared with the number 140 (i.e., 70%) who can be expected to 
fall in the satisfactory group when selection is random-or catch-as-catch
can. The entry. 70 is in column .50 opposite the r of .00. 

'The smaller the group of freshmen and the more highly selected· with 
respect to the test battery, the great~r the number who should prove to 
~e satisfactory in academic performance. From Table 23, for example, we· 
know that 91 % of the best 20% of our 400 sfudents (about 73 in 80) may 
be expected to prove &atisfactory in terms of grades (i.e., being in the 
'Upper 70% of the grade distribution). Read the entry .91 in column .20 
opposite r = .50. When the correlation between test battery and grades 
is .60 instead of .50; 87% or 174 in 200 of the best half (according to 
the test) should meet the cr~terion. Both of these forecasts are to be 
compared with 70% or 140, the estimate when r = .00. It is clear that the 
higher the r, the larger the number likely to meet the standard set by the 
criterion. 

Table 23 is a small segment of a larger table in which "proportions con
sidered satisfactory in achievement," i.e., in the criterion, range from .05 
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TABLE 23 * Proportion of students considered satisfactory in terms of 
grades = .70 

Selection Ratio: Proportion Selected on Basis of Tests 

, .05 .10 .20 .30 040 .50 .60 .70 .80 .90 .95 

.00 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 .70 

.05 .73 .73 .72 .72 .72 .71 .71 .71 .71 .70 .70 

.10 .77 .76 .75 .74 .73 .73 .72 .72 .71 .71 .70 

.15 .80 .79 .77 .76 .75 .74 .73 .73 .72 .71 .71 

.20 .83 .81 .79 .78 .77 .76 .75 .74 .73 .71 .71 

.25 .86 .84 .81 .80 .78 .77 :76 .75 .73 .72 .71 

.30 .88 .86 .84 .82 .80 .78 .77 .75 .74 .72 .71 

.35 .91 .89 .86 .83 .82 .80 .78 .76 .75 .73 .71 
040 .93 .91 .88 .85 .83 .81 .79 .77 .75 .73 .72 
045 .94 .93 .90 .87 .85 .83 .81 .78 .76 .73 .72 

.50 .96 .94 .91 .89 .87 .84 .82 .80 .77 .74 .72 
.55 .97 .96 .93 .91 .88 .86 .83 .81 .78 .74 .72 
.60 .98 .97 .95 .92 .90 .87 .85 .82 .79 .75 .73 
.65 .99 .98 .96 .94 .92 .89 .86 .83 .80 .75 .73 
.70 1.00 .99 .97 .96 .93 .91 .88 .84 .80 .76 .73 

.75 1.00 1.00 .98 .97 .95 .92 .89 .86 .81 .76 .73 

.80 1.00 1.00 .99 .98 .97 .94 .91 .87 .82 .77 .73 

.85 1.00 1.00 1.00 .99 .98 .96 .93 .89 .84 .77 .74 

.90 1.00 1.00 1.00 1.00 .99 .98 .95 .91 .85 .78 .74 

.95 1.00 1.00 1.00 1.00 1.00 .99 .98 .94 .86 .78 .74 
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .88 .78 .74 

to .95. The correlation between test scores and criterion may range from 
.00 to 1.00. These tables are not strictly accurate unless the distributions 
are normal for both test battery and criterion. They may be used with 

'it 
considerable confidence, however, when the distributions are not badly 
skewed provided that N is large. 

Forecasting'tables like Table 23 are especial1y useful when the problem 
is concerned with personnel in industry and in business. First, the pro-
portion of a given group of workers considered "satisfactory" must be 

o Taylor, H. C., and Russell, J. T., "The Relationships of Validity Coefficients to 
the Practical Effectiveness of Tests in Selection: Discussion' and Tables," Jour. of 
Applied Psychology, 1939, 23, 565-578. 
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determined. From this information and the correlation between an apti
tude battery and the performance criterion, we can-from their test 
scores-predict how many of a group of new applicants will meet the 
criterion of "satisfSlctoriness." Let us assume, for eXllmple, that 70% of a 
group of factory workers are rated satisfactory, acceptability having been 
determined from such criteria as ratings by foremen, amount of work done 
in a given time, excellence of work, experience and personality. Assume 
further, that the aptitude test battery has a correlation of .45 with worker 
acceptability. Then, if the best 20 out of 100 applicants are chosen (best 
according to the aptitude battery), we find from Table 23 that 18 or 90ro 
ought to be satisfactory work~rs. If we had used no tests and had simply 
picked the first 20 applicants to appear-or any 20-14 of these or 70% 
should have been acceptable. Use of aptitude tests in this situation im
proves our forecast by 30%; and the higher the correlation and the more 
stringent the selection (number to be chosen) the greater the improve
ment in prediction made by using the test battery. 

Ill. THE SOLUTION OF A SECOND CORRELATION PROBLEM 

The solution of a second correlation problem will be found in Figure 43. 
The purpose of another "model" is to strengthen the student's grasp of 
correlational techniques by having him work straight through the process 
of calculating r and the regression equations upon a new set of data. A 
student often fails to relate the various aspects of a correlational problem 
when these are presented in piecemeal fashion. 

I. Calculation of , 

Our first problem in Figure 43 is to find the correlation between the 
I.Q.'s achieved by 190 children of the same-or approximately the same
cllronological age who have taken an intelligence examination upon two 
occasions separated by a six-month interval. The correlation table has 
been constructed from a scattergram, as described on page 128. The test 
given first is the X variable, and the test given second is the Y variable. 
The calculation of the two means, and of c"" Cg, u"', and U g covers familiar 
ground, is given in detail on the chart, and need not be repeated here. 

The product deviations in the ~x'y' column have been taken from col
umn 100-104 (column containing the AMx) and from row 105-109 (row 
contain£ng the AMy). The entries in the ~x'y' column have been calcu
lated by the shorter method described on page 137; that is, each cell entry 
in a given row has been multiplied first by its x deviation (x') and the 
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sum of these deviations entered in the column ~x'. The ~x' entries were 
then "weighted" once for all by the y' of the whole row. To illustrate, in 
the first row reading from left to right (1 X 5) + (1 X 6) or 11 is the 
~x' entry. The x"s are 5 and 6, respectively, and may be read from the x' 
row at the bottom of the correlation table. Since the common y' is 5, the 
final ~x'y' entry is 55. Again in the seventh row reading down from the 
top of the diagram (5X-3)+(3X-2)+(7X-1)+(16XO)+ 
(2 Xl) + (4 X 2) or -18 makes up the ~x' entry. The y' of this row 
is -1, and the final ~x'y' entry is 18. To take still a third example, in the 
eleventh row from the top of the diagram, (1 X -5) + (3 X -4) + 
(1 X -3) + (2 X -2) or -24. is the ~x' entry. The common y' is -5 and 
the ~x'y' entry is 120. 

Three checks of the calculations (see p. 138), upon which r, fTllJ and fTlI 

are based, are given in Figure 43. Note that fx' = ~x'; and that, when the 
~x'y"s are recalcuI'ated, at the bottom of the chart, fy' = ~y', and the two 
d_eterminations of ~x'y' are equal. VVhen the ~x'y"s have been checked, 
the calculation of r by formula (26) is a matter of substitution. Note care
fully that c." CII, fTllJ, fTlI are all left In units of CUu;S interval in the formula 
for r (p. 138). 

2. Calculation of the regression equations and the Sf's of estimate 

The regression equations in deviation form are given on the chart and 
the two lines which these equations represent have been plotted on. the 
diagram. Note that these equations may be plotted as they stand, since 
the class interval is the same for X and Y (p. 157). In the routine solution 
of a correlational problem it is not strictly necessary to plot the regression 
lines on the chart. These lines are often of value, however, in indicating 
whether the means of the X and Y arrays can be represented by straight 
lines, that is, whether regression is linear. If the relationship between X 
~nd Y is not linear, other methods of calculating the correlation must be 
employed (p. 396). 

The standard errors of estimate, shown in Figure 43, are 7.83 and 8.55, 
depending upon whether the prediction is of Y from X or X from Y. All 
I.Q:s predicted on the Y test from X may be considered to have the same 
error of estimate," and similarly for all predictions of X from Y. 

Errors of estimate are most bften used to give the reliability of specific 
predicted measures. But they also have a more general interpretatioI) . 

.. See, however, Terman, L. M., and Merrill, M. A., Measuring Intelligence (Bos
ton: Houghton Mifllin Co., 1937), pp. 44-47, where the SE's of estimate have been 
computed for various I.Q. levels. 
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Thus a U(ed Y) of 7.83 pOints means that 68% of the I.Q:s predicted on 
Test Y from Test X may be expected to differ from their actual values by 
not more than ±7.83 points, while the remaining 32% may be expected 
to differ from their actual values by more than ±7.83 points. 

IV. FACTORS AFFECTING THE INTERPRETATION OF r 

I. Range of talent 

The size of a correlation coefficient will vary with the heterogeneity, 
i.e., the degree of scatter, in the group; and the more restricteq the spread 
of test scores, the lower the correlation. The correlation between an arith
metic test and a reading. test, for example, will be lower in a group of 
50 sixth-grade children than in a group of 250 children drawn from 
Grades 5, 6 and 7. Curtailment in the range of intelligence test scores in 
college freshmen is one reason for the lower correlation between intelli
gence tests and school grades in college as compared with high school. 
The less able students fail to reach college, selection for intelligence 
becomes more stringent, the range of scores narrows, and r de~reases. 
Suppose that we know the distribution of intelligence test scores in an 
unrestricted group composed of both college and ,noncollege men. Then 
from the SD of the curtailed distribution of intelligence test scores in the 
college group, and the r between intelligence and grades in this group, 
we can estimate the correlation between intelligence and grades in the 
unrestricted group of greater range. Two assumptions must be made: 
( 1) regression must be linear and (2) the arrays (columns or rows) in 
the uncurtailed distribution must be homoscedastic (p. 163). Neither of 
these conditions is unreasonable, provided the sample is large. 

A formula for predicting r in the group uncurtailed in Y is 

r' - 1(11)11 (CT'II!CTy ) (39) 
11)1/ - VI - r211)1/ + r211)1I(CT'I/!UI/) 2 

(formula for estimating the correlation in an uncurtailed range from the r 
in the curtailed range) 

in which 
U II = SD of the group curtailed in Y 

CT'I/ = SD of the group un curtailed in Y 
1''''1/ = correlation between X and Y in the group curtailed in Y 

r'11:1/ = correlation between X and Y in the group uncurtailed in Y 

To illustrate the application of formula (39), suppose that the correla
tion between an apti~de test for selling and a criterion of sales perform-
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ance in a small group of highly experienced men is .40. Suppose further 
that the SD of the criterion (sales performance) in this selected (cur
tailed) group is 6.0; and that the SD of the criterion in a larger group of 
more varied experience (uncurtailed) is 9.0. What correlation would we 
expect to find between criterion and aptitude tests in the group in which 
experience is less restricted, i.e., has greater range? Substituting a" = 6.0, 
a'" = 9.0, and r"" = .40 in formula (39), we have 

r':::: .40 (3/2) 
ID" VI - .16 + .16(9/4) 

:::: .55 

The correlation of .55 is the relationship to be anticipated when selection 
with respect to the sales criterion has been broadened to include those of 
less experience. 

Slight changes in formula (39) make it possible for us to estimate r in a 
group restricted in Y, say, when we know the correlation in a group 
unrestricted with respect to Y. The formula is 

r - r':rll(u,/u',,) (40) 
mIl - VI - ?2ml/ + ?2",,(0'1//(1"1I)2 

(formula tor estimating the correlation in a curtailed range from the r 
in an uncurtailed range) 

in which the subscripts have the same meaning as in (39). 
If the correlation between I.Q. and grades in a large group of school 

children is .60 and the SD of the I.Q. distribution is 15, what is the r to 
be expected in a group in which the SD of the I.Q. distribution is only 10 
points? Substituting now for a,,:::: 10, (1"" = 15 and r' = .60 in (40), we get 
an estimated r of .45 in the more narrow or curtailed group. 

The considerable effect which differences in range have upon the cor
relation coefficient renders it imperative that SD's always be reported 
whenever is are given. The correlation coefficient is never an absolute 
index of relationship, but is always relative to the variability of the meas
sures being correlated (p. 176). 

2. Averaging ,'s 

It has been fairly common practice to average is obtained from com
parable samples in the hope of getting a better (i.e., more stable) measure 
of the relationship between the two variables. The averaging of is is often 
dubious. however. and may be an incorrect procedure. Correlation coeffi-
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dents do not vary along a linear scale, so that an increase from .40 to .50 
does not imply the same change in relationship as does an increase from 
.80 to .90. Again, if +r's and -r's are combined as they stand, they tend to 
cancel each other out. When r's do not differ greatly in size, their arith
metic mean will yield a useful result; but this is not true when ,'s differ 
widely in size and differ in sign. Thus averaging ,'s of .60 and .70 to obtain 
.65 is permissible, whereas averaging ,'s of .10 and .90 to obtain .50 is not. 

Perhaps the safest plan is not to average ,'s at all. But when for various 
reasons averaging is demanded by the problem, the best method is to 
transform the T'S into Fisher's z function and take the arithmetic mean of 
the z's. This mean z can then be converted into an equivalent ,. Some of 
the advantages of the z function are given on page 199. Suffice it to say 
here that z is more stable than , (its distribution is nearly normal) and 
that z is not limited in range-as is ,-between ± 1.00. An example will 
show the procedure to be followed in transforming ,'s to z's, and back to 
a meanr. 

Example (1) In 5 parallel experiments, the following ,'5 were 
obtained between the same two variables: .50, .90, .40, .30, and .70. 
The N's in the 5 experiments were in order: 33, 27, 63, 74 and 26. 
What is the mean correlation, i.e., the weighted average, of these 
5 is? 

l' Z N (N - 3) zeN - 3) 
.50 .55 33 30 16.50 
.90 1.47 27 24 35.28 
.40 .42 63 60 25.20 
.30 .31 74 71 22.01 
.70 .87 26 23 20.01 

223 208 119.00 

The mean z = 119.00/208 or .57. The equivalent r (Table C) is .51. 

By means of Table C we can conv~rt these 5 r's into equivalent z's as 
follows: .55,1.47, .42, .31 and .87. Each z is then weighted by (N - 3), as 
3 degrees of freedom are lost in computing each z (see p. 199). The sum 
of the weighted z's (1l9.00) is divided by the sum of the (N - 3) or 208 
to give the mean z of .57. This value is now converted back into an r of .51 
by means of Table C. Comparison of the "derived" T of .51 with the average 
of the unweighted r's (i.e., .56), gives an idea of the correction effected 
in using the z-transformation. When N's differ widely, the correction may 
be considerable; but when N's are equal or nearly equal, the correction 
is negligible. 
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3. The "regression effect" in prediction 

Predicted scores tend to "move in" toward the mean of the distribu
tion into which prediction is made (p. 153). This so-called regression 
effect has often been noted by investigators and is always present when 
correlation is less than ± 1.00." The regression phenomenon can be 
clearly seen in the following illustrations: From the regression equation 
Y = .70X + 31.6 (Fig. 43) it is clear that a child who earns an I.Q. of 
130 on the first test (X) will most probably earn an I.Q. of 123 on the 
second test (Y); while a child who earns an I.Q. of 120 in X will most 
probably score 116 in Y. In both of these illustrations the predicted 
Y-test I.Q. is lower than the first or X-test I.Q. Put differently, the sec
ond I.Q. has regressed or moved down toward the mean of test Y, i.e., 
toward 102.7. The opposite effect occurs when the I.Q. on the X test 
is below its mean:- the tendency now is for the predicted score in Y to 
move up toward its mean. Thus from the equation Y = .70X + 31.6, we 
nnd that if a child earns an I.Q. of 70 on the X test his most likely score 
on the second test (Y) is 81; while an I.Q. of 80 on the nrst test forecasts 
an I.Q. of 88 on the second. Both of these predicted LQ.'s have mo~ed 
nearer to 102.7 (i.e., M 1/ ) • 

The tendency for all scores predicted from a regression equation to 
converge toward the mean can be seen as a general phenomenon if the 
regression equation is written in u-score form. Given 

(33) (p. 153) 

if we divide both side of this equation by cr1/ and write UfIJ under x, we 
have 

. 
J[_ = r~ or -z-1/ = rz., 
cr1/ crfIJ 

(regression equation when scores in X and Yare expressed 
as z or cr scores) 

(41) 

In the problem in Figure 43, z1/ = .76z",. If Z", is ±1.00u, or ±2.oou, or 
±3.00u from M"" Z1/ will be ±.76u, ±1.52u, or ±2.28u from M1/' That is to 
say, any score above or below the mean of X forecasts a Y score somewhat 
closer to the mean of Y. 

In studying the relation of height in parent and offspring, Galton 
(p. 153) interpreted the phenomenon of regression to the mean to be a 

o Thorndike, R. L., "RegresSion Fallacies in the Matched Groups Experiment," 
Psychometrika, 1942, 7, 85-102. 
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provision of nature designed to' protect the race from extremes. This same 
effect occurs, however, in any correlation table in which r is less than 
±1.00, and need not be explained in biological terms. The I.Q.'s of a 
group of very bright children, for instance, will tend upon retest to move 
downward toward 100, the mean of the group; while the I.Q.'s of a group 
of dull children will tend upon retest to move upward toward 100. 

V. THE INTERPRETATION OF THE COEFFICIENT OF CORRELATION 

When should a coefficient of correlation be called "high," when 
"medium," and when '1ow"? Does an r of .40 between two tests indicate 
"marked" or "low" relationship? How high should an r be in order to 
permit accurate prediction from one variable to another? Can an r of .50, _ 
say, be interpreted with respect to "overlap" of determining factors in the 
two variables correlated? Questions like these, all of which are concerned 
with the significance or meaning of the relationship expressed by a corre
lation coefficient constantly arise in problems involving mental measure
ment, and their implications must be understoood before we can effec
tively employ the correlational method. 

The value of r as a measure of correspondence may be profitably con
sidered . from two points of view. In the first place, ,:S are computed in 
order to determine whether there is any correlation (over and above 
chance) between two variables; and in the second place, r's are computed 
in order to determine the degree or closeness of relationship when some 
association is known, or is assumed, to exist. The question "Is there any 
correlation between brain weight and intelligence?" voices the first objec
tive. And the question "How significant is the correlation between high
school grades and first-year performance in college?" expresses the second. 
The problem of when an obtained r denotes significant relationship will be 
considered later, on page 198. This section is concerned mainly with the 
second problem, namely, the evaluation-with respect to degree of rela
tionship-of an obtained coefficient. The questions at the beginning of the 
paragraph above all bear upon this topic. 

I. The interpretation of r in terms of verbal description 

It is customary in mental measurement to describe the correlation 
between two tests in a general way as high, marked or substantial, low 
or negligible. While the deSCriptive label applied will vary somewhat in 
meaning with the author using it, there is fairly good agreement among 
workers with psychological and educational tests that an 
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r from .00 to ± .20 denotes indifferent or negligible relationship; 
r from ±.20 to ± 040 denotes low correlation; present but slight; 
r from ±o4O to ± .70 denotes substantial or marked relationship; 
r from ±.70 to ±1.00 denotes high to very high relationship. 

This classification is broad and somewhat tentative, and can only be 
accepted as a general guide with certain reservations. Thus a coefficient 
of correlation must always be judged with regard to 

( I) the nature of variables with which we are dealing; 
(2) the significance of the coefficient; 
(3) the variability of the group (p. 171); 
( 4) the reliability coefficients of the tests used (p. 358); 
(5) the purpose for which the r was computed. 

To consider; first, the matter of the variables being correlated, an r of .30 
between height and intelligence, or between head measurements and 
mechanical ability would be regarded as important although rather low, 
since correlations between phYSical and mental functions are usually 
much lower-often zero. On the other hand, the correlation must be .70 or 
more between measures of general intelligence and school grades or 
between achievement in English and in history to be considered high, 
since r's in this field usually run from .40 to .60. Resemblances of parents 
and offspring with respect to phYSical and mental traits are expressed by 
r's of .35 to .55; and, accordingly, an r of .60 would be high. By contrast, 
the reliability of a standard intelligence test is ordinarily much higher 
than .60, and the self-correlation of such a test must be .85 to .95 to be 
regarded as satisfactdry. In the field of vocational testing, the r's between 
test batteries and measures of aptitude represented by various criteria 
rarely rise above .50. Correlations ·abpve this figure would be considered 
exceptionally promising, and smaller r's are often serviceable (p. 359) .. 

I Correlation coefficients must always be evaluated with due regard to 
the reliabilities of the tests concerned (p. 352). Owing in part to chance 
errors, an obtained r is always less than its "corrected" value (p. 358) and 
hence, in a sense, is a minimum index of the relationship present. The . 
effect upon r of range of talent in the group has been treated elsewhere 
(p. 171) and a formula for estimating such effects prOvided. The purpose 
for which the. correlation has been computed is always important. The r to 
be used for predicting the standing of individuals, for instance, must be 
a great deal higher than the r to be used in forecasting the likely achieve
ment of groups (p. 165). 

In summary, a correlation coefficient is always to be judged with refer
ence to the conditions under which it was obtained, and the objectives o~ 
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the experiment. There is no such thing as the correlation between mechan
ical aptitude and job performance, for example, but only a correlation 
between certain tests of mechanical aptitude and certain criteria of per
formance on the job. 

2. The interpretation of r in terms of O'(est) and the coefficient of alienation 

One of the most useful ways of evaluating the effectiveness of r is 
through the SE(est). We have found on page 160 that SE(.st)-which 
equals -yr=-rr-enables us to tell how well the regression equation is 
able to predict scores in Y, say, when we know the scores in X. As r 
changes from ±1.00 to .00, the SE(esn increases markedly, so that pre
dictions from the regression equation will range all of the way from cer
tainty to what is virtually a "guess." 0 The effectiveness of an r, therefore, 
with respect to predictive value, depends on the extent to which predic
tion is improved over sheer guess. 

The following will serve as an illustration. Suppose that the r between 
two tests X and Y is .60 and that 0'11 is 5.00. Then O'( .. t Y) = 5yr=-:602 or 
4.00. This SE (est) is 20% less than 5.00, which is the SE (eat 1') when r is .00, 
i.e., has minimum predictive value. The reduction in O'( .. t Y) as r varies from 
.00 to 1.00 is given by the expression ~ and hence it is possible to 
gauge from yIl=7 alone the predictive strength of an r. The \~ is 
called the coefficient of alienation and is denoted by the letter k. 

k = VI - r2 (42) 

(coefficient of alienation for determining the predictive value of r) 

We may think of k as measuring the absence of relationship between 
two variables X and Y in the same sense that r meastnes the presence of 
relation. When k -= 1.00, r = .00, and when k = .00, r = 1.00. The larger 
the coefficient of alienation, the smaller the extent of relationship and the 
less precise the forecast from X to Y. The k's for certain values of rare 
given in Table 24. 

The student should note that r must be .87 (.866 exactly) before k lies 
halfway between ± 1.00 and .00, i.e., between 1000/0 accuracy and the 
minimum of accuracy. At k = .87, the SE (e8t) is reduced one-half of its 
maximum value at k =I 1.00. For is of .80 or less, the k's are so large that 

" The term "guess" as here used does not mean an estimate which is based upon 
no information whatever-a shot in the dark, so to speak. When r = .00, the most 
probable Y score, forecast for every person in the Y distribution, is M,; and the 
SE,,,,, equals SD. exactly. Our Y's are guesses in the sense that they may lie any
where in the Y distribution-but not aJlywhere at allJ 
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TABLE 24 Coefficients of alienation (k) for values 9f r from .00 to 1.00 

r k==~ r k==~ 
.0000 1.0000 .8000 .6000 
.1000 .9950 (.8660) (.5000) 
.2000 .9798 .9000 .4359 
.3000 .9539 .9500 .3122 
.4000 .9165 .9800 .1990 
.5000 .8660 .9900 .1411 
.6000 .8000 1.0000 .0000 
.7000 .7141 

(.7071) (.7071) 

prediction of individual scores via the regression equation may take a wide 
range of values. When r = .99, for example, the standard error of estimate 
is still 1/7 of its maximum value, i.e., the value it would take when 
k = 1.00. It seems clear that in order to forecast an individual's score 
with high accuracy the r must be at least .90. 

3. The interpretation of r in terms of E. the coefficient of forecasting efficiency 

The coefficient E given below is often used to provide a quick estimate 
of the predictive efficiency of an obtained r. E is called the coefficient of 

.forecasting efficiency or coefficient of dependability. It is derived from k 
as follows: 

E=l-~ 
or (43) 

E=l....:.k 

(coefficient of forecasting efficiency or of dependability) 

, If the correlation between an aptitude test battery and a criterion is .50, 
from formula (43), E = 1 - .87 or .13: and the test's forecasting efficiency 
is 13%. When r = .90, E == .56 and the test is 56% effident; when r is .98, 
E is .80 and the test is 80% efficient, and so on. Clearly the correlation 
must be .87 and above in order for the test's forecasting efficiency to be 
greater than 50%. 

E provides essentially the same information as does k or U(e.t). 

4. Interpretation of r in terms of the. coefficient of determination 

The interpretation of l' in terms of "overlapping" factors in the tests 
being corre41ted may be generalized through an analysis of the variance 

l' 
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( ~) of the dependent variable-usually the Y test. In studying the vari
ability among individuals upon a given test, the variance of the test scores 
is often a more useful measure of "spread" than is the standard deviation. 
The object in analyzing the variance of Te~t Y is to determine fro~ the 
correlation between Y and X what part of 1est Y's variance is associated 
with, or dependent upon, the variance of Test X, and what part is deter
mined by the variance of factors not in Test X. 

When we have computed the correlation! between Tests X and Y, ~I/ 
provides a measure of the total variance of the Y scores and ~(est Y) which 
equals ~I/ (1 - r) gives a measure of the variance left in Test Y when 
that part of the variance associated with Test X has been ruled out (see 
p. 152). Instead of O'( • .t Y) the designation O'I/.z is often used to show that 
the variability in X-in so far as it affects Y -has been held constant. 
As we have seen (p. 163), O'(est Y) or Up; is the SD of the columns in a 
correlation table. In Figure 40, for example, X has a constant value for 
each column and accordingly 0'1/.111 is a measure of the variability in Y for a 
fixed value of X. 

The relationship between 0'1/ and 0'1/ • ., can ,be seen more clearly in the 
following illustration. If we have the correlation between height and 
weight in a group of fifth-grade boys, a2lit will be reduced to 0'2ht.,ot when 
the variance in weight is zero-when all of the children in the group have 
the same weight. Clearly, if q21/.3J is subtracted from a21/ there remains that 
part of the variance of Test Y which is associated with variation in X. If 
this last is divided by a21/ we have, finally, that fraction of the variance 
of Y which is attributable to or associated with X. Carrying out the deSig
nated operations, we find that 

from which it is apparent that r ZII gives the proportion of the variance 
(~f Y which is accounted for by X. When used in this way, r2 is sometimes 
called the coefficient of determination. When the r between Y and X is 
.71, r2 is .50. Hence, an r of .71 means that 50% of the variance of Y is 
associated with variabi!ity in X. Also, since r2 + k2 = 1.00, the proportion 
of the variance of Y which is not accounted for by X is given by k2• When 
r2 = .50, k2 = .50 also. 

When this analysis, of the dependence of Y upon X is taken a step 
further, certain interesting relationships appear. Suppose we write: 

the a211 (3J) becomes that part of the variance of Y which is dependent upon 
, . 
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X, just as a 2
yo'" is that part of the variance of Y which is not dependent 

upon X. If we substitute a2y (l - r2 ) for a2yo"" we find that 

a 2
y - a-2y + a-2 yr2",y = a-2y (",) 

and 

This means that r",y is the ratio found by dividing that part of the SD 
of Y which is dependent upon X by the SD of the whole Y test. Thus, it 
becomes clear that r is a measure of the extent to which variability in X 
accounts for variability in Y. 

Inspection of the coefficients of determination for small is emphasizes 
the very slight degree of association which these r's disclose. An r of .10, 
for instance, or .20 or even .30 between two tests X and Y indicates only 
1 %, 4% and 9%, respectively, of the variance of Y to be associated 
with X. At the other extreme, when r = .95, about 90% of the variance 
of Y is accounted for by variability in X, only about 10ro being inde
pendent of X. For further treatment of this type of analysis see, later, 
analysis of v;ariance (p. 277) and partial and multiple correlations (p. 419). 

5. Correlation and causation 

A correlation coefficient gives us, to be sure, a quantitative determina
tion of the degree of relationship between two variables X and Y. But r 
alone gives us no information as to the character of the association, and 
we cannot assume a causal sequence unless we have evidence beyond the 
correlation coefficient itself. Causation implies an invariable sequence-A 
always leads to B-whereas correlation is simply a measure of mutual 
association between two variables. Two cases arise in which the direction 
of the cause-effect relation may be inferred. In the correlation between X 
and Y, (1) X may be in part at least a cause of Y; and (2) X and Y may 
Have the same basic cause or causes. Athletic prowess is known to depend 
upon physical strength, dexterity and muscular coordination. The r be
tween sensorimotor tests and athletic performance will be positive and 
high, and the direction of the cause-effect relation is clear. Again, the cor
relation between tests in English and history, or intelligence and school 
grades probably arises from the same basic traits; whereas the r between 
executive ability and emotional stability is determined (besides selection) . 
by overlapping personality dimensions. Causal relations are sometimes 
revealed or suggested by the technique of partial correlation (p. 403). 
Through the application of this method, the influence of a given variable, 
for example, age, can be controlled and its effects upon variability in 
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other traits held constant. The r between intelligence and educational 
achievement over a wide age range is often drastically reduced when the 
effect of the age variable is removed. 

PROBLEMS 

1. Write out the regression equations in score form for the correlation table 
in example 3, page 148. 
(a) Compute (T(es' y) and (T( .. t X). 

(b) What is the most probable height of' a boy who weighs 30 pounds? 
45 pounds? What is the most probable weight of a boy who is 36 
inches tall? 40 inches tall? 

2. In example 4, page 148, find the most probable grade made by a child 
whose I.Q. is 120. What is the U(esl) of this grade? 

3. What is the most probable algebra grade of a child whose I.Q. is 100 
{data from example 6, p. 149)? What is the U(.81) of this grade? 

4. Given the following data for two tests: 

History (X) 
M;r = 75.00 

(Til! = 6.00 
r.rv = .72 

English (Y) 
My = 70.00 

U" = 8.00 

(a ) Work out the regression equations in score form. 
(b) Predict the probable grade in English of a student whose history 

mark is 6,5. Find the U(I'8f) of this prediction. 
(c) If T:rll had been .84 (u's and means remaining the same) how much 

would U(est Y) be reduced? 
5. The correlation of a test battery with worker efficiency in a large factory 

is 040, and 70% of the workers are regarded as "satisfactory." 
(a) From 75 applicants you select the best 25 in terms of test score. How 

many of these should be satisfactory workers? 
(b) How many of the best ten should be satisfactory? 
(c) How many in the two groups should be satisfactory if selected at 

random, i.e., without using the test battery? 
6. Plot the regression lines in on the correlation diagram given in exam

ple 6, page 149. Calculate the means of the Y arrays (successive Y col
umns), plot as points on the diagram, and join these points with straight 
lines. Plot, also, the means of the X arrays and join them with straight 
lines. Compare these two, "lines-through-means" with the two fitted re
gression lines (see Eig. 40, p. 152). 

7. In a group of 115 freshmen, the T between reaction time to light and sub
stitution learning is .SO. The U of the reaction times is 20 ms. (a) What 
would you estimate the correlation betweell these two tests to be in a 
group in which the SD of the reaction times is 25 ms.? (b) In which the 
SD of reaction times is 10 ms.? 
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8. Show the regression effect 'in example 4, p. 148, by calculating the regres
sion equation in standard-score form. For X's of ±1.00<T and ±2.000' from 
the mean in arithmetic, find the corresponding reading scores in 
<T-score form. 

9. Basing your answer upon four experience and general knowledge of psy
chology, decide whether the correlation between the following pairs of 
variables is most· probably (1) positive or negative; (2) high, medium, 
or low .. 
(a) Intelligence of husbands and wives. 
(b) Brain weight and intelligence. 
(c) High-school grades in history and physics. 
(d) Age and radicalism. 
(e) Extroversion and college grades. 

10. How much more will an r of .80 reduce a given <T(e8l) than an r of .40? 
An r of .90 than an r of AO? 

11. (a) Determine k and E for the following r's: •.. 35; -.50; .70; .95. Inter
pret your results. 

(b) What is the "forecasting efficiency" 'of an r of A5? an r of .99? 
12. The correlation of a criterion with a test battery is .75. What percent of 

the variance of the criterion is associated with variability in the battery? 
What percent is independent of the battery? 

13. In 4 experiments, the correlations between X and Y were as follows: .60, 
.20, .70.and .40. The N's were 26, 31, 42 and 35. What is the mean r: 
the weighted average of these 4 r's? 

14. What is the direction of the cause-effect relationship in the following 
cases: 

/ 

( a ) intelligence tests and 'school grades 
(b) personality measures and neurotic behavior 
( c ) eye tests and scores in marksmanship 
(d) aptitude tests and vocational success 
(e) alcoholism and delinquency. 

ANSWERS 

L. Y = .40X + 24.12; X = 1.26Y - 11.52 
(a) <T(eot Y) = 1.78; <T(e" X) = 3.16 
(b) 36.12 inches; 42.12 inches; 33.84 pounds; 38.88 pounds 

2. 85.2; ·<T(eot Y) = 7.0 . ' 

3. X = .S1Y + 8.16. When Y (I.Q.) is 100, X (algebra) is 45.2. <T(ed X) = 6.8 
4. (a) Y = .96X - 2; X = .54Y + 37.2 

(b) 6004; <T(ed Y) = 5.5 
(c) 22% 

5. (a) 21 
(b) 9 . 
(c) 17.5 and 7 (i.e., 70%) 

7. (a) r=.37 (b) r=.16 
8. ±.54 and ±1.08 
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~O. Five times as much; seven times as much. 
U. (a) 

(b) 11%; 86% 
12. 56%; 44% 
13. Mean r = .51 

r 

.35 
-.50 

.70 

.95 

k 

.94 

.87 

.71 

.31 

E 

.Q6 

.13 

.29 

.69 



CHAPTER 8 

THE SIGNIFICANCE OF THE MEAN 

AND OF OTHER STATISTICS 

I. THE MEANING OF STATISTICAL INFERENCE 

The primary objective of statistical inference is to enable us to general
ize from a sample to some larger population of which the sample is a 
part. Suppose, for example, that for a group of 166 eighth-grade boys in 
the schools of City A, the mean and the (]' for a test of Numerical Reason
ing are known. Can we from the data on this relatively small group say 
anything regarding the mean peformance of all of the eighth-grade boys 
in City A? The answer to this and to other questions like it is "Yes"
under certain conditions to be specified later. And the method of obtain
ing an answer involves inductive reasoning and probability theory-viz., 
statistical inference. 

It is rarely if ever possible to measure all of the members of a given 
population, and hence we must us:ually be content with samples drawn 
from this population. Furthermore, owing to differences in the composi
tion of our samples, means and (]"s c·omputed from such groups will tend 

,Ito be sometimes larger and sometimes smaller than their population 
values. Ordinarily, we have only the single sample; and our problem 
becomes one of determining how well we can infer or estimate the Mpop, 

for example, from the one sample mean. Means and other measures com
puted from samples are called statistics, and are subject to what are called 
"fluctuations of sampling." Measures descriptive of a population, on the 
other hand, are called parameters and are to be thought of as fixed -refer7 
ence values. 

We do not know, of course, the parameters of a given population. But we 
can-under specified conditions-forecast the parameters from our sample 
statistics with known degrees of accuracy. The degree to which a sample 
mean represents its parameter is an index of the significance or trust-

184 
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worthiness of the computed sample mean. When we have calculated a 
statistic, therefore, we may ask ourselves this question: "How good an 
estimate is this statistic of the parameter based upon the entire population 
from which my sample was drawn?" The purpose of this chapter is to 
provide methods which will enable us to answer this question for the 
mean, the median, and for other statistics. 

II. THE SIGNIFICANCE OF THE MEAN AND OF THE MEDIAN 

I. The standard error of the mean (a~) in large samples 

The need for a standard error of a sample mean can best be under
stood. when we have examined the factors upon which the stability of this 
statistic depends. Suppose that we wish to measure the ability of college 
freshmen in Ohio colleges by means of the American Council Psychologi
cal Examination. To measure the performance of Ohio college freshmen 
in general would require in strict logic that we test all of the first-year 
students in the ·state. This would be a stupendous if not an impossible 
task, and we must of necessity be satisfied with a sample. This sample-in 
order for it adequately to represent all freshmen-should be as large and 
as randomly drawn as possible. The definition of a random sample is given 
later on page 203. Suffice it to say here that in drawing a random sample 
we cannot take freshmen from only a single institution or from only one 
section of the state; and we must guard against selecting only those with 
high, or only those with low, scholastic records. The more nearly success
ful we are in obtaining an "unselected" group, the more nearly representa
tive this group will be of all freshmen in Ohio. It seems Clear, then, that 
the degree to which a sample mean approximates its parameter depends 
for one thing upon how impartially we have drawn our sample. 

Given a random sample-that is to say, a cross section of the popula
tion-the representativeness of a sample mean can be shown to depend 
mathematically upon two characteristics of the distribution: (1) N, the 
number of cases, and (2) a, the variability or spread of scores around the 
mean. The formula for the standard error of the mean is 

where 

and 

(T 
SEM or (TM = _-yN 

(stcindard error of an arithmetic mean) 

a = the standard deviation of the population 

N = the number of cases in the sample. 

(44) 
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In this formula for the SEM , the u in the numerator is actually the pop
ulation and not the sample SD. As we rarely have the SD of a population, 
we must of necessity use a substitute for it in the formula, and the best 
estimate we have is the SD of the sample in hand. Modem writers on 
mathematical statistics make a distinction between the SD of the popula
tion and the SD of a sample, designating the population SD by u and the 
sample SD by s. It can be shown mathematically that the SD of a random 
sample underestimates (is smaller than) the corresponding population u, 

although the negative bias is not large unless the sample is quite small. 
To correct this tendency toward underestimation, and thus to get a better 
approximation to the population u, we should cpmpute the SD of a 

, ~ 
sample by the formula s = '\J ~ instead of by the usual formula 

SD=~ 
In the sodal sciences we may generally omit this correction, as our 

samples are usually so large that the subtraction of 1 from N makes no 
appreciable difference in the computed SD. Whenever N is "large" (it is 
conventional to call any sample greater than 30 large), it is not worth
while making the correction. But when N is "small" (less than 30), it is 
advisable to use (N -1), and it is imperative when N is quite small
say, less than about 10. The student must remember (1) that theoretically 
(N -1) should always be used when the SD is to be an estimate of the 
population u; and that (2) the distinction between "large sample statis
tics" and "small sample statistics" in terms of a cutting point of N = 30 is 
arbitrary, and is in part a matter of convenience (p. 194). 

The SEM varies directly with the size of th'e sample SD (or s) and 
inversely with the size of N. As it is' difficult to influence the size of the 
s,ample SD, our best chance of decreasing the UM lies in increasing the 
size of.N. SEM measures the degree to which the M is affected by (1) 
errors of measurement (p, 346) as well as by (2) errors of sampling-i.e., 
inevitable fluctuations from sample to sample. SEM is an important and 
much-used formula. -

(1) APPLICATION OF SEM IN LARGE SAMPLES 

A problem will serve to illustrate the computation and interpretation 
of the SE of the mean in large samples. 

Example (1) The mean on a test of abstract reasoning for 225 
boys in the tenth grade of City F was 27.26 with a SD of 11.20. How 
dependable is this mean? Specifically, how good an estimate is it of 
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the mean which could be expected if all of the tenth-grade boys in 
City F were tested? 

From formula (.44), we find that the SEM is 

11.20 
SE. = UM = yf223 = .75 (to two significant figures) 

Note that the SD of 11.20 is taken as our estimate of the population U I 

without correction, and that the computation of aM is rounded to two deci
mals (p. 20). T4e SEM can be thought of as the standard deviation of a 
distribution of sample M's (like our M of 27.26) around the fixed popula
tion mean. The normal curve in Figure 44 pictures this sampling distribu-

. Mpap 
uM=O.75 

FIG. 44 Sampling distribution of means. showing variability of obtained 
means around population M in terms of UM. 

tion: it is centered at the (unknown) population mean, and its SD is .75 
(i.e., UM)' Note that the sample means fall equally often on the + and -
sides of the population mean. About 2/3 of the sample means (exactly 
68.26%) lie within + 1.00uM of the population M, i.e., within a range of 
+.75. Furthermore, 95 in 100 sample means lie within ±2.00UM (more 
e'xactly ±1.96uM) of the population mean-miss .the population mean by 
±1.96 X .75 or ±1.47. 

Our mean of 27.26 is; of course, only one of the sample means repre
sented in the sampling distribution of Figure 44. Hence the expectation is 
high (the probability is .95) that 27.26 or any sample mean for that mat
ter, will not miss, the Mpop by more than ±1.47. Conversely, the prob
ability is low (P = .05) that 27.26 does miss the parameter (the population 
mean) by more than + 1.47. Both of these statements express the depend
ability of the sample mean in terms of the degree to which it estimates 
accurately the population parameter. Larger deviations from Mpop which 
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are less likely of occurrence may be computed by tah.HJg into account 
more of the sampling distribution in Fig. 44. 

Discussion 
How the standard error measures the stability or trustworthiness of a sample 

mean may be shown more clearly perhaps in the following way. Suppose that 
we have calculated the mean on our test of Abstract Reasoning for each of 
100 samples of tenth-grade boys; that each sample contains 225 boys; and that 
the samples .are drawn at random from the population of tenth-grade boys in 
cities like City F. The 100 means computed from the 100 samples will tend 
to differ more or less from each other owing, to fluctuations of sampling. 
Accordingly, not all samples will represent with equal fidelity the population 
from which they have all been drawn. It can be shown mathematically that the 
frequency distribution of these sample means will fall into a normal distribu
tion around the Mpop as their measure of central tendency. Even when the sam
ples themselves exhibit skewness, the means of these samples will tend to be 
normally distributed. This sampling distribution reflects the fluctuations in mean 
from sample to sample. In this normal distribution of means, we shall find rela
tively few large + or large - deviations from M pop; and many small plus, small 
minus, and zero deviations. In short, the sample means will hit very near to 
Mpop or fairly close to it more often than they will miss it by large amounts. 

The mean of our sampling distribution of sample means is Mpop. And our 
best estimate of the standard deviation of the sampling distribution is the SEll 
which we have computed by formula (44). Said differently, U,ll shows the 
spread of sample means around Mpop. It is owing to this fact that the SEll 

becomes a measure of the amount by which the sample means diverge from 
the over-all population mean. 

The results of our hypothetical experiment are represented graphically in 
Figure 44. The 100 sample means fall in~o a normal distribution around the 
Mpop and UM is equal to .7$. The SD of a normal distribution when measured 
off in the + and - directions from the mean includes the middle 68.26% of 
the cases (Table A). About 68 of our 100 sample means, therefore, will fall 
,within ±l.OOuJ[ or within ±.75 of the Mpop; .and about 95 of our 100 sample 
means will fall within ±1.96uM or within ±1.47 of the Mp01" The prob
ability (P) is .95, therefore, that our sample mean of 27.26 does not miss the 
Mpop by more than ±1.47; and the probability is .05 that 27.26 does miss 
the Mpop by more than ±1.47. The size of the probable deviation of a sample 
mean from its Mpop is a measure of the efficiency with which we have been • 
able-from the sample mean-to estimate the population mean. 

(2) SE'ITING UP CONFIDENCE INTERVALS FOR THE POPULATION MEAN 

Deicription of the stability of a sample mean in terms of "probable 
divergence of statistic from parameter" is straightforward and" reasonable, 
as it is evident that contldence can be placed in a sample mean if there is 
small likelihood of its having missed its population value by a large 
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amount. An obvious difficulty with probability statements of' this sort, 
however, arises from our inability to say how far a sample mean should 
miss Mpop before the expected deviation is to be judged as "large." The 
size of the range (M - Mpop) -Le., the sampling error allowable in a mean 
will always depend upon the purpose of the experiment, the standards of 
accuracy demanded, the units of measurement employed, and upon other 
factors. In short, the experimenter can never say categorically that a sam
ple mean is-or is not-a dependable estimate of Mpop: he can only give 
the probability of a given divergence. 

A better approach to the problem of estimating the Mpop is through the 
setting up of limits which, for a given degree of confidence, will embrace 
the population mean. Such limits are said to define confidence intervals. 
The method of establishing confidence intervals is as follows. It is clear 
from Figure 44 that in a sampling distribution of means, Mpop + 300M pro
vides limits within which nearly aU (actually 99.730/0) of the sample 
means may be expected to fall. As the Mpop itself is unknown, all that we 
can infer with respect to this parameter is that it could be anyone of a 
range of values-one of which will be our sample mean. Suppose that we 
take ±3.00UM as our quite inclusive working range. Then if our M falls 
at the tentative upper limit of the sampling distribution, Mpop = M - SuM; 

whereas, if M falls at the tentative lower limit of the sampling distribu
tion, Mpop = M + 300M. These relations are shown in Figure 45. Since 
±3.00UM in a normal distribution includes 99.73'70 of the cases, the limits 

TM=M+30M 

FIG. 45 When M falls at +3UM. TM = M - 300M: when M falls at -300M. 
TM = M + 300M 



190 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

specified by M + 3aM may be said to define the 99.73% confidence inter
val. The degree of faith placed in these limits is represented by a 
P = .9973. Evidently, we may be confident to a degree approaching cer
tainty that Mpop lies within this range. 

Intervals which deserve lesser degrees of assurance can be set up in the 
same way. Two confidence intervals are in general use and are now ac
cepted as standard by most statisticians. We know that 95% of the cases in 
a normal distribution fall within the limits ±1.96aM, and that 99% fall 
within the limits ±2.58aM (see Table A). If we take the limits specified 
by M ± 1.96aM, we define- an interval for which the level of confidence 
is .95: Basing our judgment as to the size of Mpop on these limits, we stand' 
to be right 95% of the time and wrong 5%. For greater assurance, we may 

, take the interval defined by the limits M ± 2.58aM. The level of confi
dence for this interval is expressed by a P = .99; or stated differently, the 
limits M + 2.58aM define the .99 confidence interval. 

By way of illustration, let us apply the concept of confidence intervals 
to the problem on page 188. Taking as our limits M ± 1.961TAr. we have 
27.26 ± 1.96 X .75 or a confidence interval marked off by the limits 2,5.79 
and 28.73. Our assurance that this interval contains Mpop is expressed by 
a P of .95. If we desire a higher degree of assurance, we can take the .99 
level of confidence, for which the limits are M ± 2.580'M. In our problem, 
these limits become 27.26 ± 2.58 X .75 or 25.33 and 29.19. We may be 
quite confident that Mpop is not lower than 25.33 nor higher than 29.19 
The width of a confidence interval becomes a direct measure of the ade
quacy of the inference, and hence of the trustworthiness of our sample 
mean. 

It may seem to the student that use of the confidence interval is an 
exceedingly roundabout way of making an inference concerning the popu
lation mean. It would appear to be much more straightforward to say that 

,"the chances are 95 in 100 that the Mpop lies between 25.79 and 28.73." 
I Such probability statements concerning Mpop are often made and lead to 

what appears to be virtually the same result as that given in terms of con-
fidence intervals. Theoretically, however, such inferences regarding the 
Mpop are incorrect, as this parameter is not a variable which can take sev
eral values but is a fixed point. The Mpop has only one value and the prob
ability that it equals some given figure is always either 100% or 0J"0-
right or wrong. Our probability figures (e.g., .95 or .99) do not relate to 
our confidence that Mpop itself could take one of several values within a 
specified range. Rather, the probability used in specifying a confidence 
interval is an expression of our confidence in the inference, namely, of our 
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confidence that the given interval does in fact include Mpop. This is a 
subtle point but a valid one. 

The limits of the confidence interval of a parameter have been called by 
R. A. Fisher'" fiduciary limits and the confidence placed in the interval 
defined by the limits as containing the parameter is called the fiduci:ary 
probability. In terms of fiduciary probability, the .95 confidence interval 
would be described as follows: "The fiduciary probability is .95 that Mpop 

lies within the interval M ± 1.96aM, and .05 that it falls outside of these 
limits." 

2. The standard error of the mean in small samples 

Whenever N is less than about 30 (see p. 186) the formula for the 
aM should read: 

S 
SM=--

\IN 
(standard error of the mean in small samples) 

(45) 

in which s = ~ (N ~2 1) and N is the size of the sample. t In addition to 

the use of (N - 1) in the computation of s in small sample statistics, there 
is a still more important difference between the treatment of large and 
small samples. This has to do with the sampling distribution of means 
computed from small samples. Figure 46 shows how the appropriate sam
pling distribution-called the t distribution-compares with the normal. 
When N is small, the t distribution lies under the normal curve, ,but the 
tails or ends of the curve are higher than the corresponding parts of the 
normal curve. Note that the t distribution does not differ greatly from 
the normal unless N is quite small; and that as N increases in size the t dis
tribution approaches more and more closely to the normal form. The 
units along the baseline· of the t distribution are actually a scores, i.e., 

t = (M - M pop) • t 
SM 

.. Fisher, R. A., The Design of Experiments (London: Oliver and Boyd, 1935), 
pp. 200 f. 

t If the SD has been computed with N in the denominator, the same correction 
II 

shown in (45) can be accomplished by using the fommla SEM == ~ I . 

t For a mathematical treatment of the t distribution, see ·Walker, H. M., and Lev, J., 
Statistical.Inference (New York: Henry Holt and Co., 1953), pp. 145f. 

'''--.. 
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--- df = 00, N = 00 

------- df = 25, N = 26 
-- _-- df = 9, N = 10 
---- df =: I, N = 2 

-4 -3 -2 -1 0 1 2 3 4 
Scale of t 

FIG_ 46 Distribution of t for degrees of freedom from I to 00 _ When df is 
very large, the distribution of t is virtually normal. 

[After Lewis, D., Quantitative Methods in Psychology (Iowa City, 
1948), p. 188] 

Selected points in the t distribution are given in Table D. For N's over 
a wide range, this table gives the t-distances beyond which-to the right 
and left-certain percents of the sampling distribution fall. These percent 
points are .10, .05, .02, and .01. An illustration will make clear the use of 
Table D in small samples and will introduce the concept of "degrees of 
freedom" (see p. 194). 

Example (2) Ten measures of reaction time to light are taken 
from a practiced observer. The rpean is 175:50 ms (milliseconds) and 
the s is 5.82 ms. Determine the .95 confidence interval for the Mpup; 
the .99 confidence interval. 

Prom formula (45), we compute SM to be 5.82 or 1.84 ms. We do not, 
yTO 

of course, know the value of the population mean, but if we have the 
proper number of degrees of freedom we can determine the vaue of t at 
selected points in the sampling distribution. The df (degrees of freedom) 
available for determining tare (N - 1) or 9. Entering Table D with 9 df, 
we read that t = 2.26 at the .05 point and 3.25 at the .01 point. From the 
first t, we know that 95'1'0 of samplt; means like 175.50 (the mean of our 
sample) lie between the Mpop and :'::2.26s&l and that 570 fall outside of 
these limits. From the second t, we know that 99'70 of sample means lie 



THE SIGNIFICANCE OF THE MEAN AND OF OTHER STATISTICS· 193 

between Mpop and ±3.25sM, ahd that 1% fall beyond these limits (see 
Fig. 47). 

Confidence intervals may be established for the population mean in this 
problem by the methods of page 188. Taking as our limits, M ± 2.26sy 

-3t - 2t -It 1t 2t 3t 
Mpop t t 

169.52 171.34 17~.66 181.48 
8M '" 1.84 

FIG. 47 Confidence intervals for the Mpop in the t distribution when df = 9 

we have 175.50 ± 2.26 X 1.84 or 171.34 and 179.66 as the limits of the .95 
confidence interval. Or taking the limits M ± 3.25sJ[, we have 175.50 ± 5.98 
or 169.52 and 181.48 as the limits of the .99 confidence interval. The P is 
.99 that the Mpop is not less than 169.52 nor greater than 181.48. If we infer 
that MpQP lies within the latter interval, over a long series of experiments 
we should be right 997'0 of the time and wrong 17'0. The width of the .. 99 
confidence interval (i.e., 181.48 - 169.52 or 11.96) shows the marked in
stability present when an inference is based upon a sm~ll N. Small samples 
should be avoided if possible in the social sciences. Inferences drawn 
from small groups are usually unsatisfactory owing to great variability 
from sample to sample. It is difficult, too, to be sure that a small sample 
adequately represents (is a random sample of) the parent populqtion. 

( 1) INFERENCES FROM LARGE AND SMALL SAMPLES 

Several points in the solution of this problem deserve further com
ment as they bring out clearly the difference in accuracy between infer
ences from large and small samples. Had we used formula (44) instead 
of (4.5) in the problem above, the SE of our mean would have been 1.75 
ms instead of 1.84 ms-about 5% too small. Again the .05 and .01 points 
in the unit normal curve are ±1.96 and ±2.58 (Table A). These limits are 
13% and 21% 'smaller than the correct t limits of ±2.26 and ±3.25 read 
from Table D for 9 df. It is obvious, then, that when N is small, use of 
formula: (44) and the normal curve as sampling distribution will cause a 
computed mean to appear to be more trustw?rthy than it. actually is. 
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The SE of the mean in the problem on page 187 was .75. Had formula 
(44) and Table A been used in evaluating the stability of our sample 
mean of 27.26, results would not have differed appreciably from those 
obtained with formula (45) and Table D. From Table D, for example, 
we find that for 224 df (225 - 1) the .05 point is 1.97 and the .01 point is 
2.60. As N increases, Table D shows that t entries approach more and 
more closely to the corresponding normal curve entries. In the unit normal 
curve, for instance (see Table A), 10% of the distribution lies beyond the 
limits ± 1.65, 570 beyond the (T-limits ± 1.96 and 170 beyond the limits 
±2.58. In Table D, the corresponding t limits for 50 df are ±1.68, ±2.01 
and ±2r68. For 100 df the t limits are ±1.66, ±1.98 and ±2.6S. When N 
is very large, the t distribution becomes a normal curve (see last line in 
Table D). It is only when N i~ quite small that the t distribution diverges 
markedly from the normal form. As research workers in the mental and 
social sciences rarely work with groups smaller than SO, small sample, 
statistics are not generally as useful in psychology and education as they 
are in biology and agriculture. 

( 2) DEGREES OF FREEDOM 

The concept of degrees of freedom which we encountered on page 192 
is highly important in small sample statistics. It is crucial, too, in analysis 
of variance and in other procedures which will appear in later chapters. 
When a statistic is used to estimate a parameter, the number of degrees 
of.£reedomc (df) available depends upon the restrictions placed upon the 
observations. One df is lost for each restriction imposed. If we have 5 
scores, 5, 6, 7, 8, and 9, the mean is 7; and the deviations of our scores 
from 7 are -2, -1,0,1 and 2. The sum of these deviations is zerp. Of the 
5 deviations, only 4 (N - 1) can be selected "freely" (i.e., are independ
ent) as the condition that the sum. equal Zero immediately restricts the 
value of (fixes) the 5th deviate. The SD is, of course, based upon the 

, squares of the deviations taken around the IDean. There are N df for com
puting the mean, but only (N - 1) available for the s (the SD) as one df ~ 
is lost in calculating the mean. In example (2) the df available for esti
mating the Mpop were given as 9 or (N - 1) -one less than the number of 
observations, namely, 10. One df was lost in computing the M and accord
ingly only 9 are left for estimating the Mpov by way of s and the 
t distribution. 

Whenever a statistic is used to estimate a parameter, the rule is that 
llie df available equals N minus the number of parameters already esti
mated from the sample. The M is an estimate of Mpop and in computing 
it we lose 1 df. In example (2) the only parameter estimated is Mpop and 
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the number of degrees of freedom is (N - 1) or 9. The degrees of free
dom are not always (N - 1) however, but will vary with the problem and 
the restrictions imposed. In estimating the dependability of an r, for exam
ple (which depends upon the deviations from two means), the df are 
(N - 2). Rules for determining the df available in the chi-square test 
(p. 254) and in analysis of variance tables will be given in appropriate 
places in later chapters. 

3. The standard error of a median 

In terms of <T and Q, the SE's of the median for large samples (.e.g., as 
large as 100) are 

1.2530' 
(46) O'Man= ~ 

and 

O'Mdn = 1.858Q (47) 
yIliJ 

(standard error of the median in terms of 0' and Q) 

The fact that the SEJ1dn is roughly 174 times the <TM shows the mean to be 
in general more dependable (less subject to sampling fluctuations) than 
the median (p. 185). An example will illustrate the use and interpretation 
of formula (47): 

Example (3) On the Trabue Language Scale A, 801 twelve--year
old boys made the following record: Mdn = 21.40 and Q = 4.90. 
How well does this median represent the median of the population 
from which/ this sample was drawn? 

1.858 X 4.90 
By formula (47), the OMan = . or .32 (to two decimals). . V801 

Since N is' large, the sampling distribution may be taken to be normal and 
the confidence interval found from the last line in Table D. The .99 confi
dence interval for the Mdnpop is 21.40 ± 2.58 X .32 or 21.40 ± .83. We 
may be confident that the median of the population is not less than 20.57 
nor more than 22.23. This narrow range shows a high degree of trust
worthiness in the sample median. 

III. THE SIGNIFICANCE OF MEASURES OF VARIABILITY 

I. The Sf of the standard deviation 

The SE of a standard deviation, like the SEM, is found by computing 
the probable divergence of the sample SD from its parameter (popula
tion SD). The formula for SEq is' 
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SE 
.7IIT 

a or ITa =-_ 
v'N 

(48) 

(standard error of a standard deviation) 

The sampling distribution of IT is skewed for small samples (N less than 
about 25). But when samples are large and drawn at random from their 
population, formula (48) may be applied and interpreted in the same 
way as SEM• To illustrate, it was stated on page 187 that for 225 tenth
grade boys, the SD around the mean of 27.26 on the Abstract Reasoning 
Test was 11.20. By formula (48) 

SEa = 11.20 X .71 = .53 
y'22D 

Since N is large, the .99 confidence interval for the SDpop can safely be 
taken at the limits ±2.580"a. Substituting for eTa we have 11.20 ± 2.58 X .53. 
If we assume that the SDpop lies between the limits 9.83 and 12.57, we 
should be right 99% of the time and wrong 1 %. 

The SE of a standard deviation is always smaller than SEM • The CTa may 

be written _CT_. 

v'2N 

2. The Sf of the quartile deviation or Q 

The SE(,I may be found from the formulas 

.7860-
0"(,1=--

VN 
1.17Q 

0"(,1 =_ v'N 
(standard errors of Q in terms of IT and Q) 

(49) 

(50)-

These formulas may be applied and interpreted as are the other SE 
formulas. Thus, in the problem on page 195, the median for 801 boys on 
the Trabue Scale was 21.40 and' the Q WaS 4.90. The SE of this Q by 
(50) is 

1.17 X 4.90 203 ( 3 d . I) 
CT(,I = ~ =. to eClma s 

y80l 

The .99 confidence interval for the population Q is from 4.38 to 5.42, i.e., 
4.90 ± 2.58 X .203. This narrow range shows that the sample Q is a 
highly dependable statistic. 
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IV. SIGNIFICANCE OF PERCENTAGES AND OF THE CORRELATION COEFFICIENT 

I. The stability of a percentage 

It is often feasible to find the percentage of a given sample which· 
exhibits a certain behavior or possesses a definite attitude or other charac
teristic when it is difficult or impossible to measure these attributes 
directly. Given the percentage occurrence of a behavior, the question 
often arises of how much confidence we can place in the figure. How 
reliable an index is our percentage of the incidence of the behavior in 
which we are interested? To answer this question, we must compute the 
SE of a percentage by the equation: 

U%=!t-

(SE of a percentage) 

in which 
P = the percentage occurrence of the behavior 
Q= (I-P) 
N = number of cases 

To illustrate formula (51) with a problem: 

Example (4) In a study of cheating among elementary-school 
children, 144 or 41.4% of the 348 children from homes of high socio
economic status were found to have cheated on various tests. Assum
ing our sample to be representative of children from good homes, how 
much confidence can we place in this percentage? How well does it 
represent the population percentage? 

Applying formula (51), we get that 

- /41.4% x 58.6% - 2 60t 
U% - '\j 348 . -. /0 

(51) 

The sampling distribution of percentages can be taken as normal when 
N is large (larger than about 50) and when P is less than 950/0 and greater 
than 570. The SE%is interpreted like the aM' In the present problem, the .99 
confidence interval for: the population percentage is 41.470 ± 2.58 X 2.60/0 
or from 34.770 to 48.170. We may feel sure that the percentage of chil
dren in' general who cheat on tests of the sort used in this study will be 
at least 34.7% and will not be larger than 48.1 %. 
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2. The significance of the coefficient of correlation 

(1) THE: SE OF r 
The classical formula for the SE of r is 

crr = 
(1 - r2 ) 

VN 
(52) 

(SE of a coefficient of correlation r when N is large) 

In the height-weight problem on page 135, r = .60 and N = 120. The 
(1 - .602 ) 

SE,. by formula (52), therefore, is • 1f()(i or .06. (to two decimals). 
v 120 

To test the dependability of r in terms of its SE, we assume the sampling 
distribution of r to be normal, place the "true or population r" at the 
center (Fig. 48) of the distribution, and take .06 (i.e., SE,.) to be the 

-2.580', 

O'r=O.06 

FIG. 48 There are 95 chances in 100 that the obtained r does not miss the 
true r by more than ±.12 (± 1.960',,). The .99 confidence interval 
for the true r is r ± 2.580',. or .60 ± .15, i.e., .45 to .75. 

SD of this sampling distribution of r's. Since the probability is .05 of an 
r exceeding -+-1.96u,., there is only one chance in 20 that an errOr of. 
± .12 or more is present in our r. Again, the .99 confidence interval for the 
population r can be taken as r ±2.58u,.. Substituting for rand SE,., we 
get .45 and .75 as the limits of our .99 confidence interval. We can feel 
quite certain, therefore, that r is at least as large as .45 and is no larger 
than .75. 
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There are two serious objections to the use of formula (52). In the 
first place, the r in the formula is really the true or population r. Since we 
do not have the true r, we must substitute the calculated r in the formula 
in order to get an estimate of the standard error of r. If the obtained r 
is in error, our estimate also will be in error; and at best it is an 
approximation. 

In the second place, the sampling distribution of r is not normal e~cept 
when the population r == .00 and N is large. When r is high (.80 or more) 
and N is small, the sampling distribution of r is skewed and the SEr from 
( 52) is quite misleading. This is true also when r is low (e.g., .20 or less). 
Skewness in the sampling distribution of high r's results from the fact 
that the range of r is .from +1.00 to -1.00. If r = .80 and N = 20, the 
probability of an r less than .80 in a new sample of 20 cases is much 
greater than the probability of an r greater than .80 because of the sample 
r's nearness to unity. The distribution of r's obtained from successive 
samples of 20 cases will be skewed negatively (p. 99) and the skewness 
increases as r increases. For values Of r close to ±.50, and for N's of 100 
or more, the distribution of r in successive samples will conform closely to 
the normal curve, and formula (52) will yield a useful estimate of signifi
cance. But unle,ss S<Er is used with care it is likely to be misinterpreted. 

(2) CONVERTING r's INTO FISHERS Z FUNCTION 

A mathematically more defensible method of t~sting the significance 
of an r, especially when the coefficient is very high or very low, is to con
vert r into R. A. Fisher's Z function 1) and find the SE of z. The function z 
has two advantages over r: (1) its sampling distribution is approximately 
normal and (2) its SE depends only upon the size of the sample N, and 
is independ~nt. of the size of r. The formula for CTz is 

1 
Cl'z=---

yv=-S (53) 

(SE of Fisher's z function) 

Suppose that r = .. 85, and N = 52. First, from Table C we read that an 
r of .85 corresponds to a z of 1.26. SE. from (53) is 1 or .14. The 

-;52-3 
.95 confidence interval for the true z is now .99 t~ 1.53 ti.e., 1.26 ± 1.96 X 
.14 or 1.26 ± .27). Converting these z's back into r's we get a confidence 
interval of from .76 to .91. The fiduCiary probability is .95 that this interval 
contain~ the true r (p. 191). 

"Fisher, R. A., Statistical Methods for Research. Workers (8th ed.; London: Oliver 
and Boyd, 1941), pp. 190-203. 
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The coefficient of correlation .60 in the height-weight problem (p. 135) 
is not large enough for the conversion into z to make much difference in 
our significance estimate, namely, .45 - .75. An r of .60 is equivalent to 

a z of .69 (Table C), and the SE. is 1 or .09 (to two decimals). 
- v'120 - 3 

The .99 confidence interval for the true z, therefore, is .46 to .92 (i.e .. 
. 69 ± 2.58 X .09 or .69 ± .2.3). When we convert these z's back into l"S 

the .99 confidence interval for the population r becomes ,43 to .73. This 
range is almost identical with that on page 198 obtained when we used 
rand SEr' 

( .3) TESTING r AGAINST THE NULL HyparnESrs 

The Significance of an obtained _r may be tested also against the 
hypothesis that the population r is in fact zero. iii If the computed l' is 
large enough to invalidate or cast serious doubt upon this null hypothesis 
we accept r as ~ndicating the presence of at least some degree of correla
tion. To make the test, enter Table 25 with (N - 2) degrees of freedom 
and compare the obtained r with the tabulated entries. Two significance 
levels, .05 and .01, are given in Table 25, which is read as follows when, 
for example, r == .60 and N = 120. For 118 df the entries at .05 and .01 
are by linear interpolation .18 and .24, respectively (to two decimals). 
This means that only 5 times in 100 trials would an r as large as ,± .18 
arise from fluctuations of sampling alone if the population r were actually 

(r=0.24 

7=-0.18 r=O.oo r::::0.18 

FIG. 49 When the population r is zero, and df == 118, 5"/0 of the sample r's 
exceed ±.18, and '% exceeds ±.24 

C> See page 247 for further definition of the null hypothesis. 
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TABLE 25 Correlation coefficients at the 5% and I % levels of significance 

Example: When N is 52 and df is 50, an r must be .. 273 to be significant at 
.05 level, and .354 to be significant at .01 level. 

Degrees of Degrees of 
freedom .05 .01 freedom .05 .01 
(N - 2) (N -2) 

1 .997 1.000 24 .388 .496 
2 .950 .990 25 .381 .487 
3 .878 .959 26 .374 .478 
4 .811 .917 27 .367 .470 
5 .754 .874 28 .361 .463 
6 .707 .834 29 .355 0456 
7 .666 .798 30 .349 .449 
8 .632 .765 35 .325 0418 
9 .602 .735 40 .304 .393 

10 .576 .708 45 .288 .372 
11 .553 .684 50 .273 .354 
12 .532 .661 60 .250 .325 
13 .514 .641 70 .232 .302 
14 .497 .623 80 .217 .283 
15 .482 .606 90 .205 .267 
16 .468 .590 100 .195j .254? 
17 .456 .575 125 .174 .228, 
18 .444 .561 150 .159 .208 
19 0433 .549 200 .138 .181 
20 .423 .537 300 .113 .148 
21 .413 .526 400 .098 .128 
22 0404 .515 500 .088 .115 
23 .396 .505 1000 .062 .081 

.00; and only once in 100 trials would an r as large as ± .24 appear if the 
population r were .00 (Fig. 49). It is clear that the obtained r of .60, 
since it is much larger than .24, is highly Significant, i.e., at the .01 level. 

Table 25 takes account of both ends of the sampling distribution-does 
not consider the sign o~ r. When N :;::= 120, the probability (P /2) of an r 
of .18 or more arising on the null hypothesis is .025; and the probability 
of an r of - .18 or less is, of course, .025 also. For a P /2 of .01 (or P of 
.02) the r by linear interpolation between .05 (.18) and .01 (.24) is .22. 
On the hypothesis of a population r of ' zero, therefore, only once in 100 
trials would a positive r of ,22 or larger arise through accidents of 
sampling. 



202 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

The .05 and .01 levels in Table 25 are the only ones needed ordinarily 
in evaluating the significance of an obtained r. Several illustrations of the 
use of Table 25' in determining significance are given below: 

Size of Sample Degrees of Calculated 
(N) Freedom Interpretation 

(N - 2) 
r 

10 8 .70 significant at .05, 
not at .01 level 

152 150 -.12 not significant 
27 25 .50 significant at .05, 

barely at .01 level 

500 498 .20 very significant 
100 98 -.30 very significant 

It is clear from these examples that even a small r may be significant if 
computed from a very large sample, and that an r as high as .70 may not 
be significant if N is quite small. Table 25 is especially useful when N is 
small. Suppose that we have found an r of .55 from a sample of 12 cases. 
Entering Table 25 with (N - 2) or 10 dt we find that r must be .71 to be 
significant at the .01 level and .58 to be significant at the .05 level. In this 
small sample, therefore, even an r as high as .55 cannot be taken as 
indicative of any real correlation. 

V. SAMPLING AND THE USE OF STANDARD ERROR FORMULAS 

All of the SE formulas given in this chapter depend upon N, the size of 
the sample, and most of them require some measure of variability (usu
ally fT). It is unfortunate, perhaps, that there is nothing in the statement , \ .~ 

of a SE formula which might deter the uncritical worker from applying it 
to the statistics calculated from any set of test scores. But the general and 
indiscriminate computation of SE's will inevitably lead to erroneous con
clusions and false interpretations. Hence, it is highly important that the 
research worker in experimental psychology arid in educational research 
have clearly in mind (1) the conditions under which SE formulas are 
(and are not) applicable; and that he know (2) what his formulas may 
be reasonably expected to do. Some of the limitations to the use of SE's 
have been given in this chapter. These statements will now be ampli
fied and further cautions to be observed in the use of SE's will be indi
cated. 



THE SIGNIFICANCE OF THE MEAN AND OF OTHER STATISTICS· 203 

I. Methods of sampling 

Various techniques have been devised for obtaining a sample which 
will be representative of its population. The adequacy of a sample (i.e., 
its lack of bias) will depend upon our knowledge of the population or 
supply (> as well as upon the method used in drawing the sample. Com
monly used sampling methods will be described in this section under 
four headings: random, stratified or quota, incidental, and purposive. 

( 1) RANDO¥ SAMPLING • 

The descriptive term "random" is often misunderstood. It does not 
imply that the sample has been chosen in an offhand, careless or hap
hazard fashion. Instead it means that we rely upon a certain method of 
selection (called "random") to provide an unb4ased cross section of the 
larger group or population. The criteria for randomness in a sample are 
met when (1) every individual (or animal or thing) in the population 
or supply has the same chance of being chosen for the sample; and (2) 
when the selection of one individual or thing in no way influences the 
choice of another. Randomness in a sample is I assured when we draw 
similar and well shaken-up slips out of a hat; or numbers in a lottery 
(provided it is honest); or a hand from a carefully shufHed deck of cards. 
In each of these cases selection is made in term~ of some mechanical 
process and is not subject to the whims or biases (if any) of the 
experimenter. , 

A clear distinction should be made between representative and random 
samples. A representative sample is one in which the distdbution of 
scores in the sample closely parallels that of the population. Experience 
has shown that if one is asked to get representative samples from a popu
lation he will for various reasons (some not recognized) often draw sam
ples which exhibit consistent biases of one sort or another. The most 
trustworthy way of securing representativeness, therefore, is to make sure 
that the sampling is random. If we draw samples at random from the 
population we know at least that (a) there will be no consistent biases; 
( b) on the average these samples will be representative; (c) the degree 
of discrepancy likely to occur in any given sample can be determined by 
probability methods. The SE formulas given in this chapter apply only to 
random samples. 

In research problems in psychology and in education three situations 
arise in connection with the drawing of a random sample: (a) the mem
bers of 'the population or supply are on file or have been catalogued in 

.. A supply usually means a population of objects or things. 
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some way; (b) the form of the distribution of the trait in the population 
is known to be (or can reasonably be assumed to be) normal; (c) the 
population is known only in general terms. These situations will be dis
cussed in order. 

(a) Members of population are on file or are catalogued. If the popula
tion has been accurately listed, a type of systematic selection will provide 
what is approximately a random sample. Thus we may take every fifth or 
tenth name (depending upon the size of the sample wanted) in a long list, 
provided names have been put in alphabetical order and are not arranged 
with respect to some differential factor, such as age, income or education. 
(A better plan in such cases is to assign numbers to the members of the 
population and draw a sample as described below.) By this method an 
approximately random sample of telephone users may be obtained by ref
erence to the telephone directory; of sixth-grade children from attendance 
rolls; of automobile owners from the licensing bureau; of workers in a 
factory from payroll lists. Random samples of the population with res,!?ect 
to a variety of characteristics may be drawn in the same way from 
census data. 

Systematic selection from a catalogued population is often used in 
determining the acceptance rate of industrial products. Thus in sampling 
machine-produced articles for defectives, a random sample may be 
obtained by taking every tenth article, say, as it comes from the machine. 
Sampling of this sort is justified if the manufactured articles are taken 
just as they come from the machine, so that systematic selection provides 
an approximately random sample from the supply. 

\Vhen the subjects in a group are to be assigned at random to one or 
more experimental and control subgroups, tables of random numbers may 
be used to good purpose. I) In such tables, numbers arranged by a chance 
procedure are printed in sequence. The tenth block of 25 numbers, taken 
from Fisher and Yates' table and reproduced here will serve as an 
:example: 

34 
85 
09 
88 
90 

50 
22 
79 
75 
96 

57 
04 
13 
80 
23 

74 
39 
77 
18 
70 

37 
43 
48 
14 
00 

The Risher-Yates table is made up of 300 similar blocks of 25 numbers, 
printed on 6 pages of 10 rows and 5 columns each. To read from the table 

o Fisher, R. A., and Yates, F., Statistical Tables (New York: Hafner Publishing Co., 
1948), Table 33. . 
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on~ may begin at any point on any page and read in any direction, up or 
down, right or left. When all of the individuals in the entire group or pop~ 
ulation have been numbered in 1, 2, 3 order, a random sample of any 
size can be drawn by following in order the numbers read from the table. 
Suppose, for example, that a random sample of 25 is to be drawn from a 
larger "population" of 100. Then, if we have decided beforehand to start 
with the second column in the block above and read down, individuals 
numbered 50, 22, 79, 75 and 96 will be included. Other blocks chosen in 
advance may be used to provide the additional 20 subjects. If the same 
number occurs twice, the second draw is disregarded. 

(b) Distribution of trait in the population is known. As a result of 
much research in individual differences, many physical and mental traits 
are believed to be normally distributed-or approximately so-in the gen~ 
eral population. If a trait or ability in which we are interested is known 
to be normally distributed in the population, a sample drawn at random 
from this population will also be normally distributed. Hence, under the 
stipulated conditions, normality of distribution becomes a good criterion 
of sample adequacy. 

(c) Population known only in general terms. In many problems in psy~ 
chology and in education the popul~tion is (1) not clearly defined, (2) not 
readily accessible for sampling (for example, the population of a state), 
and '( 3) very expensive to sample extensively. Under conditions such as 
these a useful test of the adequacy of a sample consists in drawing several 
samples at random and in succession from the population, such samples 
to be of approximately the same size as the sample with which we are 
working. Random samples of ten-year-old school boys in a large school 
system, for instance, must be drawn without bias as to able, mediocre or 
poor individuals; they cannot be drawn exclusively from poor neighbor~ 
hoods, from expensive private schools, or from any larger group in which 
special factors are likely to make for systematic differences. 

When the means and SD's of our presumably random samples match 
closely, we may feel reasonably sure that our samples are all representing 
the same thing. If the correspondence among samples is not close we 
should reexamine each: sample for bias. This test can be criticized on the 
grounds that (1) the correspondence of two or more samples may reflect 
nothing more than a common bias and (2) that consistency is not a suffi
cient criterion of representativeness. Both of these objections are valid. At 
the same time, consistency among samples is a necessary, if not a suffi
cient, condition of randomness. When successively drawn samples are 
consistent in mean and SD, they may be taken to be random unless subse
quent examination reveals a common bias. When samples differ widely, 
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we cannot be sure that anyone of them is representative of the 
population. 

(2) STRATIFIED OR QUOTA SAMPLING 

Stratified or, quota sampling (also called "controlled" sampling) is a 
technique designed to ensure representativeness and avoid bias by use 
of a modified random sampling method. This scheme is applicable when 
the population is composed of subgroups or strata of different sizes, so 
that a representative sample must contain individuals drawn from each 
category or stratum in accordance with the sizes of the subgroups. Within 
each stratum or subgroup the sampling is random-or as nearly so as pos
sible. Stratified sampling is illustrated in the standardization of the 1937 
Stanford-Binet Scale in the course of which approximately 3000 children 
were tested. To ensure an adequate selection of American youth, the 
occupational levels of the parents of the children in the standard group 
were checked against the six occupational levels of employed males in the 
general population as shown by the U.S. Census of 1930. Differing pro
portions of men were found in the groups classified as professionals, semi
profeSSionals, businessmen, farmers, skilled laborer, slightly skilled and 
unskilled laborers. Only 4% of employed males were found in the profes
sional group, while 31 % were in the skilled labor group. Accordingly, 
only 4% of the children in the Stanford-Binet standardization group could 
have fathers in the professional category, while 31 % could have fathers 
in the skilled labor group. In public opinion polling, the investigator must 
see that his sample takes account of various strata or criteria such as age, 
sex, political affiliation, urban and rural residence, etc. 

When sampling is stratified, the SE formula for the mean differs slightly 
from the SEM formula when sampling is strictly random. The new 
formula is 

UM=H 
(SE of M when sampling has been stratified) 

in which CT = SD of the entire sample 

(54) 

CT. = SD of the means of the various strata around the mean of 
the entire sample. 

A convenient formula for CT. is 

;. = ~[Nl(Ml - M)2 + N2(M2 ~ M)2 + ... + Nk(M" - M)2] (55) 

(Standard deviation of the means of strata around the mean 
of the entire group) 
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in which Nt, N2 ... Nk = number of cases in strata 1 to k; and Nand M 
are the size and mean of the whole sample. 

To illustrate formula (54), suppose that in a sample of 400 cases, there 
are 8 subgroups or strata which vary in size from 70 to 25. The M of the 
whole sample is 80 and fT is 15. The SD of the means of the 8 strata [by 
(55)] around the general mean of 80 is known to be 5. Substituting in 
(54) we have 

1225 - 25 1200 
CTM = '\J 400 = '\J 400 = .71 

Had no account been taken of the variation in the subgroups, fTM would 

have been ~ or .75. Unless the various strata introduce considerable 

variation, it is obvious that the correction got by using (54) instead of 
( 44) is fairly small. 

( 3) INCIDENTAL SAMPLING 

The term "incidental sampling" (also called "accidental" sampling) 
should be applied to those groups which are used chieHy because they are 
easily or readily obtainable. School children, college sophomores enrolled 
in psychology classes, and laboratory animals are available at times, in 
numbers, and under conditions none of which may be of the experi
menter's choosing. Such oasuai groups rarely constitute random samples 
of any definable popHlation. SE formulas apply with a high degree of 
approximation-if at all-to incidental samples. And generalizations based 
upon such data are often misleading. 

( 4) PUIlPOSIVE SAMPLING 

A sample may be expressly chosen because, in the light of available 
evidence, it mirrors some larger group with reference to a given charac
teristic. Newspaper editors are believed to reHect accurately public 
opinion upon various social and economic questions in their sections of 
the country. A sample of housewives may represent accurately the buyers 
of canned goods; a sample of brokers, the opinion of financiers on a new 
stock issue. If the saying "As Maine goes, so goes the Nation" is accepted 
as correct, then Maine· becomes an important barometer (a purposive 
sample) of political thinking. Random sampling formulas apply more or 
less accurately to purposive samples. 

2. Size of sample 

The dependability of a M or IT is contingent upon the size of the sample 
upon which the SE is based. SE's vary inversely as the square root of 
sample size so that the larger the N in general the smaller the SE. A small 
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I sample is often satisfactory in an intensive laboratory study in which 
many measurements are taken upon each subject. But if N is less than 25, 
say, there is often little reason for believing such a small group of persons 
to be adequately descriptive of any population (see p. 188). 

The larger the N the larger the SD of the sample and the more inclusive 
(and presumably representative) our sample becomes of the general pop
ulation. The range covered by samples of different sizes-when all are 
drawn from a normal population-will be approximately as follows: 

N= 10 Range ±2.0ir 
N=SO Range ±2.Su 
N=200 Range ±3.0u 
N = 1000 Range ±3.Su 

A range of ±3.5a from the mean includes 9995 cases in 10,000 in a 
normally distributed population. In a sample of 10,000 only 5 cases lie 
outside of this range; in a sample of 100 cases none lies outside of this 
range. The more extreme the score, large or small, the less the probability 
of its occurrence in a small sample. In fact, in very small samples widely 
deviant scores can hardly appear in a random sample drawn from a 
normal group. 

A fairly simple and practical method of deciding when a sample is 
"suffiCiently large" is to increase N until the addition of extra cases, drawn 
at random, fails to produce any appreciable change (more than ± lSE"h 
say) in the M and (T. When this point is reached, the sample is probably 
large enough to be taken as adequately descriptive of its population. But 
the corollary must be recognized that mere numbers in and of themselves 
do not guaran~ee a random sample (see also ,po 203). 

3. Sampling fluctuations and errors C!,f measurement 

, SE's measure (.1) errors of sampling and (2) errors of measurement. 
I We have already considered the question of sampling errors on page 185. 

The investigator in establishing generalizations from his data regarding , 
individual differences, say, must perforce make his observations upon 
limited groups or samples drawn at random from the population. Owing tq 
differences among individuals and groups, plus chance factors (errors of 
measurement), neither the sample in hand nor another similarly drawn 
and approximately of the saine size will describe the population exactly. 
Hence it is unlikely that M's and a'S from successive samples will equal 
each other. Fluctuations from sample to sample-the so-called "errors" of 
sampling-are not to be thought of as mistakes, failures and the like, but 
as variations arising from the fact that no two samples are ever exaotly 
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alike. Means and u's from random samples are estimates of their param
eters, and the SE formulas measure the goodness of this estimate. 

The term "errors of measurement" includes all of those variable factors 
which affect test scores, sometimes in the plus and sometimes in the minus 
direction. If the SEM is large, it does not follow necessarily that the mean 
is affected by a large sampling error, as much of the variation may be due 
to errors of measurement. When errors of measurement are low, however 
(reliability of tests high, see p. 345), a large SEM indicates considerable 
sampling error. 

4. Bias in sampling and constant errors 

Errors which arise from inadequate sampling or from bias of any sort 
are neither detected nor measured by SE formulas. The mean score on 
an aptitude test achieved by 200 male college freshmen in a college of 
high admission standards will not be representative of the aptitude of the 
general male population between the ages of 18 and 21, say, and for this 
reason the SEM for this group is not an adequate measure of sampling 
fluctuations. College freshmen usually constitute an incidental-and often 
a highly biased-sample. In consequence, other samples of young men 
18-25, drawn at random from the male population, will return very differ
ent means and u's from those in our group. Differences like these are not 
sampling fluctuations but are errors due to inadequate or biased selection. 
SE formulas do not apply. 

SE's do not detect constant errors. Such errors work in only one direc
tions and are always plus or minus. They arise from many sources
familiarity with test materials prior to examination, cheating, fatigue, 
faulty techniques in administering and in scoring tests, in fact from a 

. consistent bias of any sort. SE's are of doubtful value when computed 
from scores subject to large constant errors. The careful study' of.succes
sive samples, rechecks when pOSSible, care in controlling conditions, and 
the use of objective tests will reduce many of these troublesome sources 
of error. The research worker cannot learn too early that even the best 
statistical techniques are unable to make bad data yield valid results. 

PROBLEMS 

1. Given M = 26.40; 0' = 5.20; N = 100 

(a) Compute the .95 confidence interval for the true 0'. 

(b) U U .99 "u " mean. 
2. The mean of 16 independent observations of a certain magnitude is 100 

and the SD is 24. 



210 • STATISTICS IN PSYCHOLOGY AND -EDUCATION 

(a) At the .05 confidence level what are the fiduciary limits of the ,true 
mean? (p. 191) 

(b) Taking the .99 confidence interval as our standard, we may be as
sured that the true mean is at least as large as what value? 

3. For a given group of 500 soldiers the mean AGCT score is 95.00 and 
the SD is 25. 
(a) Determine the .99 confidence interval for the true mean. 
(b) It is unlikely that the true mean is larger than what value? 

'4. The mean of a large sample is K and UK is 2.50. What are the chances 
that the sample mean misses the true mean by more than (a) ±1.00; 
(b) ±3.00; (c) ±10.00? 

5. The follOwing measures of perception span for unrelated words are ob-
tained from 5 children: 5 6 4 7 5 

(a) Find the .99 confidence interval for the true mean of these scores. 
(b) Compare the fiduciary limits (.99 confidence interval) when calcu-

lated by large sample methods with the result in (a). 
6. Suppose it is known that the SD of the scores in a sertain population is 20. 

How many cases would we need in a sample in order that the SE 

(a) of the sample M be 2? 
(b) of the sample SD be I? 

7. In a sample of 400 voters, 50% favor the Democratic candidate for presi
dent. How often can we expect polls based on random samples of 400 to 
return percents of 55 or more in favor of the Democrats? . 

8. Opinion upon an issue seems about equally divided. How large a sample 
(N) would you need to be sure (at .01 level) that a deviation of 3% in a 
sample is not accidental (due to chance)? 

9. Given an r of .45 based upon 60 cases, 

(a) Using formula (52), p. 198, find the SEy • Determine the limits of the 
.99 confidence interval for the population r. 

(b) Convert the given r into z, and find U z by formula (53). Check the 
limits of the .99 confidence-interval determined from U z against those 
found in (a) above. 

(c) Is the given r significant at the .0Uevel? (Use Table 25.) 
10. An r of .81 is obtain.ed from a random sample of 37 cases. 

(a) Establish the fiduciary limitS' of the true r at the .01 level, using the 
z-conversion. 

(b) Check the significance of r from Table 25. 
11. Given a sample of 500 cases in which there are six subgroups or strata. 

The means of the six subgroups are 50 (N = 100), 54 (N = 50), ·46 
(N = 100), 50 (N = 120), 58 (N = 80), 42 (N = 50). The SD for the 
entire sample is 12 .. 

(a) Find the mean of the whole sample of 500 (p. 30). 
(b) Compute the "',v by formula (54) (p. 206). 
(c) Compare "'M by forrllUla (44) with the result found in (b). 
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12. Fill out the following tal;>le: 

Size of sample df r Significance 
(N) (N - 2) 

(a) 15 13 -.68 
(b) 30 28 .22 
(c) .82 80 -.40 
(d) 225 223 .05 

ANSWERS 

1. (a) 4.48 to 5.92 (b) 25.06 to 27.74 
2. (a) 87.22 to 112.78 (b) 82.3 
3. (a) 92.11 to 97.89 (b) 97.89 
4. 69 in 100; 23 in 100; less than 1 in 100 
5. (a) 3.05 to 7.75 (b) By large sampling methods the fiduciary limits 

at the .99 confidence level are 4.21 to 6.59 
6. (a) 100 (b) 202 
7. About once in 50 trials 
8. 1850 
9. (a) .18 to .72 (b) .15 to .67 (c) Yes 

10. (a) .60 to .92 (b) Significant at the .01 level 
11. (a) 50.08 (b) .495 (c) .495 vs .. 537 
12. (a) Significant at the .01 level 

(b) Not significant 
(c) Significant at the .01 level 
(d) Not significant 



CHAPTER 9 

THE SIGNIFICANCE OF THE DIFFERENCE 
BETWEEN MEANS AND OTHER STATISTICS 

I. THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS 

Suppose that we wish to discover whether lO-year-old boys and lO~year
old girls differ in linguistic ability. First, we would assemble as large and 
as random a sample of boys and girls as possible. Next, we would admin
ister a battery of verbal tests, compute the means of the two groups, and 
find the difference between them. AJarge difference in favor of the girls 
would offer strong evidence that girls of 10 are in general more able lin-, 
guistically than are boys of 10. And contrariwise, a small difference (lor. 
2 points, for exampl~) would clearly be unimpressive, and would suggest 
strongly that further comparative tests might well show no difference at 
aU between lO-year-old boys and lO-year-old girls. 

When can we feel reasonably sure that a difference between two means. 
,is large enough to be taken as real and .dependable? This question in
, volves the SE's of the two means being compared, and cannot be an
swered categorically. We have already found an obtained mean is subject 
to sampling fluctuations or "errors of sampling" (p. 184); and it is reason
able to expect that the difference between two means will also be subject 
to sampling errors. Even when Mpop 1 = Mpop 2, the means Q.f two samples 
drawn, the one from population #1, and the other from population #2, 
m~y-and usually will-differ in some degree owing to sampling errors. 
In order to test the significance of an obtained difference, we must first 
have a SE of the difference. Then from the difference between the sample 
means and the SED we can determine whether a difference probably 
exists between the population means. A difference is called significant 
when the probability is high that it cannot be attributed to chance (i.e., 
temporary and accidental factors) an,d hence represents a true difference 
between population means. And a difference is nOnsignificant or chanc~ 

212 
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when it appears reasonably certain that it could easily have arisen from 
sampling fluctuations, and hence implies no real or true difference 
between the population means. 

I. The null hypothesis 

Experimenters have found the null hypothesis a useful tool in testing 
the significance of differences. In its simplest form (see p. 247), this 
hypotheSiS asserts that there is no true difference between two population 
means, and that the difference found between sample means is, therefore, 
accidental and unimportant. The null }_lypothesis is akin to the legal prin
ciple that a man is innocent until he is proved guilty. It constitutes a chal
lenge; and the function of an experiment is to give the facts a chance to 
refute (orfail to refute) this challenge. To illustrate, suppose it is claimed 
that Eskimos have keener vision than Americans. This hypothesis. is 
vaguely stated and cannot be tested precisely as we do not know how 
much better the Eskimo's vision must be before it can be adjudged 
"keener." If, however, we assert that Eskimos do not possess keener vision 
than Americans, or that the differences are trifling and as often in favor 
of one group as the other (the true difference being zero), this null 
hypothesis is exact and can be tested. If our null hypotheSis is untenable, 
it must be rejected. And in discarding our null hypotheSis, whit we are 
saying is that-as far as our tests go-differences in visual acuity as 
between Eskimos and Americans cannot be fully explained as temporary 
and occasional. 

2. The Sf of the difference between two independent means 

To discover whether two groups differ sufficiently in mean performance 
to enable us to say with confidence that there is a difference between the 
means of the populations from which the samples were drawn, we need 
to know the standard error of the difference between the two sample 
means. Two situations arise with respect to differences between means: 
( 1) those in which the means are uncorrelated and (2) those in which 
the means are correlated. Means are uncorrelated or independent when 
computed from different samples or from uncorrelated tests administered 
to the same sample. 

(1) THE SE OF THE DIFFERENCE (UD) WHEN MEANS ARE UNCORRELATEIJ 

AND SAMPLES ARE LARGE 

The formula for the SE of the difference between uncorrelated or inde-
pendent means is . 
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.. 

~<T21 <T22 
<T1}= -+-

Nl N2 

(#andard error of the difference between un correlated means) 

in which 

<TMI = the SE of the mean of the first sample 
<TM:l = the SE of the mean of the second sample 

(56a) 

(56b) 

<Tv = the SE of the difference between the two sample means 
N I and N 2 = sizes of the two samples 

From formula (56) it is clear that one way to find the SE of the differ
ence between two means is to compute, first, the SE's of the two means 
themselves. Another way is to compute (Tv directly, and this is done when 
(TMI and (TM2 are not wanted. 

Application of these formulas to a problem is shown in the following 
example: 

Example (1) In a study of abstract reasoning, a sample of 83 
twelfth-grade boys and a sample of 95 twelfth-grade girls scored as 
shown below on a test of abstract reasoning: 

Sex N Mean 

Girls 95 29.21 
Boys 83 30.92 

<T 

11.56 
7.81 

AssumirIg that our samples are random, would further testing of 
similar groups of boys and girls give virtually the same result: or 
would the difference in means be reduced to zero or even reversed in 
favor of the girls? 

-3u -1u 
, True Diff = 0.00 

under null hypothesis 
1.71 

eJD= 1.46 OR = l.46 = 1.17 

FIG. 50 
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To answer these questions, we must compute the SE of the difference 
between the two means. By formula (56b); 

(7.81)2 (11.56)2 
-ss-+ 95 

= V2.Iill 
= 1.46 (to two decimals) 

The obtained difference between the means of the boys and girls is 
1.71 (i.e., 30.92 - 29.21); and the SE of this difference (O'D) is 1.46. As a 
first step in determining whether twelfth-grade boys and girls actually 
differ in mean ability,_ we shall set up a null hypothesis. This hypothesis 
lasserts that the difference between the population means of boys and 
girls is zero and that-except for sampling accidents-mean differences 
from sample to sample will all be zero. Is the obtained mean difference 
of 1.71-in view of its SE-large enough to cast serious doubt on this null 
hypothesis? 

To answer this question, we must compute a critical ratio or CR found 
by dividing the difference between the sample means by its standard 
error (CR = D / O'D ). (> This operation reduces the obtained difference to a 
0' score, and enables us to measure it off along the base line of the sam
pling distribution of differences. In the present problem, CR = 1.71/1.46 
or 1.17. When the N's of the samples are large (30 or more is "large"), 
the distribution of CR's is known to be normal around the true difference 
between the population means. In testing the null hypothesis, we set up 
a normal sampling distribution like that shown in Figure 50. The mean 
difference is set at zero (true difference) and the SD of this distribution 
of differences is 1.46(O'D)' In the figure, our CR falls at 1.17 on the base 
line to the right of the mean of. 0, and also at -1.17 to the left of this 
mean. We need to measure in both directions (see p. 217) since under 
the null hypothesis (true difference of zero) differences between sample 
means are as likely to be plus as minus-to fall above as below the mean 
difference of zero. 

From Table A we know that 380/0 X 2 or,760/0 of the cases in a normal 
distribution fall between the mean and ± 1.17 O'D; and 240/0 of the cases 
fall outside these limits. This means that under the null hypothesis we 
can expect CR's as large as or larger than ±1.17 to occur "by chance" 
24 times in 100 comparisons of the means of samples of twelfth-grade 

(M,-M.)-O (D-O) 
OCR really equals or ---: the difference (D) between the 

lTD I1D 

two sample means is taken from .00 in terms of I1D (see Fig. 50). 
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boys and girls on this test. A mean difference of ±1.71 (i.e., a CR of 
± 1.17); therefore, might easily arise as a sampling fluctuation from zero, 
and is clearly not significant. Accordingly, we retain the null hypothesis 
since-as far as our tests go-there is no reason to believe twelfth-grade 
boys and girls actually differ in mean performance on abstract reasoning 
tests. 'Vith respect to reasoning as represented by our test, the two groups 
could well have been random samples from the same population. 

(2) LEVELS OF SIGNIFICANCE 

Whether a difference is to be taken as statistically significant or not 
depends upon the probability that the given difference could have arisen 
"by chance." It also depends upon the purposes of the experiment 
(p. 189). Usually, a difference is marked "significant" when the gap be
tween two sampie means points to or signifies a real difference between 
the parameters of the populations from which our samples were drawn. 
Before a judgment of significant or nonsignificant is made, some critical 
point or points must be deSignated along the probability scale which 
will serve to separate these two judgment categories. At the same time, 
it must be stressed that judgments concerning differences are never 
absolute, but on the contrary range over a scale of probability, our con
fidence increasing as the chances of a wrong judgment decrease. 

Experimenters and re~e{trch workers have for convenience chosen sev
eral arbitrary standards-called levels of significance-of which the .05 
and .01 levels are most often used. The confidence with which an experi
,menter rejects-or retains-a null hypothesis depends upon the level of 
significance adopted. From Table A we read that ±1.96u mark off points 
along the base line of a normaJi distribution to the left and right of which 
lie 5% (2%70 at each end of the curve) of the cases. When a CR is 1.96 
or more, we may reject a null hypothesis at the .05 level of significance, 
on the grounds that not more than once in 20 repetitions of the same ex-

f periment would a difference as large as or larger than that found arise-if 
the true difference were zero. The CR of 1.17 in our problem (p. 214) 
falls short of 1.96 (does not reach the .05 level) and accordingly the null 
hypothesis is retained. Generally speaking, the level of significance which 
he will accept is set by an experimenter before he collects his data. It is 
not good practice to shift from a higher to a lower standard after the 
data are in. 

The .01 level of Significance is more exacting than the .05 level. From 
Table A we know that ±2.58u mark off points to the left and right of 
which lie 1% of the cases in a normal distribution. If the CR is 2.58 or 
larger, then, we reject the null hypothesis at the 01 level, on the grounds 



SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS· 217 

that not more than once in 100 trials would a difference of this size arise 
if the true difference were zero (Le., if M1JOP1 - M pOP2 = 0.00). 

The significance of a difference may also be evaluated by setting up 
confidence intervals fot the population difference as was done for the 
Mpop on page 188. The limits specified by D ± 1.96uD define the .95 confi
dence interval for the population difference; and D ± 2.58uD define the 
.99 confidence interval for the true difference. To illustrate, let us return 
to the problem of whether twelfth-gr~de boys and girls differ in reasoning 
(p. 214). The difference between the sample means was 1.71 and the UD 

was 1.46. Hence, the .99 confidence interval for the true difference is 
1.71 ± 2.58 X 1.46, or it runs from -2.06 to 5.48. This is a fairly wide 
range, and the fact that it extends from minus to plus through zero shows 
clearly that the true D could well be zero. Acceptance of a null hypothesis 
always means that zero lies within the confidence interval with which we 
are working. 
. An example will serve to clarify further the use of significance levels. 

Example (2) In the problem of the twelfth-grade "boys and girls 
on page 214, suppose that the mean difference had been 3.40 in favor 
of the boys instead of 1.71, the N's and SD's remaining the same. Is 
this D significant at the .05 level? 

The CR is 3.40/.1.46 or 2.33, which is clearly significant at the .05 level. 
This CR does not reach 2.58 and hence is not significant at the .01 level. 
From Table A or from Table D last line we find. that 2% of a normal dis
tribution falls beyond -+-2.33u: 1% at each end of the curve. The given· 
difference is significant at the .02 'level, therefore, and would be accepted 
at this level, had it been so stipulated at the start of the experiment. 

(3) TWO-TAILED AND ONE-TAILED TESTS OF SIGNIFICANCE 

Under the null hypothesis, differences between obtained means (Le., 
Ml - M 2 ) may be either plus or.minus and as often in one direction as 
in the other from the true (population) difference of zero, so that in 
determining probabilities we take both tails of the sampling distribution 
(Fig. 50). This two-iailed test, as it is sometimes called, is generally used 
when we wish to discover whether two groups have 'conceivably been 
drawn from the same. population with respect to the trait being measured 
[see example (1)]. 

In many experiments our primary concern is with the direction of the 
difference rather than with its existence in absolute terms. This situation 
arises when negative differences, if found, are of no importance prac
tically; or when a difference if it exists at all must of necessity be positive. 
Suppose, for example, that we wish to determine the gain in vocabulary 
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resulting from additional weekly reading assignments or want to evaluate 
the gain in numerical computation brought about by an extra hour of 
drill per day. It is unlikely that additional reading will lead to an actual 
loss in vocabulary. Moreover, if drill decreases arithmetic skill it would 
be the same as though it had no effect-in either event we would drop the 
drill. Only an increase as a result of drill, therefore, is of any practical 
interest. 

In cases like these the one-tailed test of significance is appropriate. We 
may illustrate with example (3). 

Example (3) We' know from experience that intensive coaching 
increases reading skill. Therefore, if a class has been coached. our 
hypothesis is that it will gain in reaaing comprehension-failure to 
gain or a loss in score is of no interest. At the end of a school year, 
Class A, which had received special coaching, averaged 5 points 
higher on a reading test than Class B, which had received no coaching. 
The standard error of this difference was 3. Is the gain significant? 

To evaluate the 5 points gained, i.e., determine its significance, we must 
use the one-tailed and not the two-tailed test. The critical ratio is 5/3 or 
1.67, and from Table D we find th~t 10<;10 of the cases in a normal distribu
tion lie to the left and right of 1.650', so that 5<;10 (P /2) lie to the right 
of 1.650'. Our critical ratio of 1.67 just exceeds 1.65 and is significant at the 
.05 level through barely so (see Fig. 51). We reject the null hypothesis, 

5 
CR=3'=l.67 

FIG. 51 

therefore, since only once in 20 trials would a gain as large as or larger 
than 5 occur by chance. When a critical ratio is 2.33 (P = .02 and 
P /2 = .01) we mark a positive difference significant at the .01 level. 

It may be noted that in using the one-tailed test the experimenter sets 
up the hypothesis he wishes to test before he takes -his data. This means 
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that the experiment is designed at the outset to test the hypothesis; an 
hypothesis cannot be proposed to fit the data after they are in. If in exam
ple (3) we had been interested simply in whether Class A and Class B 
were significantly different in reading score, the two-tailed test would 
have been appropriate. As we have seen, the two-tailed test gives us the 
probability of a mean positive difference of 5 points (A ahead of B), 
together with the probability of a mean negative difference (loss) of 5 
points (B ahead of A). This is true since under the null hypothesis fluc
tuations of sampling alone will tend to show A samples better than 
B samples, and B better than A, about equally often. A difference in favor 
of either A or B, therefore, is possible and equally acceptable. 

The one-tailed test should be used when we wish to determine the 
probability of a score occurring beyond a stated value. An illustration is 
given in example (4). 

Example (4) In certain studies of deception among school chil
dren the scores achieved on tests given under conditions in which 
cheating was possible were compared with scores achieved by com
parable groups under strictly supervised conditions. In a certain test 
given under "honest" conditions the mean is 62 and the (J' is 10. 
Several children who took the test under nonsupervised conditions 
turned in scores of 87 and above. Is it probable that these children 
cheated? 

The mean of 62 is 24.5 score units from 86.5, the lower limit of score 87. 
Dividing 24.5 by 10 we find that scores of 87 and above lie at the point 
2.45u above the mean of 62. On the assumption of normality of distribu
tion, there is less than one chance in 100 that a score of 87 or more will 
appear in the "honest" distribution. While scores of 87 and above might, 
of course, be "honest," examinees who make such scores under non
supervised conditions are certaintly open to suspicion of having cheated. 
The one-tailed test is appropriate here as we are concerned only with 
the positive end of the distribution-the probability of scores of 87 and 
above. 

( 4) ERRORS IN MAKING INFERENCES 

In testing hypotheses, two types of wrong inference can be drawn and 
must be reckoned ,with by the research worker. W·hat are called Type I 
and Type II errors may be described as follows: 
Type I errors are made 'When we re;ect a null hypothesis by marking a 

difference s1gnificant, although no true difference exists. 
Type II errors are made when we accept a null hypothesis by marking a 

difference not significant, when a tru,e difference actually exists. 
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The distinction between these two kinds of error can perhaps be made 
clear in the following way. Suppose that the difference between two pop
ulation means (1'41'01'1 - MpOP2 ) ., is actually zero. If our test of signifi
cance when applied to the two sample means leads us to believe that the 
difference in population means is significant, we make a Type I err9r. On 
the other hand, suppose there is a true difference between the two popu
lation means. Now if our test of significance leads to the judgment "not 
significant," we commit a Type II error. 

(a) Example of a Type I error. Various precautions can be taken to 
avoid both sorts of 'erroneous inference. If we set up a low level of signifi
cance (P greater than .05), we increase the likelihood of Type I ,errors; 
whereas, if we .set up a high level of significance (P less than .05), we 
render such erroneous inferences less likely. How this works out in prac~ 
tice may best be shown by an example. Suppose that a silver dollar, 
known to us to be a good coin, is suspected by a numismatist of a bias in 
favor of heads. t When our numismatist tosses this coin 10 times, it turns 
up 8 heads and 2 tails. The theoretical expectation for a good coin is, of 
course, 5 heads and 5 tails; and the specific question for the numismatist 
to decide is whether the occurrence of 8 heads represents a "heads" bias
a Significant deviation from the expected 5 heads. The distribution of 
heads and tails obtained when a single coin is tossed 10 times is given by 
expansion of the binomial (p + q )10, where p = the probability of a head 
and q = the probability of a tail (non-head), Both p and q are ~. The 
mean of (p + q)" is np and the SD is ynpq; hence in our example the 
mean is 5 and the SD is yl10 ·1/2 ·1/2 or 1.58. A "score" of 8 extends over 
the interval 7.5-8.5, so that to determine the probability of 8 or more 

heads th~ CR we wish is 7.~.; 5 or 1.(58 (see Fig. 52). (A problem similar 

to this will be found on p. 252). From Table A we know that 8 or more 
heads, that is, a CR of 1.58, may be expected on the null hypothesis ap
proximately 6 times in 100 trials.t If our experimenter is willing to accept 
P = .06 as significant (i.e., set his standards low), he will reject the null 
hypothesis-although it is true. That is, he will report the coin to be 
biased in favor of heads, although it is in fact a good coin. 

If our experimenter had set his significance level higher (say .01 or 

o When M.oo, - Moo., = 0, the two populations are the same with respect to the. 
trait or characteristic being meas~red. For example, boys and girls may be thought of 
as constituting the same population with respect to most mental tests. 

t If a coin is "leaded" or weighted on the tails side, the heads side, being 
lighter, will tend to appear more often than tails. 

t This is a one-tailed test (p. 217) because our experimenter's hypothesis is that 
the coin is biased in favor of heads. ( 
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even .05) he would have avoided this erroneous inferen~e. Furthermore, 
had he increased the number of tosses of the coin from 10 to 100 or even 
500, he might have avoided his wrong inference, as heads and tails in a 
good coin will tend to occur equally often. Increasing the experimental 
data gives the null hypothesis a chance to assert itself (if true) and 
guards against freak results. We should no.t be willing to reject a null 
hypothesis too quickly, as in so doing we must assume the existence of a 
true difference-often a heavy responsibility. ' 

0123456 
M 

Number of Heads 
M=5.0 

SD=l.58 

FIG. 52 

9 10 

(b) Example of a Type II error. In contrast to what happens in the 
case of Type I errors, the possibility of drawing erroneous inferet:lces of 
the Type II sort (namely, accepting the null hypothesis when false) is 
enhanced when we set a very high level of Significance. This may be 
shown by reference to the coin example above-with a change in condi
tions. Suppose that a silver dollar known to us to be biased in favor of 
heads is tested by a numismatist who believes it to be a good coin. Again 
the coin is tossed 10 times and shows, as did the coin before, 8· heads 
and 2 tails. From the data given on page 220, we know that in a good 
coin 8 or more heads can be expected by chance 6 in 100 throws-tha~ is, 
p = .06. Now, if our numismatist sets .01 as his. level of Significance (or 
even .05), he will accept the null hypothesis and mark his result "not sig
nificant." The coin is now rated as "good" although it is,actually biased, 
and our numismatist has committed a Type II error. 

( c) Avoiding errors in drawing inferences. How can we guard against 
both types of erroneous inference? Perhaps the wisest first course-when 
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significance is doubtful or uncertain,is to demand more evidence. This 
gives the data a chance to refute (or fail to refute) the null hypothesis. 
Additional data, repetition of the experiment, and better controls will 
often make possible a correct judgment. If a coin is biased toward heads, 
this bias will continue to cause more heads than tails to appear in further 
tosses. For example, if the ratio of 8 heads to 2 tails in the 10 tosses 
described in the last paragraph holds consistently, we shall get 80 heads 
and 20 tails in 100 throws. The critical ratio for 100 tosses will be 5.9 0 

(as compared with 1.58 for 10 tosses)" and the probability is far less than 
.01 that 80 heads is a random fluctuation from the expected 50 heads. 
Our experimenter would correctly mark this result very significant-i.e., 
significant beyond the .01 level. 

Setting a high level of significance will tend, then, to prevent Type I 
errors but will encourage the appearance of Type II errors. Hence it 
appears that an experimenter must decide which kind of wrong inference 
he would rather avoid, as apparently he can prevent one type of error 
only at the risk of making the other more likely. In the long run, errors 
of Type I (rejecting a null hypothesis when true, by marking a non
significant difference significant) are perhaps more likely to prove serious • 
in a research program in the social sciences than are errors of Type II. 
If an experimenter claims a significant finding erroneously, for instance, 
the fact that it is a positive result is likely to terminate t~e research, so 
that the error persists. When a high level of Significance is demanded (.01, 
say) we may feel assured that Significance will be claimed incorrectly not 
more than once in 100 tiials. 

Errors of Type II (accepting the null hypothesis when false, i.e., when 
a true difference exists) must be watched for carefully when the experi
mental factor or factors are potentially dangerous. Thus, if one is studying 
the psychological effects of a drug suspected of inducing rather drastic 
emotional and temperamental changes, an error of Type II might well 
prove to be disastrous. Fortunately, the fact that a negative finding is in
conclusive and often unsatisfactory may lead to further experimental 
work, and thus obviate somewhat the harm done by Type II errors. 
Especially is this true when the problem is important enough further to 
challenge investigators. ' 

For many years it was customary for research workers in experimental 

o When n = 100, P = .50, q = .50: 
M = np = 50 

(f = vnpq = vlOO X 1/2 X 1/2 = 5 -
79.5 - 50 59 

CR = 5 =. 



SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS • 223 

psychology to demand critical ratios of 3.00 or more before marking a 
difference significant.· This extremely high standard almost certainly 
caused the null hypothesis to be accepted more often than if should have 
been-a Type II error on the side' of conservatism. As a general rule it is 
probably wise to demand a significance level of at least .01 in most experi
mental research, i.e., to risk Type II errors by preventing those of Type I . 
. But the .05 level is often satisfactory, especially in preliminary work. 

3. The SE of the difference between M's in small independent samples 

When the N's of two independent samples are small (less than 30), the 
SE of the difference between two means should depena upon the SD's 

computed by the formula SD = ~ (N ~ 1)' and the degrees of freedom 

in the two groups must be taken into account. Table D may be used con
veniently to test the significance of t,O which is the appropriate critic~l 
ratio f~r use with small samples. An example will illustrate the procedures. 

Example (5) An Interest Test is administered to 6 boys in a Voca
tional Training class and to 10 boys in a Latin class. Is the mean 
difference between the two groups significant at the .05 level? 

Scores are as follows: 

VOCATIONAL CLASS LATIN CLASS 

N1 =6 N 2 = 10 

Scores (Xl) Xl Xl2 Scores (Xz) Xz X22 

28 -2 4 20 -4 16 
35 5 25 16 -8 64 
32 2 4 25 1 1 
24 -6 36 34 10 100 
26 -4 16 20 -4 16 
35 5 25 28 4 16 

61 180 no 31 7 49 

Ml =30 
24 0 0 
27 3 9 
15 -9 81 

10 1240 352 

Mz =24 
N1 -l = 5 
N2 -1= 9 

14 
Otis a critical ratio in which a more exact estimate of the lTD is used. The sam

-pling distribution of t is not normal when N is small (less than 3D, say). t is a G flo 
but all GR's are not t's (see p. 215). ' 
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SD( ) = Iuo + 352 = 574 - or s '\j '14 . by (57) 

SED = 5.74 ~ 0 = 5.74 X .5164 = 2.96 by (58) 

= (30 - 24) - 0 = 2 03 
t 2.96 _ . 

For 14 df, the .05 level (Table D) is 2.14; and the .01 level is 2.98. 

The mean of the interest scores made by the 6 boys in the Vocational 
class is 30 and the mean of the interest scores made by the 10 boys in the 
Latin class is 24. The mean difference of 6 is to be tested for significance. 
When two samples ar.e small, as here, we get a better estimate of the 
"true" SD (u in the population) by pooling the sums of squares of the 
deviations taken around the means of the two groups and computing a 
single SD.o The justification for pooling is that under the null hypothesis 
no real mean difference exists as between the two samples, which are 
assumed to have been drawn from the same parent population with 
respect to the trait being measured. We have, therefore, only one u (that 
of the common population) to estimate. Furthermore, by increasing N we 
get a more stable SD based upon all of our cases. The formula for com
puting this "pooled" SD and the formula for the SE of the difference are 
as follows: 

SD = /!(X1 - M 1 )2 + !(X2 - M2 )2 
'\j (N} - 1) + (N2 - 1) 

(SD when two small independent samples are pooled) 

SED = S;~Nl + N2 
- N}N2 

(SE of the difference between means in small independent samples) 

(57) 

(58) 

In formula (57), l(X} - MI)2 = x2 } is 'the sum of the square devia
tIons around the mean of Group 1; and l(X2 - M2)2 = lX22 is the sum of 
the squared deviations around the mean of Group 2. These sums of 
squares are combined to give a single SD. In example (5) the sum 
of squares in the Vocational class around the mean of 30 is 1l0; and in the 
Latin class t,he sum of squares around the mean·of 24 is 352. The df are 
(Nl - 1) = 5, and (N2 - 1) == 9.t By formula (57), therefore, the 

o The SD so computed is subject to a slight negative bias, which is negligible when 
N > 20. See Holtzman, \V. H., "The Unbiased Estimate of the Population Variance 
and Standard Deviation," Amer. Jour. Psychol., 1950, 63, 615-617. 

t 1 df is "used up" in computing each mean (p. 194). 
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SD = ~1l0 ~ 352 or 5.74. This SD serves as a measure of variability for 

Th h 5.74 d h· 5.74 b 
each of the two groups. us t e SEM1 = . m an t e SEM2 = . l1R [ Y 

y6 yl0 
formuk .[44), p. 185]. Combining these two SE's by formula (56) we 

fi d th . - K5.74)2 + (5.74)2 = 574 JI6 296 F 1- (58) 
r-!L--~ ~ '\J 6 10 . \160 or . . .ormu a 

\ ,the two SEy's enablipg us to calculate SED in one operation. 

'r 2.03; and the df in the two groups (namely, 5 and 9) are 

/' .0 give 14 df for use in inferring the significance of the mean 
/ Entering Table D with 14 df, we get the entries 2.14 at the .05 

I (__ J8 at the .01 levels. Since- our t does not reach the .05 level, the 
obtamed mean difference of 6 must be marked "not significant." 

An example will illustrate further the use of levels of significance when 
samples are small. 

Example (6) On an arithmetic reasDning test 31 ten-year-Dld 
boys and 42 ten-year-Dld girls made the follDwing SCDres: 

Mean SD N df 
BDYS: 
Girls: 

40.39 
35.81 

8.69 
8.33 

31 
42 

30 
41 

Is the mean difference of 4.58 in favor .of the boys Significant at the 
.05 level? 

By formula (57) we find 
----------~--~----

SD O _ 1(8.69)2 X 30 + (8.33)2 X 41 848 - \I 71 or . . 

And by formula (58), 

31 + 42 
SED = 8.48 31 X 42 = 2.01. 

t is 4.58/2.01 or 2.28 and the degrees of freedom for use in testing the 
Significance of the mean difference are 30 + 41 or 71. Entering Table D 
with 71 df we find t entries of 2.00 at the .05 and of 2.65 at the .01 levels. 
The obtained t of 2.28 is significant at the .05 but not at the .01 level. 
Only once in 20 comparisons of boys and girls on this test would we 
expect to find a difference as large as or larger than 4.58 under our null 
hypothesis. We mflY be ~easonably confident, therefore, that in general 
IO-year-old boys do better than IO-year-old girls on this test. 

2:x' ' 
o SD' -= . hence 2:x· = SD2 X (N - 1) 

(N - l)~ . 
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4. The significance of the difference between two correlated means 

( 1) THE SINGLE GROUP METHOD 

The preceding section dealt with the problem of determining whether 
the difference between two means is significant when these meaT's repre-
sent the performance of independent groups-boys and girll' ~in and 
non-Latin students, and the like. A closely related probler 'cernp ,1 

with the significance of the difference between correlated meal1. 
from the same test administered to the same group upon two 
This experimental design is called the "single group" meth else 
that we have administered a test to a group of children ane. lc~ 

later have repeated the test. We wish to measure the effect o~ 
of special training upon the second set of scores; or to estimate tht.. '\ .... 

of some activity interpolated between test and retest. In .order to ~ . ..::r
mine the significance of the difference between the means obtained in thf.;, 
initial and final testing, we must use the formula 

SEn = V0"2Ml + (T2M2 - 2r120"M10"M2 (59) 
(SE of the difference between correlated means) 

in which aMI and O"M2 are the SE's of the initial and final test means, and 
'12 is the coefficient of correlation between scores made on initial and 
final tests. <) An illustration will bring out the difference between formula 
( 56) and formula (59). 

/ 

Example (7) At the beginning of the school year, the mean score 
of a group of 64 sixth-grade children upon an educational achieve
ment test in reading was 45.00 with a 0" of 6.00. At the end of the 
school year, the mean score on an equivalent form of the same test 
was 50.00 with a 0" of 5.00. The correlation between scores made on 
the initial and final testing was .60. Has the class made significant 
progress in reading during the year? 

We may tabulate our data as follows: 

No. of children: 
Mean score: 
Standard Deviations: 
Standard errors of means: 
Difference between means: 

Initial 
Test 

64 
45.00(Ml) 

6.00 (0"1) 

.75(O"M1) 

Correlation between initial and final tests: 
5.00 

.60 

Final 
Test 

64 
50.00(M2 ) 

5.00 (0"2) 

.63 (O"M2) 

o The correlation between the means of successive samples drawn from a given 
population equals the correlation between test scores, the means of which are being 
compared. 

o 



SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS • 227 

Since we are concerned only with progress or gain, this is a one-tailed test 
(p. 217). Substituting in formula (59) we get 

SEn = '.1(.75)2 + (.63)2 - 2 X .60 X .75 X .63 = .63 

The t ratio is 5.00/.63 or 7.9. Since there are 64 children, there are 
64 pairs of scores and 64 differences,o so that the df becomes 64 - 1 or 
63. From Table D, the t for 63 df is 2.39 at the .02 level. (The table gives 
2.39 for the two-tailed test which is .01 for the one-tailed test.) The ob
tained t of 7.9 is far greater than 2.39 and himce can be marked "very 
significant." It seems certain that the class made substantial progress in 
reading over the school year. 

When groups are small, a procedure called the "difference method" is 
often to be preferred to that given above. The following example will 
serve as an illustration: 

Example (8) Twelve subjects are given 5 successive trials upon a 
digit-symbol test of which only the scores for trials 1 and 5 are shown. 
Is the mean gain from initial to final trial significant? 

Trial 1 Trial 5 Difference x2 
(5 - 1) x 

50 62 12 4 16 
42 40 -2 -10 100 
51 61 10 2 4 
26 35 9 1 1 
35 30 -5 -13 169 
42 52 10 2 4 
60 68 8 0 0 
41 51 10 2 4 
70 84 14 6 36 
55 63 8 0 0 
62 72 10 ,2 4 
38 50 12 4 16 

572 668 12196 354 
, 8 

MeanD = 8.0 

1& SDD = = 5.67 

SE
M 

= 5.67 = 1'.64 
D y'I2 . 

8-0 
t = 1.64 = 4.88 

o 1 df is lost since SED is computed around the mean of the distribution of differ-
ences (p. 194). \\ 
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From the column of differences between pairs of scores, the mean dif
ference is found to be 8, and the SD around this mean (SDD) by the 

formula SD = I lx
2 

is 5.67. On o~r null hypothesis the true differ-
\)(N -1) 

ence between the means of Trials 5 and 1 is 0, so that we must test our 
obtained mean difference of 8 against this hypothetical zero gain. The SE 

of the mean difference (SEM
D 

== SD) is 1.64 and t (D -0) is 4.88. yN SEMD _ 

Entering Table D with 11 (12 - 1) degrees of freedom, we find t entries 
of 2.20 and 3.11 at the .05 and at the .01 levels. Our t of 4.88 is far above 
the .01 level and the mean difference of 8 is obviously very significant. 

If our hypothesis initially had been that practice increases test score, 
we would have used the one-tailed test. The probability of a positive dif
ference (gain) of 8 or more on the null hypothesis is quite remote. In the 
one-tailed test, for 11 dt the .05 level is read from the .10 column 
(P /2 == .05) to be 1.80 and the .01 level from the .02 column (P /2 :;::: .01) 
is 2.72. Our t of 4.88 is much larger than the .01 level of 2.72 and there is 
little ~oubt that the gain from Trial 1 to Trial 5 is significant. 

The result found in example (8) may be checked by the single group 
method. By use of formula (31); p. 145, the r between Trials 1 and 5 is 
found to be .944. Substituting for r12 (viz., .944), for (TMI (3.65) and for 
(TM2 (4.55) in formula (59) we get a (TD of·1.63 which checks SEMD within 
the error of computation. The "difference method" is quicker and easier to 
apply than is the longer method of calculating SE's for each mean and the 
SE of the difference, and is to be preferred unless the correlation between 
initial and final scores is wanted. 

(2) THE METHon OF EQUIVALENT GROUPS: MATCHING BY PAIRS 

Formula (59) is applicable in those experiments which make use of 
equivalent groups as well as in those using a single group. In the method 
of equivalent groups the matching is done initially by pairs so that each 
person in the fin;t group has a match in the second group. This procedure 
enables us to set off the effects of one or more experimentally varied con
ditions (experimental factors) against the absence of these same variables 
( control). The following problem is typical of many in which the equiva-
lent group technique is useful. . 

Example (9) Two groups, X and Y, of seventh-grade children, 72 
in each group, are paired child for child for age and score on Form A 
of the Otis Group Intelligence Scale. Three weeks later, both groups 
are given Form B of the same test. Before the second test, Group X" 
the experimental group, is praised for its performance on the first test 
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and urged to try to better it~ score. Group Y, the control group, is 
given the second test without comment. Will the incentive (praise) 
cause the final scores of Group X and Group Y to diHer significantly? 

This is a two-tailed test, since the incentive (praise) could conceivably 
raise or lower the mean of the experimental group. The relevant data 
may be tabulated as follows: 

No. of children in each group: 
Mean scores on Form A, initial test: 
SD on Form A, initial test: 
Mean scores on Form B, final test: 
SD qn Form B, final test: 
Gain, Ml - M 2 : ' 

Standard errors of means, final tests: 

Experimental 
Group X 

72 
80.42 
23.61 
88.63(M1 ) 

24.36(0'1) 

2.89 
5.39 

Control 
Group Y 

72 
80.51 
23.46 
83,24(M2 ) 

~1.62(u2.) 

2.57 

Correlation between final scores (experimental and control groups) = .65 

The means and u's of the control and experimental groups in Form A 
(initial test) are almost identical, showing'-the original pairing of scores 
to have been quite satisfactory. The correlation between the final scores 
on Form B of ,the Otis Test is calculated from the paired scores of chi~
dren who were matched originally in terms of initialscore.l> 

The difference between the means on the final test is 5.39 (88.63 - 83.24). 
the SE of this difference, (TD, is found from formula (5,9) to be 

O'D = Y(2.89)2 + (2.57~2 - 2 X .65 X 2.89 X 2.57 = 2.30 

The t ratio is 5.39/2.30 or 2.34; and since there are 72 pairs, there are 
(72 - 1) or 71 degrees of freedom. Entering Table D with 71 df we find 
the t's at .05 and .01 to be 2.00 and 2.65, respectively. The given differ
ence is significant at the .. 05 but not at the .01 level; and we may feel rea
sonably certain that praise Will have a Significant effect in stimulating the 
performance of seventh-grade children. 

It is worth noting that had no account been taken of the correlation 
between final scores on Form B [if formula (56) had been used instead 
of (59)], UD would have been 3.87 instead of 2.30. t would then have been 
1.39 instead of 2.34 an,d would have fallen considerably below the :..05 
level of 2.00. In other words, a Significant finding would have been marked 

o Note that the correlation between final scores in the equivalent groups method is 
analogous to the correlation between initial and final scores in the single group method. 
In equivalent groups one group is the experimental and the other the control. In the 
single group method,te initial scores furnish the control. 
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"~ot significant." Evidently, it is important that we take account of the 
correlation between final scores-especially if it is high. 

When r = .QO, formula (59) reduces to (56) since group means are 
then independent 01: uncorrelated. Also, when r is positive, the aD from 
formula (59) is smaller than the aD from (56) and the larger the plus r 
the greater the reduction in aD by use of (59). For a given difference 
between means, the smaller the aD the larger the t and the more signifi
cant the obtained difference. The relative efficiency obtained by using a 
single group or equivalent groups as compared with independent groups 
can be determined by the size of the r between final scores, or between 
initial and final scores. The correlation coefficient, therefore, gives a 
measure of the advantage to be gained by matching. 

If r is negative, formula (59) gives a larger aD than that given by 
formula (56). In this case, the failure to take account of the correlation 
will lead to a smaller aD and a t larger and apparently more significant 
than it should be. 

One further point may be mentioned. If the difference between the 
means of two groups is significant by formula (56) it will, of course, be 
even more Significant by formula (59) if r is positive. Formula (56) may 
be used in a preliminary test, therefor~, if we can be sure that the correla
tion is positive. The correlation between initial and final score is usually 
positive, though rarely as high as that found in example (9). 

(3) GROUPS MATCHED FOR MEAN AND SD 
When it is impracticable or impossible to set up groups in which sub

jects have been matched person for person, investigators often resort to 
the matching of groups in terms of mean and a. The matching variable 
is usually different from the. variable under study but is, in general, 
related to it and sometimes highly related. No attempt is made to pair off 
individuals and the two groups are not necessarily of the same size, 

,I although a large difference in N is not advisable. 
In comparing final score means of malched groups the procedure is 

somewhat different from that used with equiva1ent groups. Suppose that 
X is the varitlble under study, and Y is the function or variable in terms 
of which our two groups have been equated as to mean and SD. Then 
if r",y is the correlation between X and Y in the population from which 
our sampl~s have been dra)Vn, the SE of the difference between means 
in X is 

SED,!! _,!! = O'D = _ '(U2M + u2M )(1 - r2"y) 
1 2 .'V "1 "2 

(SE of the difference between the X means of groups matched 
for mean and for SD in Y) 

(60) 
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An example will illustrate the procedure. 

Example (10) The achievement of two groups of first-year high
school boys, the one from an academic and the other from a tech
nical high school, is compared on a Mechanical Aptitude Test. The 
two groups are matched for mean and SD upon a general intelligence 

'test so that the experiment becomes one of comparing the mechanical 
aptitude scores of two groups of boys of "equal" general intelligence 
enrolled in different courses of study. Do the two groups differ in 
mean ability? 

No. of boys in each group: 
Means on Intelligence Test (Y): 
u's on Intelligence Test (Y): 
Means on Mechanical Ability Test (X): 
u's on Mechanical Ability Test (X): 

Academic 
125 
102.50 
33:65 
51.42 

6.24 

Technical 
137 
102.80 
31.62 
54.38 

7.14 

Correlation between the General Intelligence Test and the Mechanical Ability 
Test for first-year high-school boys is .30. 

MICI - M"'2 = 54.38 - 51.42 = 2.96 

(60) (
(6.24)2 (7.14)2) (1 _ 302) 

By Un = 125 + 137 . 

= .79 

t = 2..96 = 3.75 
.79 

Again this is a two-tailed test. The difference between the mean scores 
in the Mechanical Ability Test of the academic and technica~ high-school 
boys is 2.96 and the UD is .79. The t is 2.96/.79 or 3.75; and the degrees of 
freedom to be used in testing this tare (125 - 1) + (137 - 1) - 1, or 
259. 0 We must subtract the one additional dt to allow for the fact that 
our groups were matched in variable Y. The general rule (p. 194) is that 
1 dt is subtracted for each restriction imposed upon the observations, i.e., 
for each matching vadable. 

Entering Table D with 259 dt, we find that our t of 3.75 is larger than 
the entry of 2.59 at the .01 level. The observed difference in mechanical 
aptitude, therefore, though small, is highly significant. In rejecting the 
null hypothesis in this problem we are asserting that in general boys in 
the technical high school are higher in mechanical aptitude than are boys 
of "equal general intelligence" in the academic high school. 

o When df = 25~ little is gained by using t as the eR. 
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The correlation term must be introduced into formula (60) because 
when two groups have been matched in some test or tests their variability 
is restricted in all functions correlated with the matching variables. Height 
and weight, for instance, are highly correlated in 9-year-old boys. Hence, 
if a group of 9-year-old boys of the same or nearly the same height is 
selected, the variability in weight of these children will be substantially 
reduced as compared with 9-year-old boys in general. When groups are 
matched for several variables, e.g., age, intelligence, socioeconomic status, 
and the lil<e, and compared with respect to some correlated variable, the 
correlation coefficient in formula (60) becomes a multiple coefficient 
of correlation (p. 404). When f:rll = .00, (60) reduces to (56)-our groups. 
are independent and unrestricted by the matching variable. 

Groups matched for mean and (T and equivalent groups in which indi
viduals are paired as to score have been widely used in a variety of' psy
chological and educationai studies. Illustrations are found in experiments 
designed to evaluate the relative merits of two methods of teaching, the 
effects of drugs, e.g., tobacco or caffeine, upon efficiency, transfer effects 
of special training, anQ the like. Other techniques useful in assessing the 
role of experimental factors are described in Chapter 10. 

5. The SE of the difference between uncorreJated medians 

The Significance of the difference between two medians obtained from 
independent samples may be found from the formula 

UDMrln or uMdnl - Mrln2 = y(T2Mdnl + u2Mdn2 (61) 

(SE of the difference between two uncorrelated medians) 

When medians are correlated, the value of '12 cannot, be determined 
accurately and the reliability of the median cannot be readily computed. 
'Yhen samples are not independent, therefore1 it is better procedure to 
use means instead of medians. 

II. THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN O"s 

I. SE of the difference between standard deviations 

(1) THE SE OF A DIFFERENCE WHEN u's ARE UNCORRELATED 

In many studies in psychology and education, the differences in vari
ability among groups is a matter of considerable importance. The student 
of individual and of experimentally induced differences is oftentim~s more. 
interested in knOWing whether his groups differ significantly in SD than 
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in knowing whether they differ'in mean achievement. And the educational 
psychologist who is investigating a new method of teaching arithmetic 
may want to know whether the changed procedures have led to greater 
variability in score than that present under the older method. 

When samples are independent, i.e., when different groups are studied 
or when tests given to the same groups are uncorrelated, the significance 
of a difference between two u's may be found from the formula: 

(62) 

(SE of the difJerence between two uncorrelated u's when N's are large) 

in which U"t is the SE of the first a and a"2 is the SE of the second u. 

By way of illustration, let us apply our formula to the data obtained 
from twelfth-grade boys and girls on the Abstract Reasoning Test (p. 
214). The u of the boys' scores is 7.81; of the girls' scores 11.56. Is this 
difference of 3.75 significant at the .01 level? Calling the u of the boys' 
scores a1 and the a of the girls' scores U2, we have 

u .. =.71 X 7.81 = .61 
t V8S 

(1' .. = .71 X 11.56 = .84 
2 v'95 

and UD .. = yT7(r.6"1"p,+.---r(".8'"'4""')2 = 1.04 (to two decimals) 

The CR is 3.75/1.04 or 3.6l. On the null hypotheSis (Ul - (1'2 = 0), this 
CR (Table D, last line) is considerably larger than 2.58 the .01 point. 
Hence, the obtained difference is significant beyond the .01 level; and 
we may feel quite confident that on our reasoning test the girls are more 
variable in general than are the boys. 

Formula (62) is adequate for testing the Significance of the difference 
between two uncorrelated SD's when N's are large (greater than 80). 
For a method of testing the significance of the difference between two uS 
computed from small s~mples, see page 303. 

(2) SE OF A DIFFERENCE WHEN a'S ARE CORRELATED 

When we compare the u's of the same group ,upon two occasions or 
the u's of eqtJ.ivalent groups on a final test, we must take into account 
possible correlation between the u's in the two groups being compared. 
The formula for testing the Significance of an obtained difference in vari
ability when SD's are correlated is 

UD .. = ~-u~2"-1-+--u-2"-2----2~r2~l2-u-"-lu-"-2 (63) 

(SE of the dUference between correlated uS when N's are large) 
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where 0'''1 and- U"!! are. the SE's of the two SD's and r!!12 is the square of 
the coefficient of correlation between scores in initial and final tests or 
between final scores of equivalent groups. '" 

Formula (63) may be applied to the problems on page 226 by way of 
illustration. In the first problem, the SD of 64 sixth-grade. children was 
6.0 on the initial and 5.0 on the final test. Is there a significant drop in 
variability in reading after a year's schooling? Putting 0'1 = 6.0 and 
0'2 = 5.0, we have . 

0'''1 ::::: .71 X 6.0 = .53 

v'64 
by (48) 

_ .71 X 5.0 _ 44 
0'''2 - - • 

y'64 
The coefficient of correlation between initial and final scores is .60, so 

that rl!! = :36. Substituting for r2 and the u,,'s in formula (63) we have 

(TD = y(.53)2 + (.44)2 - 2 X .36 X .. 53 X .44 = .55 
" 

The difference between the two a'S is 1.0 and the SE of this difference 
(6-5)-0 

is .55. Therefore, on the null hypothesis of equal a'S, t = .55 

or 1.82. Entering Tabl.e D with 63 df, we find t at the .05 level to be 2.00. 
The obtained t does not quite reach this point, and there is no reason to 
suspect a true difference in variability between initial and final reading 
scores. 

In the equivalent groups problem on page 228, the SD of the experi
mental group on the final test was 24.36 and the SD of the control_ group 
on the final test was 21.62. The diff~rence between these SD's is 2.74 and 
the number of children in each group is 72. Did the incentive (praise) 
produce significantly greater variability in the experimental group as 
,compared with the control? Putting 0'1 = 24.36, and 0'2 = 21.62, we have 

0'" =.71 X 24.36 = 2.04 by (48) 
1 V72 

0'''2 = .71 X _2~.62 = 1.81 
y72 

The r between final test SCOres in the experimental and control groups 
is .65 and r212, therefore, is .42. Substituting for r and the two SE's in 
formula (63) we have . 

'" The correlation between the SD's of samples drawn from a given population 
equals the square of the coefficient of correlation between the test scores, the SD's of 
which are being compared. 
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CTD = y(2,04)2 +- (1.81)2 - 2 X .42 X 2.04 X 1.81 
C1 

=2.08 

Dividing 2.74 by 2.08, our t is 1.32; and for 71 degrees of freedom this t 
falls well below the .05 level of 2.00. There is no evidence, therefore, that 
the incentive increased variability of response to the test. 

III. THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN PERCENTAGES 
AND CORRELATION COEFFICIENTS 

I. The significance of the difference between two percents 

( 1) SE OF THE DIFFERENCE WHEN PERCENTS ARE UNCORRELATED' 

On page 197, the formula for the SE of a percentage was given as 

SE% = #- where P = percent occurrence of the observed behavior, 

Q = (1- P), and N is the size of the sample. One of the most useful 
applications of the SE formula is in determining the significance of the 
difference between two percents. In much experimental work, especially 
in social and abnormal psychology, we are able to get the percent occur
rence of a given behavior in two or more independent samples. We then 
want to know whether the incidence of this behavior is reliably different 
in the two groups. The following problem which repeats part Qf exam
ple (4), will provide an illustration. 

Example (11) In a study of cheating 0 among elementary-school 
children, 144 or 41.4% of 348 children from homes of good socio
economic status were found to have cheated on various tests. In the 
same study, 133 or 50.2% of 265 children from homes of poor socio
economic status ll-lso cheated on the same tests. Is there a true 
difference in the incidence of cheating in these two groups? 

Let us set up the hypothesis that no true difference exists as between 
the percentages cheating in the two groups and that, with respect to 
cheating, both samples have been randomly drawn from the same popu
lation. A useful procedure in testing this null hypothesis is to consider 
PI (41.4%) and P2 (i50.2%) as being independent determinations of the 
common population parameter, P; and to estimate P by pooling PI and P2 

(see p. 30). A pooled estimate of P is obtained" from the equation: 

p = NIP l + N2P2 

Nl +N2 
Q being, of course, (1 - P). 

o Data from Hartshorne, H., and May, M. A., Studies in Deceit (New York: Mac
millan, 1928), Bo~k II, p. 161. 
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The estimated percentages, P and Q, may now be put in formula (64) 
to give the SE of the difference between PI and P 2. 

(64) 

or 

= ~ PQ[~l + ~J 
(SE of the difference between two uncorrelated percentages) 

I h I P 348 X 41.4 + 265 X 50.2 45 (Jot. n t e present examp e, = or .~ /0 
348+265 

and 

Q = (1 - P) or 54.8%. Substituting these two values in (64) we get 

CTPI-P2 = ~45.2 X 54.8 [3~8 + 2~5 ] = 4.06% 

The difference between the two percents Pl and P2 is 8.8<10 (50.2 - 41.4); 

and dividing by 4.06 (CR = (PI - P2
) - 0) we get a CR of 2.17. Enter-

CTPI-P2 

ing Table D we find that our C R exceeds 1.96 (.05 level) but does not 
reach 2.58 (.01 level). 

The obtained difference is significant, therefore, at the .05 level of con~ 
fidence. We may feel reasonably sure that our two samples do not come 
from a common population with respect to deception, and that there is a 
true difference in the incidence of cheating in these two socioeconomic 
groups. 

The .95 confidence interval for the difference between the means in the 
two populations is 8.8 ± 1.96 X 4.06 or 8.8% ± 8.0%. The lower limit of 
this interval is .8%-evidence that our assurance is not so great as it would 
have been had our CR reached the .Ollevel. 

(2) SE OF THE DIFFERENCE WHEN PERCENTS ARE CORRELATED 

!Responses recorded in percentages may be, and usually are, correlated 
when individuals have beel) paired or matched in some attribute; or when 
the same group gives answers (e.g., I,'Yes"-"No") to the same questions 
or items. To illustrate with an example: 

Example (12) A large group of veterans (250") answered as 
follows the two questions below. Is the difference 'between the per
cents answering the two questions "Yes" significant? 
1. Do you have a great many bad headaches? Yes 150 No 100 
2. Are you troubled with fears of being crushed 

in a crowd? Yes 125 No 125 

o The data have been Simplified for illustrative purposes. 



Yes 

#'2 
No 

No 

25 

75 

100 

#1 
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Yes 

100 125 

50 125 

150 250 

Yes 

#2 
No 

No 

(b) 
10% 

(d) 
30% 

40% 

#1 
Yes 

(a) 
40% 50% 

(c) 
20% 

50% 

60% 100% 

The data in the 2 X 2 table on the left show the number who answered 
"Yes" to both questions, "No" to both questions, "Yes" to Qne and "No" 
to the other. In the second diagram (on the right) frequencies are ex
pressed as percents of 250. The letters a, b, c, and d are to designate the 
four cells (p. 137). We find that a total of 60% answered "Yes" to Ques
tion 1, and that a total of 50% answered "Yes" to Question 2. Is this dif
ference Significant? 

The general formula for the significance of the difference between two 
correlated percents is 

O"PI-PZ = y(T2Pl + 0"2PZ - 2rpIP20"PIO"P2 (65) 

(SE of difference between two correlated percents) 

in which r between the two percents is given 'by the phi coefficient 
(p. 388), a ratio equivalent to the correlation coefficient in 2 X 2 tables. 

If PI and P2 hllVe been averaged in order to provide an estimate of P, 
the population parameter, formula (65) becomes 

O"PI-P2 = y20"2p (1- rpIP2) (66) 

(SE of the difference between two correlated percents when 
P is estimated from PI and P2 ) 

In example (12), Pl = 60% and P2 = 50%. so that P = 55% and 
Q = 45%. Substituting in (66)· we have that 

0" = /2 X .55 X .45 (1 _ 41) 0 

Pl -P2 '\} 250 . 

= .034 

The obtained difference of .10 (.60 - .50) divided by .034 gives a CR 
of 2.94. From Table D, we find that this critical ratio exceeds 2.58, the 
.01 level. We abandon the null hypothesis, therefore, and conclude that 
our groups differed significantly in their answers to the two questions. 

o The phi coeffic{Fnt of .41 was found from formula (99), page 389. 
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A simpler formula than (66) which avoids the calculation of the cor
relation coefficient may be used when P has been estimated from PI and 
P2 under the null hypothesis. This formula'" is 

U = 17h+0 
D% '\j N (67) 

(SE of the difference between two correlated percentages) 

In example (12) we read from the second diagram that c = 2070 and 
b = 10%, N being 250. Substituting in (67) we have 

U = /.10 + .20 = 035 
D% '\J 250 . 

which checks the result obtained from (66). 

i. Comparing obtained percents with reference values 

In many situations (in polling, for example), the percentage occur
rence of a certain response is known from previous work, or is strongly 
suspected from other evidence. Weare then interested in discover-ing 
whether a sample percentage deviates significantly from this reference 
value. The example below illustrates the problem. 

Example (13) Opinion upon a certain issue is believed to be split 
50-50 in the population. In a sample of 225 voter5., it is found that 
55% respond affirmatively to the issue. Is this deviatioil from "chance" 
(50-50) significant at the .05 level? 

If we let the probability of "Yes" or p = 1/2, and the probability of "No" 
or q also be 1/2, we find the SE of Ollr percentage (p. 197) to be 

= /.50 X .50 = 033 
Up '\J 225 . 

/ 
We will reject the null hypothesis if p is either .45 or .55-deviates ±.05 
from expectation-hence we have a two-tailed test. The critical ratio is 

CR = .5~0~~50 = l.51 

and from Table D, this CR obviously does not reach 1.96 and hence is 
not significant at the .05 level. The 5570 of "Yes" responses in our sample 
could well be a sampling fluctuation from 50% and hence attributable to 
chance. 

o McNemar, Q., "Note on the Sampling Error of the Difference between Correlated 
Proportions or Percentages," Psychometrika, 1947, 12, 153-J57. . 
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Example (14) In a sample of 400 children from "good" homes, 
49% are found to have cheated on various tests. If we accept 41% 
as the "standard percentage" for children in populations of this sort 
(p. 197), is cheating in our present group significantly greater than 
expectation? 

Th SE - /041 X .59 - 025 d th CR' 049 - Al - 3 20 I thO e p - V 400 - . an e IS .025 -. . n IS 

problem, we are concerned to know whether 49% is significantly larger 
than 41 %-we have a one-tailed test. The .05 point for a one-tailed test is 
1.65 (P = .10, Table D). Our CR is so much larger than 1.65 that we 
confidently reject the null hypothesis. It appears that cheating in this 
group is significantly greater than it was in the previous study. 

3. Size of N needed to reach a given level of significance 

In many public opinion polls, forecasts are often reported as being 
accurate to within 3% or 5% of the "true" value, and this range is called 
the "allowable" error. Suppose that opinion on a political issue is known 
from past records to be split 50-50 in the voting population. How large a 
sample is needed in order that the odds may be 19:1 that our sample 
percentage is not in error by more than ±3%? Stated differently, how 
large an N is required in order that we may feel assured that any sample 
percentage between 47% and 53% represents a nonsignificant deviation 
from50%? 

This question cannot be answered unless we know (1) the percentage 
occurrence of the behavior in the population with some accuracy and (2.) 
unless we can specify the degree of assurance demanded. First, we begin 
with the fact that CR = D/up where D is the deviation of a sample per
centage from the expected (population) value, and Up is the SE of the 
sampling distribution of percents around the true or population per
centage. When D / Up = 1.96, a deviation or D is significant at the .05 
level, and we have a two-tailed test. Substituting .03 for D, and solving 

for Up we have that Up = .03/1.96 or .0153. Since Up = ~r; (p. 197), 

squaring and solving for N, we have that 

N=pq 
0'2 

. P 
(67a) 

(N needed to reach a given level of significance) 

and substituting (.0153)2 for Up and .50 X .50 for pq, we have that 

N = .50 X .50 = 1068 
(.0153) 
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We now are able to say that when N is 1068, any obtained percent 
within the limits 50% -+- 3% (i.e., from 53% to 47%) represents a non
significant deviation from the stipulated population value. A sample per
centage must be larger than 5370 or smaller than 4770 in order to repre
sent a significant departure from 50% at the .05 level of significance. 

Example (15) In a college population, opinion is believed to 
favor an issue to the extent of 80%. How large a sample is needed 
in order that the odds may be 99: 1 that a sample percentage between 
75% and 85% represents a nonSignificant deviation from the expected 
80%? (Here the allowable margin of error is ±5% and we are to 
test at the .01 level.) 

Following the method of the preceding example, D/(Tp = 2.58, and 
when D = .05, (Tp = .OS/2.58 or .0194. From formula (67a), we have that 

N = .80 X .20 = 425 
(.0194)2 

and a sample of 425 should assure that any sample percent between 7570 
and 85% will represent a nonsignificant departure from 8070. 

To check the obtained N, compute (Tp = ~.804;5·20 = .0194. The .99 

confidence interval is .80 ± 2.58 X .0194 or 80% -+- 570, thus checking the 
allowable error. The odds are 99:1 that when N is 425 the sample percent 
must be larger than 8570 and smaller than 7570 to be significant at the 
.01 level. Any percent between these limits represents a nonSignificant 
. deviation within the stipulated error of 5%. 

Decision as to the most economical N to use is difficult when the occur
rence of the phenomenon in the population is uncertain. The following 
problem will illustrate the procedure in such cases. . 

Example (16) A physical anthropologist wishes to study the 
members of a primitive tribe. Among other data he wants to know 
the proportion in the tribe who are "longheaded" (dolichocephalic). 
He states that his figure must be accurate within 5%, i.e., if his 
sample shows 40% longheads, the percent for the whole tribe must lie 
between 35% and 45%. The anthropologist stipulates that he is un
wjlJing to accept more than one chance in 20 of getting a bad sample. 
He insists that this precaution is necessary since no matter how large 
the sample N there is always some chance that a single sample will 
be biased in some way. 

This problem cannot be solved unless the anthropologist can supply 
a probable value for the percent of longheads in the tribe. Sup
pose he finally says that from previous work with related tribes, he 
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estimates the incidence of longheadedness in the population to lie 
between 30% and 60%. Can we compute a satisfactory N under these 
conditions? 

Following the method of preceding examples, CR = D/up = 1.96 and 
if D is -+-5%, Up = .05/1.96 or .0255. From formula (67a), setting p = 30%, 
we have 

N = .30 X .70 = 323 
(.0255)2 

and again putting p = 60%, we have that 

N = .60 X AD = 369 
(.0255)2 

Finally, if p is set a~ 50ro, the product pq is at its maximum and equals 
.2500. When this is true, N is 385 and we might set the desired N at 385 
or, to be on the safe side, at 400. A random sample of around 400, then, 
should provide a group in which the odds are 19;;1 that the percent of 
longheads is within ±5% of the percent in the whole tribe. 

To check the above result, put the population p = 45%, i.e., 

(
30% + 60%) 1.45 X .55 

2 ' and N = 400. Then Up = '\j 400 = .025. Any percent 

in the range 45% -+- 1.96 X 2.5% or 45% ± 5% represents a nonsignifi
cant deviation from 45%. The interval 40%-50% represents the .95 confi
dence interval for the population percentage. 

4. The significance of the difference between two ,'s 

A useful and mathematically exact method of determining the SE of 
the difference between two r's requires that we first convert the ,.'s into 
Fisher's z function. The significance of the difference between two z's is 
then determined. The formula for the SE of the difference between two 
z's is 

~ 
1 - 1 

(T - (T - + -::-:---::-
Dz - "1-"2 - N1 - 3 N2. - 3 

(68) 

(SE of the -difference between two z coefficients) 

1 <> 
where (TO' = and N1 and N2 are the sizes of the two samples. 

V(N - 3) 

<> The two correlated variables take away 2 degrees of freedom; and the trans
formation into z adds ahother restriction. Hence we subtract 3 from each N (p. 194). 
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The following example will illustrate the procedure. 

Example (17) The r between intelligence and achievement in 
the freshman class of College A is .40, for N = 400. And the r between 
intelligence and achievement in the freshman class of College B is 
.50 for N = 600. Is the relationship between intelligence and achieve
ment higher in College B than in College A? 

From Table C we read that r's of .40 and .50 correspond to z's of .42 
and .55, respectively. If we put N1 = 400 and N2 = 600, we have on sub
stituting in (68) 

O"Zl-
Z2 = J(400

1
_.3) + (600

1 
__ 3) 

= .07 (to 2 decimals) 

Dividing .13 (i.e., .55 - .42) by .07, we get a CR of 1.86. This CR is 
slightly below 1.~6 and hence is not Significant at the .05 level. Based on 
the evidence we have, the correlation between intelligence and scholastic 
achievement does not really differ in the two colleges. 

Use of the z transformation for r is especially useful when r's are very 
high, as the samplIng distributions of such r's are known to be skewed
often badly so. To illustrate, suppose that r between two achievement 
tests is .87 in Grade 6 (N 1 = 50) and that the r between the same tests 
is .72 in Grade 7 (N2 = 65). Is there a Significant differen~e between 
these two r's? 

From Table C we find that r's of .87 and .72 yield z's of 1.33 and .91, 
respectively; and substituting N 1 and N 2 in formula (68) we ~ave 

= .19 

Dividing .42 (1.33 - .91) by .19 we get a-CR of 2.21, well above the .05 
level of 1.96 but below the .01 level of 2.58. We may discard the null 
hypothesis, therefore, and mark the difference between our r's Significant 
at the .05 level. 

Measurement of the Significance of the difference between two r's 
obtained from the same sample presents certain complications, as r's fr~m 
the same group are presumably correlated. Formulas for computing the 
correlation between two correlated r's are not entirely satisfactory and 
there is no method of determining the correlation between two z's 
directly. Fortunately, we may feel sure that if the r's are positively cor
related in our group, and the CR aSldetermined by the SE from (68) is 
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significant, that the CR would'be even more significant if the correlation 
between the is were known. 

The z transformation can be usefully employed when r's which'differ 
widely in size are to be averaged or combined (p. 173). 

PROBLEMS 

1. The difference between two means is 3.60 and Un::; 3. Both samples 
are large!," than 100. _ 

( a) Is the obtained difference significant at the .05 level? 
(b) What percent is the obtained difference of the difference necessary 

for significance at the ,01 level? 
(c) Find the limits of the .99 confidence interval for the true difference. 

2. A personality inventory is administered in a private school to 8 boys 
whose conduct records are exemplary, and to 5 boys whose records are 
very poor. Data are given below. 

Group 1: 110 112 95 105 III 97 112 102 
« 2: 115 112 109 112 117 

Is the difference between group means significant at the .05 level? at the 
.01 level? 

3. In which of the following experimental problems would it be more 
important to avoid Type I errors of inference than Type II errors in deter
mining the significance of a difference? 
(a) Sex differences in reading rate and comprehension in the fifth grade. 
(b) Effects of a new drug upon reaction time-especially when the drugs' 

are potent and probably dangerous. 
( c), Comparison of two methods of learning a new skill. 
(d) Acceptance of a program which involves much time and money and 

rejection of a less expensive program. 
(e) Comparative efficiency of a speed-up and a normal rate of work in a 

factory. 
4. In the first trial of a practice period, 25 twelve-year-oIds have a mean 

score of 80.00 and a SD of 8.00 upon a digit-symbol learning test. On the 
tenth trial, the mean is 84.00 and the .SD is 10.00. The r between scores 
on the first and tenth trials is .40. Our hypothesis is that practice leads 
to gain. 
(a) Is the gain in score significant at the .05 level? at the .01 level? 

(p.217) , 
(b) What gain would be significant at the .01 level, other conditions 

remaining the same? 
5. Two groups of high-school pupils are matched for initial ability in a 

biology test. Group 1 is taught by the lecture method, and Group 2 by 
the lecture-demonstration method. Data are as follows: '<) . 
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Group 1 
(control) 

N 00 
Mean initial score on the biology test 42.30 
CT of initial scores on the biology test 5.36 
Mean final score on the biology test 54.54 
CT of final scores on the biology test 6.34 
r (between final scores on the biology test) .50 

Group 2 
( experimental) 

60 
42.50. 
5.38 

56.74 
7.25 

(a) Is the difference between the final scores made by Groups 1 and 2 
upon the biology test significant at the .05 level? at the .01 level? 

(b) Determine' the limits of the .95 confidence interval for the true 
difference. 

( c ) Is the difference in the variability of the final scores made by 
Groups 1 and 2 Significant at the .05 level? 

6. Two groups of high-school students are matched for M and CT upon a 
group intelligence test. There are 58 subjects in Group A and 72 in Group 
B. The records of these two groups upon a battery of "learning" tests are 
as follows: 

M 
CT 

N 

. Group A 
48.52 
10.60 
58 

Group B 
53.61 
15.35 
72 

The correlation of the group intelligence test and the learning battery· in 
the entire group from which A and B were drawn is .50. Is the difference 
between Groups A and B significant at the .05 level? at the .01 level? 

7. Opinion on a certain issue in a college community is believed to be split 
80% for and 20% against. In a sample of 400, 83% answer affirmatively. 
Does this result discredit the original hypothesis? 

8. The incidence of a certain behayior in a primitive society is known to be 
between 10% and 20%. How large a sample do we need (a) in order to 
be accurate within 2% of the true value and (b) to have the odds 19:1 
in favor of a good sample? 

i 9. In a school of 500 pupils, 52.3% are girls; and in a second school of 300 
pupils, 47.7% are girls. Is there a significant difference between the 
percentages of girls enrolled in the two schools? 

10. Given the following data for an item in Stanford-Binet: of 100 nine
'year-olds, 72% pass; of 100 ten-year-olds, 78% pass. Is the item more 
difficult for,nine-year-olds than for ten-year-olds? 

11. (a) To the question "Would you like to be an aviator?" 145 fifteen-year
old boys in a high-school class of 205 answered "Yes" and 60 answered 
"No." To the question "Would you like to be an engineer?" 125 said 
"Yes" and 80 answered "No." The data in the table below show the 
number who al}swered "Yes" to both questions, "No" to both ques
tions, "Yes" to one and "No" to the other. Is desire to be an aviator 
significantly stronger in this group than desire to be an engineer? 
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QUEs.1 

Yes 

QUES.2 

No 

No Yes 

25 100 b 

35 
45 
c 

60 145 

125 

80 

205 

(b) In a group of 64 seventh-grade children, 32 answered ,Item 23 
correctly and 36 answered Item 26 correctly. From the table below, 
determine whether the difference in the percentage of correct 
answers is significant. 

+ 
ITEM 26 

ITEM 23 

+ 

10 26 

22 6 

32 32 

36 

28 

64 

12. In random samples of 100 cases each from four groups, A, B, C and D, 
the following results were obtained: 

A B 
Mean 101.00 104.00 
CT 10.00 11.00 

C 
93.00 

9.60 
What are the chances that, in general, the mean of 
(a) the B's is higher than the mean of the A's 
( b) the A's is higher than the lpean of the C's 
(c) the C's is higher than the mean of the D's 
What are the chances that 
( a ) any B will be better than the mean A 
( b) any B will be better than the mean C 
(c) any B will be better than the mean D 

D 
86.00 

8.50 

13. (a) The correlation between height and weight in a sample of 200 ten
year-old boys is .70; and the correlation between height and weight 
in a sample of 250 ten-year-old girls is .62. Is this difference sig
nificant? 

(b) In a sample of 150 high-school freshmen the correlation of two edu~ 
cational achievement tests is .65. If from past years the correlation 
has averaged .60, is the present group atypical? (Does .65 differ 
significantly from .60?) 
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ANSWERS 

1. (a) No. CR = 1.20 (b) 46.5% (c) -4.14and 11.34 
2. t = 2.3; for 11 df, significant at .05, not at .01 level 
3. a, c, d and e 
4. (a) Significant at .05, not at .01 level. Since t = 2.00 there is approxi

mately 1 chance in 50 that a plus difference (gain) of 4 would occur 
under the null hypothesis. 

(b) 4.98 
5. (a) t = 2.49; difference in M's significant at .05 but not at .01 level 

(b) .43 to 3.97 
(c) No. t = 1.20 

6. Significant at .05 leve1 (t = 2.57) and almost significant at .01 level. 
7. No. Deviation is not significant 
8. Sample must be between 900 and 1600 to provide significance at the .05 

level. A good compromise would be an N = 1285 (see p. 239). 
9. No. CR = 1.24 

10. No. CR = .98 
11. (a) Significant at .05, not at .01 level (CR = 2.40) 

(b) Not significant (CR approximately 1.00) 
12. (a) 98 in 100 

(b) mo~e than 99 in 100 
(0) more than 99 in 100 
(a) 61 in 100 
(b) 84 in 100 
(0) 95 in 100 

13. (a) No. CR = 1.47 (b) No. CR = 1.09 

I 



CHAPTER 10 

TESTING EXPERIMENTAL 
HYPOTHESES 

The hypothesis proposed in a psychological experiment may take the 
form of a general theory or a specific inquiry. A specific hypothesis is 
ordinarily to be preferred to a general proposal, as the more definite and 
exact the query the greater the likelihood of a conclusive answer. In the 
preceding chapter the significance of an obtained difference was tested 
against a null hypothesis. In the present chapter, we shall consider further 
the nature of hypotheses and shall present certain useful procedures and 
methods for answering the questions raised by an experiment. 

I. THE HYPOTHESIS OF "CHANCE" 

I. Nature of the null hypothesis 

In Chapter 9 the difference between two statistics was tested against a 
null hypothesis, namely, that the population difference is zero. The null 
hypothesis is not confined to zero differences nor to the differences 
between statistics. Other fonus of this hypothesis assert that the results 
found in an experiment do not differ Significantly from results to be 
expected on a probability basis or stipulated in terms of some theory. A 
null hypothesis is ordinarily more useful than other hypotheses because 
it is exact (p. 212). Hypotheses other than the null can, to be sure, be 
stated exactly: we may, for example, assert that a group which has re
ceived special training will be 5 points on the average ahead of an 
untrained (control) group. But it is difficult to set up such precise expec
tations in many experiments. For this reason it is usually advisable to test 
against a null hypothesis, rather than some other, if this can be done. 

It is sometimes not fully understood that the rejection of a null hypothe
sis does not imm~diately force acceptance of a contrary view. The extra-

247 
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sensory perception (ESP) experiments offer a good illustration of what 
is meant by this statement. In a typical ESP experiment, a pack of 25 
cards is used. There are 5 different symbols on these cards, each symbol 
appearing on 5 cards. In guessing through the pack of 25, the probability 
of chance success with each card is 1/5. And the number of correct "calls" 
in a pack of 25 should be 5. If a subject calls the cards correctly much in 
excess of chance expectation (i.e., in excess of 5), the null (chance) 
hypothesis is rejected. But rejection of the chance hypothesis does not 
force acceptance of ESP as the cause of the extra-chance result. Before 
this claim can be made, one must demonstrate in follow-up experiments 
that extra-chance results are obtained when all likely causes, such as 
runs of cards, visual and other cues, poor shuffling and recording, have 
been eliminated. If under rigid controls calls in excess of chance are con-' 
sistently obtained, we may reject the null (chance) hypothesis and accept 
ESP. But the acceptance of a positive hypothesis-it should be noted-is 
the end result of a series of careful experiments. And, moreover, it is a 
logical and not primarily a statistical conclusion. 

2. Testing experimentally observed results against the direct determination of 
probable outcomes 

'f.he null hypothesis is useful when we wish to compare observed results 
with those to be expected by "chance." Several examples will illustrate 
the methods to be employed. 

Example (1) Two tones, differing slightly in pitch, are to be 
compared in an experiment. The tone:; are presented in succession, 
the subject being instructed to report the second as higher or lower 
than the first. Presentation is in 'random order. In ten trials a sub
ject is right in his judgment seven times. Is this result significant, i:e., 
better than chance? 

I Since the subject is either right or wrong in his judgment, and since 
judgments are separate and independent, we may test oUI: result against 
the binomial expansion (p. 89). Ten judgments may be taken as analo
gous to ten coins; a right ju.dgment corresponds to a head, say, a wrong 
judgment to a tail. The odds are even that any given judgment will be, 
right; hence in ten trials (since p = 1/2) our subject should in general be 
right five tim~s by chance alone. The question, then, is whether seven 
"rights" are significantly greater than the expected five. From page 92 
we find that upon expanding (p + q) 10 the probability of 10 right judg
ments is 1/1024; of 9 right and one wrong, 10/1024; of 8 right and 2 
wrong, 45/1024; and of 7 right and 3 wrong, 120/1024. Adding these frac-
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tions we get 176/1024, or .172 as the probability of 7 or more right judg
ments by chance alone. The probability of iust 7 rights is 120/1024, or 
approximately .12. Neither of these results is Significant at the .05 level 
of confidence. (p. 190) and accordingly the null hypothesis must be 
retained. On the evidence there is no reason to believe that our subject's 
judgments are really better than chance expectation. 

Note that to get 10 right is highly significant (the probability is approx
imately .001); to get 9 or 10 right is also significant (the probability is 
1/1024 + 10/1024, or approximately .01). To get 8 or more right is almost 
significant at the .05 level (the probability is .055); but any number right 
less than 8 fails to reach our standard. The situation described in exam
ple (1) occurs in a number of experiments-whenever, for example, 
objects, weights, lights, test items, or other stimuli are to be compared, 
the odds being 50:50 that a given judgment is correct. 

Example (2) Ten photos, 5 of feeble-minded and 5 of normal 
children (of the same age and sex), are presented to a subject who 
claims he can identify the feeble-minded from their photographs. 
The subject is instructed to designate which five photographs are 
those of feeble-minded children. How many photos must our subject 
identify correctly before the null hypothesis is disproved? 

Since there are 5 feeble-minded and 5 normal photos, the subiect has a 
50:50 chance of success with each photo and the method of example (1) 
could be used. A better test,O however, is to determine the probability 
that a particular set of 5 photos (namely, the right 5) will be selected 
from all possible sets of 5 which may be drawn from the 10 given photos. 
To find how many combinations of 5 photos can be drawn from a set 
of 10, we may use conveniently the formula for the combination of 10 

things taken 5 at a time. This formula t is written C100 = 5\0~ I = 252. 

The symbol CI05 is read "the combinations of ten things taken five at a 
time"; 10! (read "10 factorial") is 10·9·S·7·6·r?·4·3·2·1; and 51 = 
5·4·3·2·1. 

It is possible, therefqre, to draw 252 combinations of 5 from a set of 10, 
and accordingly there is one chance in 252 that a judge will select the 
5 correct photos out of all possible sets of 5. If he does select the right 5, 
this result is obviously Significant (the probability is approximately .004) 

"Fisher, R. A., The Design of Experiments (London: Oliver and Boyd, 1935), 
Chapter 2, pp. 26-29 especially. 

t The general .formula for the combinations of n things taken r at a time is 
en _ nl 

r - r! (n - r) ! ~ 
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and the null hypothesis must be rejected. Suppose that our judge's set of 
5 photos contains 4 feeble-minded and one normal picture; or 3 feeble
minded and 2 normal pictures. Is either of these results significant? The 
probability of 4 right selections and one wrong selection by c)1ance is 
CIS XC5 , 

~105 1, 'i.e., the product of the number of ways 4 rights can be selected 

from the 5 feeble-minded pictures times the number of ways one wrong 
can be selected from the 5 normal pictures divided by the total number of 
combinations of 5. CaJculation shows this result to be 25/252 ,or 1/10 
(approximately) and hence not Significant at the .05 level. The prob-

, , CIS XC5 
ability of getting 3 right and. 2 wrong is given by SCIOn 2; namely, 

the product of the number of ways 3 pictures can be selected from 5 (the 
5 feeble-minded pictures) times 'the number of ways 2 pictures can be 
selected from the 5 normal pictures divided by the total number of com
binations of 5. This result is 100/252 or slightly greater than 113, and is 
clearly not significant. 

Our subject disproves the null hypothesis, then, only when all 5 feeble
min~ed pictures are correctly chosen. The probabilities of various combi
nations of right and wrong choices are given below-they should be veri
fied by the student: 

Probability of all 5R = 1/252 
" " 4R = 25/252 

3R = 100/252 
2R = 100/252 
lR = 25/252 
OR = 1/252 

It may be noted that by increasing the number of pictures of feeble
minded and normal from 10 to 20, say, the sensitiveness of the experiment 
<?an be considerably enhanced. With 20 pictures it is not necessary to get 
all 10 feeble-minded photos right in order to achieve a Significant result. 
In fact, 8 right is nearly significant at the .01 level as shown below. 

Combinations 

lOR OW 
9R lW 
8R 2W 
7R 3W 
6R 4W 

C20 - 20! ~ '184 756 
10 - 10 ! 10 ! - , 

Frequency 
1 

100 
2025 

14400 
44100 

Prob. ratio (freg. -;- 184,756) 
.000005 
.0005 
.Oll 
.078 
.239 



Combinations 
5R 5W 
4R 6W 
3R 7W 
2R 8W 
1R 9W 
OR lOW 

Frequency 
63504 
44100 
14400 
2025 

100 
1 

184,756 
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Prob. ratio (freq. -:- 184,756) 
.344 
.239 
.078 
.011 
.0005 
.000005 

3. Testing experimentally observed results against probabilities calculated 
from the normal curve 

When the number of observations or the number of trials is large, direct 
calculation of expectations by expanding the binomial (p + q)" becomes 
highly laborious. Since (p + q)" yields a distribution (p. 000) which is 
essentially normal when n is large, in many experiments the normal curve 
may be usefully employed to provide expected results under the-. nul) 
hypotheSis. An example will make the method clear. 

Example (3) In answering a test of 100 true-false items, a sub
ject gets 60 right. Is it likely that the subject merely guessed? 

J 

As there are only two possible answers to each jtem, one of which is 
right and the other wrong, the probability of a correct answer to any item 
is 1/2, and our subject should by chan~ answer 1/2 of 100 or 50 items 
correctly. Letting p equal the probability of a right answer, and q the 
probability of a wrong answer, we could, by expanding the binomial 
(p + q)100, calculate the probability of various combinations of rights 
and wrongs on the null hypothesis. When the exponent of the binomial 
(here, number of items) is as large as 100, however, the resulting dis
tribution is very close to the normal probability curve (p. 87) and may 
be so treated with little error. 
. Figure 53 illustrates the solution of this problem. The mean of the 
curve is set at 50. The SD of the probability distribution found by expand
ing (p + q)" is u = ViJiiq; hence, for (p + q)100, u = VlOO X 1/2 X 1/2 
or 5. A score of 60 covets the interval on the base line from 59.5 up to 60.5. 

The lower limit of 60 is 1.9u removed from the mean e9
.
5
5- 50 = 1.9u) 

and from Table A we find tha~ 2.87% of the area of :l normal curve lies 
above 1.9u.o There are only three chances in 100 that a score of 60 (or 

o Note that only one end of the nonnal curve is used, i.e., this is a one-tailed test 
(p. 217). ~ 
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M =.s0 
(1-5 

(5~~-5()\ = I.qq 

FIG. 53 

more) would be made if the null hypothesis were true. A score of 60, 
therefore, is significant at the .05 level. We reject the null hypothesis and 
conclude that our subject could not have been simply guessing. 

Note that this problem could have been solved equally well in terms 
of percentages. We expect our subject to get 50% of the items right by 

guessing. The SD of this percentage is ~50% (0-0
50

% or 5% (see p. 197). 

A score of 60% (lower limit 59.5%) is 9.5% or 1.90- distant from the 
middle of the curve. We interpret this result iQ exactly the same way as 
that above. 

Example (4) _ A multiple-choice test of 60 items provides four 
possible responses to each item. How many items should a subject 
answer correctly before we may feel sure. that he .knows something 
about the test material? 

Since there are four responses to each item, only one of which is cor
rect, the probability of a right answer by guessing is 1/4, of a wrong 
answer 3/4. The final score to be expected if a subject knows nothing 
whatever about the test and simply guesses is 1/4 X 60 or 15. Our task, 
therefore, is to determine how much better than 15 a subject must score 
in order to demonstrate real knowledge of the material. 

This problem can be solved by the methods of example (1). By 
expanding the binomial (p + q )", for Instance, in which p = 1/4, q = 3/4, 
and n = 60, we can determine the probability of the occurrence of any 
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score from 0 to 60. The direct determination of probabilities from the 
binomial expansion is straightforward and exact but the calculation is 
tedious. Fortunately, therefore, a satisfactory approximation to the answer 
we want can be obtained by using the normal distribution to determine 
probabilities, as in example (3). The mean of our "chance" distribution 
is 1/4 of 60 or 15; and the u = vfniiCi = V60 X 1/4 X 3/4 or 3.35. From 
Table A we know that 5% of the frequency in a normal distribution lies 
above 1. 65!T. Multiplying our obtained u (3.35) by 1.65, we get 5.53; and 
this value when added to 15 gives us 20.5 as the point above which lies 
5% of the "chance" distribution of scores. A score of 21 (20.5 to 21.5), 
therefore, may be regarded as significant, and if a subject achieves such a 
score we can be reasonably sure that he is not merely guessing. 

For a higher level of assurance, we may take that score which would 
occur by chance only once in 100 trials. From Table A, 1 % of the fre
quency in the normal curve lies above 2.33u. This point is 7.81 
(3.35 X 2.33) above 15 or at 22.8. A score of 23, therefore, or a higher 
score is very significant; only once in 100 trials would a subject achieve 
such a score by guessing. 

Use of the normal probability curve in the solution of problems like 
this always involves a degree of approximation. When p differs consid
erably from 1/2 and n is small, the distribution resulting from the expan
sion of (p + q ) n is skewed and is not therefore accurately described by 
the normal curve. When these conditions hold, one must resort to the 
direct calculation of probabilities as in example (1). When n is large, 
however, and p not too far from 1/2, the normal distribution may, Be 
safely used, as will be seen from the x2 tests on page 261. . 

II. THE x2 (CHI-SQUARE) TEST AND THE NULL HYPOTHESIS 

The chi-square test represents a useful method of comparing experi
mentally obtained results with those to be expected theoretically on some 
hypothesis. The equation for chi square (i) is stated as follows: 

x2 =! [(to fe fe )2] (69) 

(chi-square formula for testing agreement between 
observed and expected results) 

in which to = frequency of occurrence of observed or experimentally 
determined facts; 

te = expecte~ frequency of occurrence on some hypothesis. 

The differences between observed and expected frequencies are squared 
and divided by tQe expected number in each case, and the sum of these 
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quotients is J(l. The more closely the observed results approximate to the 
expected, the smaller the chi square and the closer the agreement between 
observed data and the hypothesis being tested. Contrariwise, the larger 
the chi square the greater the probability of a real divergence of experi
mentally observed from expected results. To evaluate chi square, we enter 
Table E with the computed value of chi square and the appropriate num
ber of degrees of freedom. The number of df = (r - 1) (c - 1) in which 
r is the number of rows and c the number of columns in which the data 
are tabulated. From Table E we read P, the probability that the obtained 
J(l is Significant. Several illustrations of the chi-square test will clarify the 
discussion given above. 

I. Testing the divergence of observed results from those expected on the 
hypothesis of equal probability (null hypothesis) 

Example (5) Forty-eight subjects are asked to express their atti
tude toward the proposition "Should the United States join an Organi
zation of Nations for the Control of Atomic Power?" by marking F 
(favorable), I (indifferent) or U (unfavorable). Of the members in 
the group, 24 marked F, 12 I, and 12 U. Do these results indicate a 
Significant trend of opinion? 

The observed data (fo) are given in the first row of Table 26. In the 
second row is the distribution of answers to be expected on the null 
hypothesis (fe), if each answer is select.ed equally often. Below the table 
Jlre entered the differences (f() - fe). Each of these differences is squared 
afl(tc;livided by its f e (64/16 + 16/16 + 16/16) to give x2 = 6. 

TABLE 26 

Answers 

Favorable Indifferent Unfavorable 

Observed (fo) 24 12 12 48 

Expected (t.) 16 16 16 48 

~ (f() - Ie) 8 4 4 
(fo - '6)2 64 16 16 
(fo - 'e)2 4 1 1 

te 

x2 = 1: [<fa ,/(I)2J = 6 df=2 P = .05 (Table E) 
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The degrees of freedom in the table may be calculated from the 
formula df = (r - I) (c - 1) to be (3 - 1)( 2 - 1) or 2. Or, the degrees 
of freedom may be found directly in the follOwing way: Since we know 
the row totals to be 48, when two entries are made in a row the third is 

'immediately fixed, is not "free." When the first two entries in row 1 are 
24 and 12, for example, the third entry must be 12 to make up 48. Since 
we also know the sums of the columns., only one entry in a column is free, 
the second being fixed as soon as the first is tabulated. There are, then, 
two degrees of freedom for rows and one degree of freedom for columns, 
and 2 X 1 = 2 degrees of freedom for the table. 

Entering Table E we find in row dt = 2, a x2 of almost 6 (actually, 
5.991) in the column headed .05. A P of .05 means that should we repeat 
this experiment, only once in 20 trials would a ~ of 6 (or more) Occur if 
the null hypothesis is true. Our result may be marked "significant at the 
.05 level," therefore, on the grounds that divergence of observed from 
expected results is too unlikely of occurrence to be accounted for solely 
by sampling fluctuations. We reject the <<'equal answer" hypothesis and 
conclude that our group really favors the proposition. In general, we may 
safely discard a null hypothesis whenever P is .05 or less. 

Example (6) The items in an attitude scale are answered by 
underlining one of the following phrases: Strongly approve, approve, 
indifferent, disapprove, strongly disapprove. The distribution of 
answers to an item marked by 100 subjects is shown in Table 27. Do 
these answers diverge significantly from the distribution to be ex
pected if there are no preferences in the group? 

TABLE 27 

Strongly Indiffer- Disap- Strongly 

Approve Approve ent prove Disap-
prove 

Observed (fo) 2$ 18 24 17 18 

Expected (fe) 20 20 20 20 20 

(fo - Ie) 3 2 4 3 2 
(fo - fe)2 9 4 16 9 4 
(fo - le)2 .45 .20 .80 .45 .20 

fe 

-x:- = 2.10 df=4 ~ P lies between .70 and .80 
~ 

100 

100 
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On the null hypothesis of "equal probability," 20 subjects may be 
expected to select each of the 5 possible answers. Squaring the (fo - Ie), 
dividing by the expected result (fe), and summing, we obtain a 'If of 2.10. 
dt = (5 - 1) (2 - 1) or 4. From Table E, reading across from row 
dt = 4, we locate a x2 of 2.195 in column .70. This X2 is nearest to our cal
culated value of 2.10, which lies between the entries in columns .70 and 
.80. It is sufficiently accurate to describe P as lying between .70 and .80 
without interpolation. Since this much divergence from the null hypothe
sis (p. 255) namely, 2.10, can be expected to occur upon repetition of 
the experiment in apprOXimately 75% of the trials, X2 is clearly not signifi
cant and we must retain the null hypothesis. There is no evidence of 
either a strongly favotable or a strongly unfavorable attitude toward 
the proposition. 

A better idea of the meaning of levels of Significance can be obtained 
from Figure 54, which shows the x: distribution for 1, 4, 5 and 10 degrees 
of freedom. Let us consider the x2 curve for 4 dt, the number in the prob
lem above. Beginning at zero, this curve (a positively skewed distribu
tion) runs out slightly beyond 14 on the base line. From Table E we read 
that for 4 dt, 510 of the area of our x2 curve lies to the right of 9.49 and 
110 lies to the right of 13.28. When dt = 4, then, a x2 of 9.49 or larger is 
significant at the .05 level; and a l of 13.28 or larger is significant 
at the .01 level. Only once in 100 repetitions of the given experiment 
would we expect to find a x2 of 13.28 or larger if the null hypothesis is 
true. Any x2 in the region of the curve at or beyond 13.28, therefore, rep
resents' a significant value in the sense of being a very infrequent and 

0.7 

--df=1 
0.6 ---df=4 

------df=5 
---df=IO 

I 
0.4 

0.3 

0.2 

0.1 

FIG. 54 
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unusual deviation from O. Our x: of 2.10 falls far short of 9.49, the .05 
point; and hence is nonsignificant. We retain the null hypothesis, since 
the deviation of observed answers from expectation might easily be a 
matter of chance. 

2. Testing the divergence of observed results from those expected on the 
hypothesis of a normal distribution 

. Our hypbthesis may assert that the frequencies of an event which we 
have observed really foHow the normal distribution instead of being 
equally probable. An example illustrates how this hypothesis may be 
tested by chi square. 

Example (7) Forty-two salesman have been classified into 3 
groups-very good, satisfactory, and poor-by a consensus of sales 
managers. Does this distribution of ratings differ significantly from 
that to be expected if selling ability is normally distributed in our 
population of salesmen? 

TABLE 28 

Good Satisfactory Poor 

Observed (fo) 16 20 6 [42 
Expected (f e) 6.7 28.6 6.7 42 

(to - fe) 9.3 8.6 .7 
(fo - fe)2 86.49 73.96 .49 
(fo-f.)2 12.90 2.59 .07 

fe 
')(2 = 15.56 df=2 P is less than .01 

The entries in row 1 give the number of men classified in each of the 
3 categories. In row 2 the entries show how many of the 42 salesmen may 
be expected to fall in each category on the hypothesis of a normal dis
tribution. These last entries were found by first dividing the base line of a 
normal curve (taken to extend over 6CT) into 3 equal segments of 2CT each. 
From Table A, the proportion of the normal distribution to be found in 
each of these segments is then as follows: 

Between +3.000" and + 1.0Oa
" + 1.000" and -1.000" 

-1.000" and -3.000" 

Proportion 
.16 
.68 

.. 16 
1.00 
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. These proportions of 42 have been calculated and a're entered in Table 28 
opposite (f.). The x: in the table is 15.56 and df = (3 -1) (2 - 1) or 2. 
From Table E it is clear that this x2 lies beyond the limits of the table, 
hence P is listed simply as less than .01. The discrepancy between ob
served and expected values is so great that the hypothesis of a normal dis
tribution of selling ability in this group must be rejected. Too many men 
are described as good, and too few as satisfactory, to make for agreement 
with our hypothesis. 

3. The chi-square test when table entries are small 

When the entries in a table are fairly large, x: gives an estimate of 
divergence from hypothesis which is close to that obtained by other meas
ures of probability. But X2 is not stable when computed from a table in 
which any experimental frequency is less than 5. Moreover, when the 
table is 2 X 2 fold (when df = 1), X2 is subject to considerable error 
unless a correction for continuity (called Yates' correction) is made. Rea
sons for making this correction and its effect upon X2 can best be seen 
by' working through the examples following. . 

Example (8) In example (1), an observer gave 7 correct judg
ments in ten trials. The probability of -a right judgment was 1/2 in 
each instance, so that the expected number of correct judgments 
was 5. Test our subject's deviation from the null hypothesis by com
puting chi square and compare the P with that found by direct 
calculation. 

TABLE 29 

Right - Wrong 

Observed (fo) 7 

I 
3 10 

Expected (f e) 5 5 10 

(fo - fe) 2 2 
Correction (-.5) 1.5 1.5 

(fo - fe)2 
(fo - fe)2 

fe 

x2 ::. .90 
df= 1 

2.25 2.25 
.45 .45 

P = .356 (by interpolation in Table E) 
1/2P = .178 
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Calculations in Table 29 follow those of previous tables except for the 
correction which consists in subtracting .5 from 'each (fa - Ie) difference. 
In applying the x2 test we assume that adjacent frequencies are con
nected by a continuous and smooth curve (like the normal curve) and are 
not discrete numbers. But in 2 X 2 fold tables, espeCially when entries are 
small, the x2 curve is not continuous. Hence, the deviation of 7 from 5 
must be written as 1.5 (6.5 -- 5) instead of 2 (7 - 5), as 6.5 is the lower 
limit of 7 in a continuous series. In like manner the deviation of 3 from 5 
must be taken from the upper limit of 3; namely, 3.5 (see Fig. 53). Still 
another change in procedure must be made in order to have the prob
ability obtained from t agree with the direct determination of probabil
ity. P in the t table gives the probability of 7 or more right answers and 
of 3 or fewel" right answers, i.e., takes account of both ends of the prob
ability curve (see p. 217). We must take 1/2 of P, therefore (make a one
tailed test), if we want the probability of 7 or more right answers. Note 
that the P/2 of .178 is very close to the P of .172 got by the direct method 
on page 249. If we repeated our test we should expect a score of 7 or 
better about 17 times in 100 trials. It is clear, therefore, that the obtained 
score is not significant and does not refute the null hypothesis. 

It should be noted that had we omitted the correction for continuity, 
chi square would have been 1.60 and P/2 (by interpolation in Table E), 
.104. Failure to use the correction causes the probability of a given. result 
to be greatly underestimated and the chances of its being called signifi
cant considerably increased. 

When the expected entries in a 2 X 2 fold table are the same (as in 
Tables 29, 30) the formula for chi square may be written in a somewhat 
shorter form as follows: 

x2 = 2(fo - f6)2 
fe 

(short formula for )(2 in 2 X 2 fold tables when expected 
frequencies are equal) 

(70) 

Applying formula (70) to Table 29 we get a chi square of 2(~5)2 =.90 

Example (9) ill example (3) a subject achieved a score of 60 
right on a test of 100 true-false items. From the chi-square test, 
determine whether this subject was merely guessing. Compare your 
result with that found on page 251 when the normal curve hypothesis 
was employe~ 
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TABLE 30 

Right Wrong 

Observed (fo) 60 40 100 

Expected (fe) 50 50 100 

(fo - fe) 10 10 
Correction (-.5) 9.5 9.5 

(fo - fe)2 90.25 90.25 
(fo-fe)2 1.81 1.81 

fe 

")(2 = 3.62 p= .06 
df= 1 1/2P = .03 

Although the cell entries in Table 30 are large, use of the correction for 
continuity will be found to yield a result in somewhat closer agreement 
with that found on page 252 than can be obtained without the correction. 
As shown in Figure 53, the probability of a deviation of 10 or more from 
50 is that patt of the curve lying above 59.5. In Table E, the P of .06 gives 
us the probability of scores of 60 or more and of 40 or less. Hence we 
must take 1/2 of P (i.e., .03) to give us the probability of a score of 60 or 
more. Agreement between the probability given by the ")(2 test and by 
direct calculation is very close. Note that when t is calculated without 
the correction, we get a P /2 of .023) a sligh~ underestimation. In general, 
the correction for continuity has little effect when table entries are large, 
50 or more, say. But failure to use the correction even when numbers are 
large may lead to some underestimation of the probability; hence it is 
generally wise to use it. 

Example (10) In example (4), given a multiple-choice test -of 
60 items (four possible answers to each item) we w~re required to 
find what score a subject must achieve in order to demonstrate 
knowledge of the test material. By use of the normal probability 
distribution, it was shown that a score of 21 is reasonably significant 
and a score of 23 highly significant. Can these results be verified by 
the chi~square test? 

In Table 31 an obtained score of 21 is tested against an expected score 
of 15. In the first line of the table the oBserved values (fo) are 21 right 
and 39 wrong; in the second line, the expected or "guess" values are 15 
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TABLE 31 

R W 

to 21 39 60 

te 15 45 60 

(to - Ie) 6 6 
Correction (- .5) 5.5 5.5 

(to - le)2 30.25 30.25 
(fo - le)2 2.02 .67 

Ie 

X2 = 2.69 P= .10 
dl= 1 1/2P = .05 

right and 45 wrong. Making the correction for continuity, we obtain a l 
of 2.69, a P of .10 and 1/2P of .05. Only once in 20 trials would we expect 
a score of 21 or higher to occur if the subject were merely guessing and 
had no kno~ledge of the test material. This result checks that obtained 
on page 252. 

In Table 32 a score of 23 is tested against the expected score of 15. 
Making the correction for continuity, we obtain a ~ of 5.00 which yields 
a P of .0279 and 1/2P of .0139. Again this result closely checks the answer 
obtained on page 253 by 'Jse of the normal.probability curve. 

TABLE 32 

R W 

to 23 37 60 

fe 15 45 60 

(10 - Ie) 8 8 
Correction (- .5) 7.5 7.5 

(10-16)2 56.25 56.25 
(to - le)2 3.75 1.25 

Ie 

x_2 = 5;00 P= .0279 
dt= 1 1/2P = .0139 or .01 

'(I 
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4. The chi-square test when table entries are in percentages 

The chi-square test should not be used with percentage entries unless 
a correction for size of sample is made. This follows from the fact that 
in dealing with probability the significance of an event depends upon its 
actual frequency and is not shown by its percentage occurrence. For a 
penny to fall heads 8 times in 10 tosses is not as significant 'as for the 
penny to fall heads 80 times in 100 tosses, although the percentage occur
rence is the same in both cases. If we write the entries in Table 29 as 
percentages, we have 

R W 

70% 

50% 

(fo - fe) 20% 
Correction 0 (-5%) 15% 

(fo - fe)2 225% 

2 _2(225)_9 
x%- 50 -

30% 

50% 

20% 
15% 

225% 

100% 

100% 

10 . 
x2 = 9 X 100 = .90 (Table 29) 

by (70) 

It is clear that in order to bring x2 to its proper vaue in terms of original 
numbers we must multiply the "percent" x2 by 10/100 to give .90. A l ' 
calculated from percentages must always be multiplied by N /100 
(N = number of observations) in order to adjust it to the actual fre
qencies in the given sample. 

5. The chi-square test of independence in contingency tables 

We have seen that x2.may be employed to test the agree~ent between 
observed results and those expected on some hypothesis. A. further useful 
application of x2 can be made when we wish to investigate the relation
ship between traits or attributes which can be classified into two or more 
categories. The same persons, for example, may be classified as to hair 
color (light, brown, black, red) and as to eye color (blue, gray, brown)., 
and the correspondence in these attributes noted. Or fathers and sons may 
be cl~ssified with respect to interests or temperament or achievement and 
the relationship of the attributes in the two groups studied. 

o From Table 29 it is clear that the correction of -.5 becomes -.5/10 or -.05; 
th~ is -5% when entries in the table are expressed as percents. 
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Table 33 is a contingency table, i.e., a double entry or two-way table 
in which the possession by a group of varying degrees of two character
istics is represented. In the tabulation in Table 33, 413 persons have been 
classified as to "eyedness" and "handedness." Eyedness, or eye dominance, 

TABLE 33 Comparison of eyedness and handedness in 413 persons * 

Left-eyed Ambiocular 

(35.4) (58.5) 
34 62 Left-handed 

(21.4) (35.4) 
27 28 Ambidextrous 

(61.1 ) ( 101.0) 
57 105 Right-handed 

Totals 118 195 

1. Calculation of independence values (fe): 

118 X 124 = 35 4 
413 . 

195 X 124 = 58 5 
413 . 

118 X 75 = 214 
413 . 

195 X 75 = 354 
413 . 

118 X 214 = 61 1 
413 . 195;;3214 = 101.0 

Right
eyed 

(30.0) 
28 

(18.2) 
20 

(51.8 ) 
52 

100 

100 X 124 = 30 0 
413 . 

100 X 75 = 182 
413 . 

100 X 214 ='518 
413 . 

Totals 

124 

75 

214 

413, 

II. Calculation of x2 : 

(-1.4)2 7 35.4 = .055 
(5.6) 2 7 21.4 = 1.465 
(-4.1) 27 61.1 = .275 

(3.5)2758.5 = .209 (-2.0)2 7 30 = .133 
(-7.4)2735.4 = 1.547 (1.8)2 7 18.2 = .178 
(4.0)2 7101.0 = .158 (.20)2 7 51.8 = .001 

x2 = 4.02 df = 4 P lies between .30 and .50 

is described as left-eyed, ambiocular, or right-eyed; handedness as left
handed, ambidextrous, or right-handed. Reading down the first column we 
find that of 118 left-eyed persons, 34 are left-handed, 27 ambidextrous 
and 57 right-handed. Across the first row we find 124 left-handed persons, 
of whom 34 are left-eyed, 62 ambiocular and 28 right-{yed. The other 
columns and rows are interpreted in the same way. 

" From Woo, T. L., Biometrika, 1936, 20A, pp. 79-~18. 
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The hypothesis to be tested is the null hypothesis, namely, that handed
ness and eyedness are essentially unrelated or independent. In order to 
compute )(' we must first calculate an "independence value" for each cell 
in the contingency table. Independence values are represented by the 
figures in parentheses within the different cells; they give the number of 
people whom we should expect to find possessing the designated eyedness 
and handedness combinations in the absence of any real association. The 
method of calculating independence values is shown in Table 33. To 
illustrate with the first entry, there are 118 left-eyed and 124 left
handed persons. If there were no association between left-eyedness and 

- 118 X 124 
left-handedness we should expect to find, by chal1ce, 413 or 35.4 

individuals in our group who are left-eyed and left-handed. The reason 
for this may readily be seen. We know that 118/413 of the entire group 
are left-eyed. This proportion of left-eyed individuals should hold for any 
subgroup, if there is no dependence of eyedness on handedness. Hence, 
118/413 or 28.6% of the 124 left-handed individuals, i.e., 35.4, should also 
be left-eyed. Independence values for all cells are shown in Table 33. 

When the expected or independence values have been computed, we 
find the difference between the observed and expected vaiues for each 
cell, square each difference and divide in each instance by the independ
ence value. The sum of these quotients by formula (69) gives x2• In the 
present problem l = 4.02 and df = (3 - 1) (3 - 1 r or 4. From Table E 
we find that P lies between .30 and .50 and hence x2 is not significant. The 
observed results are close to those to be expected on the hypothesis of 
independence and there is no evidence of any real association between 
eyedness and handedness within our group. 

6. 2 X 2 fold contingency tables 

When the contingency table is 2 X 2 fold, x2 may be calculated without 
first computing the four expected frequencies-the four independence 
values. Example (11) illustrates the method. 

Example (11) All of the sixth-grade children in a public-school 
system flre given a standard achievement test in arithmetic. A sample 
of 40 boys, drawn at random from the sixth-grade population, showed 
23 at or above the national norm in the test and 17 below the national 
norm. A random sample of 50 sixth-grade girls showed 22 at or above 
the national norm and 28 below. Are the boys really better than the 
girls in arithmetic? Data are arranged in a fourtoId table as follows .. 
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below at or above 
norm norm 

Boys 
(A) (B) (A+ B) 
17 23 40 

(C) (D) (C + D) 
28 22 50 Girls 

, (A + C) (B + D) N 
. 45 45 90 

In a fourfold table, chi sg~~re'is given by the following formula. <I 

2 _ N(AD - BCP 
X - (A + B) (C + D) (A + C) (B + D) 

(71) 

(chi square in a fourfold contingency table) 

~Substituting for A, 8, C, D, in the formula, we have 

2 = 90(374 - 644)2 = 1.62 
X 40 X 50 X 45 X 45 

and for dt = 1, P is larger than .20. t is not significant and there is no 
evidence that the table entries really vary from expectation, i.e., that 
there is a true sex difference in arithmetic. 

When en~ries in a fourfold table are quite small (for example, 5 or 
less) Yates' correction for continuity (p. 258) should be applied to 
formula (71). The corrected formula reads: 

2 _ N (I AD - BC I - N /2) 2 

Xc - (A + B) (C + D) (A + C) (B + D) 
(72) 

(x2 for 2 X 2 fold table, corrected for continuity) 

The vertical lines I AD - BC I mean that the difference is to be taken as 
po~itive. We may illustrate (72) by applying it to the data of the table 
in example (11). Substituting for N, A, B, C, and D we have 

2 _ 90(1374 - 644\ - 45)2 
X c - 40 X 50 X 45 X 45 

= 1.12 

a value somewhat smaller than the t of 1.62 obtained without the cor
rection. Yates' correctipn will always teduce the size of x2• It should be 
used when entries are small, as it is here that its effect may be crucial. 
If x~ is barely significant, x2c may well fall below the level set for signifi
cance. However, if x2 is not significant, x2c will be even less so. 

t See page 391 fo~elation of 7(2 to phi coefficient. 
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7. The additive property of Jf 
When several t's have been computed from independent experiments 

(i.e., from tables based upon different samples), these may be summed 
to give a new chi square with df = the sum of the separate drs. The fact 
that chi squar~s may be added to provide an over-all test of a hypothesis 
is important in many experimental studies. In example (11) we have seen 
that the boys did slightly better than the girls on the arithmetic achieve
ment test, but the chi square of 1.62 is not large enough to indicate a 
superiority of boys over girls. Suppose that three repetitions of this ex
periment are carried out, in each instance groups of boys and girls [of 
about the same size as in example (11)] being drawn independently and 
at random from the sixth grade and listed as scoring "at or above" or 
"below" the national norm. Suppose further that the three chi squares 
from these tables are 2.71, 5.39, and .15, in each case the boys being 
somewhat better than the girls. We can now combine these four results 
to get an over-all test of the significance of this sex difference in arith
metic. Adding the three x2's to the 1.62 in example (11) we have a total 
x2 of 9.87 with 4 drs. From Table E this Jf is significant at the .05 level, 
and we may be reasonably sure that sixth-grade boys are, on the average, 
better than sixth-grade girls in arithmetic. It will be noted that our four 
experiments taken in aggregate yield a significant result, although only 
one of the l's (5.39) is itself Significant. Combining the data from several 
experiments will often yield a conclusive result, when separate experi
ments, taken alone, provide only indications. 

III. NONPARAMETRIC METHODS 

When making tests of the Significance of the difference between two 
means (in terms of the CR or t, for example), we assume that scores upon 

/ which our statistics are based are normally distributed in the population. 
What we actually do-under the null hypothesis-is to estimate from our 
sample statistics the probability of a true difference between 'the two 
parameters. When N is quite small or the data are badly skewed," so that 
the assumption of normality is doubtful, "parametric ,methods" are of . 
dubious value or are not applicable at all. What we need in such cases 
are techniques which will enable us to compare samples and to make 
inferences or tests of significance without having to assume normality in 
the populations. Such methods are called nonparametric or distribution
free. Several of these have already been encountered. The x2 test, for 

., The means of moderately skewed samples, are themselves normally distributed. 
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example (p. 253), is a nonparametric technique. The significance of x2 

depends only upon the degrees of freedom in the table; no assumption 
need be made as to form of distribution for the variables classified into 
the categories of the ~ table. The problem on page 248 in which ob
served values were tested against frequencies determined from the 
binomial expansion illustrates a nonparametric test: a test of observed 
against expected f's. The rank-difference correlation coefficient (rho) is 
also a nonparametric technique. When p is computed from scores ranked 
in order of merit (p. 371), the distributions from which the scores are 
taken are liable to be badly skewed and N is nearly always small. 

The nonparametric techniques do not have the "power" 0 of the para
metric tests, that is, they are less able to detect a true difference when 
such is present. Nonparametric tests should not be ..used, therefore, when 
other more exact tests are applicable. In general, distribution-free methods 
are most useful when (1) N is small, (2) when assumptions (e.g., of 
normality) concerning the population are doubtful, and when (3) data 
can be expressed only in ranks'. 

I. The sign test 

This is the simplest and most generally applicable of the nonparametric 
tests. It is illustrated in the example below: 

Example (12) Sand C represent two tasks, S the spelling of 25 
words presented separately, and C the spelling of 25 words of equal 
difficulty presented as an integral part of a sentence (i.e., in context). 
A teacher wants to know which condition is favorable to higher 
scores. Table 34 shows the scores of 10 seventh-grade children under 
C and S, the scores being recorded in pairs. Column (3) shows the 
sign of the differen~ (C - S t as plus or minus. Under the null hy
pothesis 1/2 of the differences should be + and 1/2 should be -. 
Test the hypothesis that C is better than S. 

Of the 10 differences, 7 are plus (C higher than S), 2 are minus (S 
higher than C) a",d one is zero. Excluding the 0 as being neither + nor -, 
we have 9 differences of which 7 are plus. Is condition C Significantly 
superior to condition S? To answer this question, we shall first expand the 
binomial (p + q)9 in which p is the probability of a + and q is the prob
ability of a -: 

(p + q)9 = p9 + 9p8q + 36p7q2 + 84p6q3 + 126p5q4 + 126p4q5 
+84p3q6 + 36p2q7 + 9pqs + q9 

.. Moses, Lincoln E., "Non-parametric statistics for psychological research," 
Psychol. Bull., 1952"pp. 122-143. 
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TABLE 34 Sign test applied to data consisting of 10 pairs of scores obtained 
under two conditions--in context and in isolation 

(1) (2) (3) 
C· st (C - S) Signs: 
15 12 + + 7 
18 15 + 2 
9 10 0 1 

15 16 10-
18 18 0 
12 10 + 
15 12 + 
16 13 + 
14 12 + 
22 19 + 
·C = words in context 
ts = words spelled as separates 

The total number of combinations is 29 or 512. Adding the first 3 terms 
(namely, p9 + 9p8q + 36p7 q2), we have a total of 46 combinations (i.e., 
1 of 9,9 of 8, and 36 of 7) which contain 7 or more plus signs. Some 46 
times in 512 trials 7 or more plus signs out of 9 will occur when the 

. mean number of + signs under the null hypothesis is 4.5 (p. 248). 
The probability of 7 or more + signs, therefore, is 46/512 or .09, and 
is clearly not significant. This is a one-tailed test, since our hypothesis 
states that C is better than S. If the hypothesis at the outset had been that 
C and S differ without specifying which is sup'erior, we would have had a 
2-tailed test for which P = .18. 

Tables" are available which give the number of signs necessary for 
fignificance at different levels, when N varies in size. When the numbe,r 
of pairs is as large as 20, the normal curve may be used as an approxima
tion to the binomial expansion (p. 93) or the x2 test applied. 

2. The median test 

The median test is used to compare the performance of two inde
pendent groups as for example an experimental group and a control 
group. First, the two groups are thrown together and a common median 
found. If the two groups have been drawn at random from the same pop
ulation, 1/2 of the scores in each group should lie above and 1/2 below 

• Dixon, W. J., and Massey, F. J., Introduction to Statistical Analysis (New York: 
McGraw-Hill Co., 1951), Table 10, p. 324. ' 
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the common median. In order to test this null hypothesis, we need to draw 
l.lp a 2 X 2 table and calculate x2 • Above vs. below the common median 
constitutes one category in this table, and experimental group vs. control 
group the other. The method is shown in example (13): 

Example (13) A clinical psychologist wants to investigate the 
effects of a tranquilizing drug upon hand tremor. Fourteen psychiatric 
patients are given the drug, and 18 other patients matched for age 
and sex are given a placebo (i.e., a harmless dose). Since the medica
tion is in pill form the patients do not know whether ~hey are getting 
the drug or not. The first group is the experimental, the second the 
control group. 

Tremor is measured by a steadiness tester. Table 35 gives the 
scores of the two groups: a + sign indicates a score above the common 
median, a - sign a score below the common median. Does the drug 
increase steadiness-as shown by lower scores in the experimental 
group? As we are concerned only if the drug reduces tremor, this is 
a one-tailed test. 

TABLE 35 Median test applied to experimental and control groups. Plus 
signs indicate scores above the common median, minus signs 
scores below the common median 

N= 14 
Experimental 

53 
39 
63 
36 
47 
58 
44 
38 
59 
36 
42 
43 
46 
46 

Sign 

+ 

+ 

+ 

+ 

N= 18 
Control 

48 
65 
66 
38 
36 
45 
59 
53 
58 
42 
70 
71 
65 
46 
55 
61 
62 
53 

Common median = 49.5 

Sign 

+ 
+ 

+. 
+ 
+ 

+ 
+ 
+ 

+ 
+ 
+ 
+ 
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The common median is 49.5. In the experimental group 4 scores are 
above and 10 below the common median instead of the 7 above and 7 
below to be expected bY' chance. In the control group, 12 scores are above 
and 6 below the common median instead of the expected 9 in each cate
gory. These frequencies are entered in Table 36 and Jf is computed 
by formula (72) with correction for continuity. 

TABLE 36 

Below Above 
Median . Median 

Experimental 10 4 

Control 6 12 

16 16 

The t is, when corrected, 

2 _ 32(J120 - 241 - 32/2)2 
X c - 16 X 16 X 18 X 14 

= 3.17 

Total 

14 

18 

32 

A Jfc of 3.17 with 1 degree of freedom yields a P which lies at .08, 
about midway between .05 and .10. We wanted to know whether the 
median of the experimental group was Significantly lower than that of the 
control (thus indicating more steadiness and less tremor). For this hy
potheSiS, a one-tailed test, P /2, is approximately .04 and X2 c is Significant 
at the .05 level. Had our hypothesis~ been that the two groups differ with- . 

'out specifying the direction, we would ha.ve had a two-tailed test and t 
would have been marked not significant. Our conclusion, made somewhat 
tentatively, is that the drug produces some reduction in tremor. But owing 
to the small samples and lack of a highly significant finding, the clinical 
psychologist would almost certainly repeat the experiment-perhaps sev
eral times. 

Jf is generally applicable in the median test. However, when Nl and N2 
are small (e.g., less than about 10) the X2 test is not accurate and the 
exact method of computing probabilities should be used. <) 

• Walker, H. M., and Lev, J., Statistical Inference (New York: Henry Holt, 1953), 
pp. 103 fl. 
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3. The sum-of-ranks test 

The sum-of-ranks test is used to test the hypothesis that two inde
pendent groups of observations (e.g., scores or other data) have been 
drawn at random from the same population-and hence that there is no 
real difference between them. This general hypothesis requires that we 
make a two-tailed test. A one-tailed test is appropriate when the hypothe
sis asserts that one group is higher or lower than the other group. Appli
cation of the "ranks" test is made in example (14): 

Example (14) In order to find the effects upon school achieve
ment of additional assignments in English composition, a teacher 
divided her class into two sections of 10 pupils each. Children were 
assigned at random to Section 1 or to Section 2. The first group 
(the experimental) was given additional assignments, while the second 
group (the control) was excused from extra work. At the end of 
3 months a subject matter test was administered to both groups with 
the results shown in Table 37. The control group was reduced from 
10 to 8 owing to absence and illness. Do the two groups differ on 
the final test? 

TABLE 37 Sum-of-ranks test applied to experimental and control groups. 
Ranks from lowest to highest have been assigned to each score in 
the entire group of 18 pupils 

Experimental Group (Nl = 10) Control Group (N2 = 8) 
Scores Ranks Scores Ranks 

42 9 41 8 
53 15 36 4 
47 13 33 2 
38 5 55 16 
46 12 44 10 
51 14 35 3 
62 18 32 1 
60 17 40 7 
45 11 R2 =51 
39 6 

RI = 120 

First, the entire set of 18 scores is ranked in 1-2-3 order from smallest 
to largest. The sum of the ranks is obtained separately for each group. As 

a check, note that Rl + R2 must equal N (N + 1). In our problem, 
2 
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Rl = 120 and R2 = 51, the sum being 171. Since N = 18, N(N
2
+_1) = 

18X 19 . 
2 or 171, whICh checks the sum Rl + R2 • When Nl and N2 are 

, 
equal to or larger than 8, we may compute a u score for each rank total by 
the following formula: 

Sample 1: 

Sample 2: 
2R2 - N 2 (N + 1) 

Z2 = ~NIN2(~ + 1) 

These z' s may be referred to the normal distribution, and their proba
bility of occurrence determined. The two z's should equal each other with 
opposite sign. In the problem above, 

Z1 = 2 X 120 - 10 X 19 = ~ = 2.22 
~ 10 X ~ X 19 22.5 

z., = ~ X 51 - 8 X 19 = -50 = -2.22 
- ~10 X : X 19 22.5 

From Table A we read that 1.3% of the normal curve lies to the right 
of 2.22u; and of course, 1.370 lies to the left of -2.22u. The P, therefore, 
is .03 and the null hypothesis must' be rejected. On the present evidence 

. our two groups differ in mean achievement. If the hypothesis had been 
I that the experimental group is superior to' the control (one-tailed test), 

P would be .013 and the result significant, almost at the .01 level. 
The nonparametric methods are applicable to a number of problems 

involVing small groups. They are especially useful when few assumptions 
can be made or are tenable under the conditions of the problem. Non
parametric methods should not be substituted for the parametric methods 
where the latter are applicable. 

PROBLEMS 

1. Two sharp clicking sounds are presented in succession,. the second being 
always more intense or less intense than the first. Presentation is in. 
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random order. In eight trials an observer is right six times. Is this result 
significant? 

(a) Calculate P directly (p. 249). 
(b) Check P found in (a) by x2 test (p. 258). Compare P's found with 

and without correction for continuity. 
2. A multiple-choice test of fifty items provides five responses to each item. 

How many items must a subject answer correctly. 

(a) to reach the .05 level? 
(b) to reach the .01 level? 
(Use normal curve) 

3. A multiple-choice test of thirty items provides three responses for each 
item. How many items must a subject answer correctly before the chances 
are only_one in fifty that he is merely guessing? 

4. A pack of fifty-two playing cards contains four suits (diamonds, clubs, 
spades and hearts). A subject "guesses" through the pack of cards, naming 
only suits, and is right eighteen times. 

(a) Is this result better than "chance"? (Hint: In using the probability 
curve, compute area to 17.5, lower limit of 18.0, rather than to 18.0.) 

(b) Check your answer by the x2 test (p. 260). 
5. Twelve samples of handwriting, six from normal . and six from insane 

adults, are presented to a graphologist who claims he can identify the 
writing of the insane. How many "insane" specimens must.he recognize 
correctly in order to prove his contention? (Assume that the graphologist 
knows that there are 6 specimens from normal and 6 from insane.) 

6. The following judgments were classified into six categories taken to repre
sent a continuum of opinion: 

Judgments: 
I 
48 

II 
61 

Categories 
III IV 
82 91 

V 
57 

VI 
45 

Total 
384 

(a) Test given distribution versus "equal probability" hypothesis. 
(b) Test given distribution versus normal distribution hypothesis. 

7. In 120 throws of a single die, the following distribution of faces was 
obtained: 

Faces 
1 2 3 4 5 6 Total 

Observed 
frequencies: 30 25 18 10 22 15 120 

Do these results constitute a refutation of the "equal probability" (null) 
hypothesis? 

8. The following table represents the number of QOYs and the number of 
girls who chose each of the five possible answers to an item in an attitude 
scale. ~ 
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Approve Approve Indiffer- Dis- Strongly DIS- Total 
Strongly ent approve approve 

Boys 25 30 10 25 10 100 
Girls 10 15 5 15 15 60 

Do these data indicate a significant sex difference in attitude toward this L 
question? [Note: Test the independence (null) hypothesis.] 

9. The table below shows the number of normals and abnormals who chose 
each of the three possible answers to an item on a neurosis questionnaire. 

Yes No ? Total 
Normals 14 66 10 90 
Abnormals 27 66 7 100 

41 132 17 190 

Does this item differentiate between the two groups? Test the inde
pendence hypothesis. 

10. From the table below, determine whether Item 27 differentiates between 
two groups of high and low general ability. 

Numbers of Two Groups Differing in General 
Ability Who Pass Item 27 in a Test 

Passed Failed Total 
High Ability 31 19 50 
Low Ability 24 26 50 

55 45 100 

11. Five x2 's computed from fourfold tables in independent replications of an 
experiment are .50, 4.10, 1.20, 2.79 and 5.41. Does the aggregate of 
these tests yield a significant x2? 

12. In a group of 15 identical twin pairs, one member of each pair is given 
special training, the other member of the pair acting as a control. In a final 
test, 10 of the trained twins w~re superior to their twin controls, 4 were 
inferior, and in one pair the scores were the same. Were the trained twins 
superior to the untrained? Apply the sign test. (Hint: take (p + q) 14.) 

13. In answering a questionnaire the follOwing scores were achieved by 10 
men and 20 women: 
~en: 22,31,38,47,48,48,49,50,52,61' 
Women: 22,23,25,25,31,33,34,34,35,37,40,41,42,43,44,44,46, 
48, 53, 54 
Do men and women differ significantly in their answers to this question
naire? Apply the median test (take the median = 41.5) . 

14. The Attitude toward the Church scale is administered to a group of 78 
'sophomores. Of the 78, 57 had had a course in religious education and 21 
had not. Suppose that 37 of the 57 are above the common median of the 
whole group of 78, and that only 15 of the ~1 are above the common 
median. Are the two groups significantly different? Apply the median test. 
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15. Two groups of graduate stUdents, 8 in each group, earn the following 
scores: 
A: 19,28, 14,23, 14, 17, 12, 15 
B: 25, 23, 29, 15, 27, 21, 24, 20 
Do the two groups differ significantly? Apply the sum-of-ranks test. 

ANSWERS 

1. (a) P = .145; not significant 
(b) P = .145 when corrected; .083 uncorrected 

2. (a) 15 
(b) 17 

3. 16 
4. Probability of 18 or better is about .08; not significant 
5. 5 or 6 (Probability of 5 or 6 = 37/924 = .04) 
6. (a) -K- = 27; P less than .01 and hypothesis of "equal probability" must 

be discarded. 
(b) -K- = 346; P is less than .01, and the deviation from the normal 

hypothesis is significant. 
7. Yes. -K- = 12.90, df = 5, and P is between .02 and .05 
8. No. X2 = 7.03, df = 4, and P is between .20 and .10 
9. No. -K- = 4.14, df = 2, and P is between .20 and .10 

10. No. X2 = 1.98, df = 1, and P lies between .20 and .10 
11. Yes. X2 == 14.00, df = 5, and P lies between .02 and .01 
12. No. P == .09 
13. No. X2 (corrected) = 1.35 
14. No. X2 = .073 
15. Yes. Significant at the .05 level 



CHAPTER 11 

ANALYSIS OF VARIANCE 

The methods described under analysis of variance include (1) a variety 
of procedures called experimental designs, as well as (2) certain statistical 
techniques devised for use with these procedures. The statistics used in 
analysis of variance are not new (as they are sometimes thought to be) 
but are, in fact, adaptations of formulas and methods described earlier in 
this book. The experimental designs, on the other hand, are in several 
instances new, at least to psychology. These systematic approaches often 
provide more efficient and exact tests of experimental hypotheses than 
do the conventional methods ordinarily employed. 

This chapter will he.-Concerned with the application of analysis of vari-
-aBGe-to-the-irIlportant and often-encountered problem of determining the 
significance of the difference between means. This topic has been treated 
by classical methods in Chapter 9, and the present chapter will give the 
student an opportunity to contrast the relative efficiency of the two ap
proaches and to gain, as well, some notion of the advantages and dis
advantages of each. Treatment of other and more complex experimental 
deSigns through analysis of variance is beyond the scope of this book. 
After this introductory chapter, ho~ever, the interested student should be 
able to follow the more comprehensive treatments of analysis of variance 
in the references listed in the footnote. «> 

The plan of this chapter is to give, first, an elementary account of the 

o Edwards, A. L., Statistical Methods for the Behavioral Sciences (New York: 
Rinehart, 1954). 

McNemar, Q., Psychological Statistics (New York: John Wiley and Sons, 2nd ed., 
1955). 

Snedecor, C. W., Statistical Methods (5th ed.; Ames, Iowa: Iowa State. College 
Press, 1956). . 

Walker, H. M., and Lev, J., Statistical Inference (New York: Henry Holt & Co., 
1953)' 

Fisher, R. A., Statistical Methods for Research Workers (8th ed.; London: Oliver 
and Boyd, 1941). 

Fisher, R. A., The Design of Experiments (London: Oliver and Boyd, 19~5). 
(The Fisher references will be difficult for the beginner.) 

276 
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principles of variance analysis: The problem of determining the' signifi
cance of the difference between two means will then be considered: (1) 
when the ,means are independent, i.e., when the sets of measures from 
which the M's are derived are uncorrelated, and (2) when M's are not 
independent because of correlation among the different sets of measures 
or scores. 

I. HOW VARIANCE IS ANALYZED 

I. When pairs of scores are added to yield a composite score 

Whil~ the variability within a set of scores is ordinarily given by the 
standard deviation or cr, variability may also be expressed by the "vari
ance" or a2. A very considerable advantage of variances over SD's is the 
fact that variances are .'often additive and the sums of squares, upon 
which variances are based, always are. A simple example will illustrate 
this. Suppose that we add the two independent (uncorrelated) scores X 
and Y made by subject A on tests X and Y to give the composite score Z 
(i.e., Z = X+ Y). Now, if we add the X and Y scores for each person in 

- our group, after expressing each score as a deviation from its own mean, 
we will have for any subject that 

z=x+y 

in which z = Z - M., x == X - M"" and y = Y - Mil' 
Squaring both sides of this equation, and summing for all subjects in 

the group, we have in general that 

IZ2 = Ix2 + Iy2 

The cross product term 2Ixy 0 drops out as x and yare independent 
( uncorrelated) by hypothesis. Hence we find that the sum of the squares 
in X plus the sum of the squares in y equals the sum of the squares in z. 
Dividing by N, we have 

or 

Also 

u. == yu2", + u 2
11 

The equation in tem)s of variances is more convenient and more useful 
than is the equation in terms of SD's. Thus if we divide each variance by 
a2. we have 

1 
u2.1r u2« 

==-+----'" 
u 2• u 2 a 

• The formula is r~ N'l:XY (p. 139). If r = 0, 'l:xy must also be zero. 
u.u. 
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which tells us what proportion of the variance of the composite Z is 
attributable to the variance of X and what proportion is attributable to 
the variance of Y. This division of total variability into its independent 
components cannot be readily done with 5D's. 

2. When two sets of scores are combined into a single distribution 

The breakdown of total variability into its contributing parts may be 
approached in another way. When two sets of scores, A and B, are thrown 
together or combined into a single distribution (see p. 56), the sum of 
the squares of all of the scores taken from the MT of the single total dis
tribution is related to the component distributions A and B as follows: 

lX2T = lX2A + lX2B + NA£PA + NncPB 

where lX2T = 58 ., of deviations in distribution T from MT; 

lX2A = 55 of deviations in distribution A from MA; 

lX2B = 55 of deviations in distribution B from MB • 

N A and N B are the numbers of scores in distributions A and B, respec
tively; dA and dn are the 8eviations of the means of A and B from the 
mean of T, i.e., (M,4 - MT)2 = d2,4; (MB - MT)2 = d2B. 

The equation given above in terms of lX2T is important in the present 
connection because it shows that the sum of the squares of deviations 
around the mean of a single distribution made up of two component dis
tributions can be broken down into two parts: (1) the 55 around the M's 
of the two sets of scores, viz., M,4 and Mn, and (2) the sum of squares 
(times the appropriate N's) of the deviations of MA and MB from MT. An 
illustration will make the. application of this result to variance analysis 
clearer. 

Table 38 shows three sets of scores, 5 for group A, 10 for group B, and 
j 15 for group T which is made up of A and B. The ·sums of scores, the 

means and 55 around the M's have been calculated for each group. It 
. 18 X 5 +21 X 10 

may be noted that MT = 15 = 20; and that, in general, 

M - MAXNA+MBXNB ( 30) 
T - NA+NB p.. 
Substituting the data from Table 38 in the sums equation above we 

find that • 

or 
274 = 138 + 106 + 5(18 - 20)2 + 10(21 - 20)2 

274 = 138 + 106 + 20 + 10 
., SS = sum of squares. 
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TABLE 38 A and B are two distributions and T is a combination of the two 

Distribution A 

25 
15 
18 
22 
10 

Sum 90 
M 18 
l:x2 138 

Distribution B 

17 
20 
26 
18 
20 
25 
19 
26 
18 
21 

210 
21 

106 

Distribution T (A + B) 

25 
15 
18 
22 
10 
17 
20 
26 
18 
20 
25 
19 
26 
18 
21 

300 
20 

274 

Of the total 55 (274), 244 (138 + 106) is contributed by the variability 
within the two distributions A and B, and 30 (20 + 10) is contributed by 
the variability between the means of the two distributions. This break
down of total SS into the SS's within component distributions and 
between the M's of the combined distributions is fundamental to analysis 
of variance. The method whereby SS's can be expressed as variances will 
be shown later. . 

II. THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS 
DERIVED FROM INDEPENDENT OR UNCORRELATED 

MEASURES OR SCORES 
(ONE CRITERION OF CLASSIFICATION) 

I. When there are more than two means to be compared 

The value of analysis of variance in testing experimental hypotheses is 
most strikingly demonstrated in those problems in which the significance 
of the differences among several means is desired. An example will illus
trate the procedures and will provide a basis for the discussion of certain 
theoretical point~· 
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Example (1) Assume that we wish to study the effects of eight 
different experimental conditions designated A, B, C, D, E, F, G, 
R, upon performance on a sensorimotor task. From a total of 48 
subjects, 6 are assigned at random to each of 8 groups and the same 
test is administered to all. Do the mean scores achieved under the 8 
experimental conditions differ significantly? 

Records for the 8 groups are shown in parallel columns in Table 39. 

TABLE 39 Hypothetical experiment in which 48 subiects are assigned at 
random to 8 groups of 6 subjects each. Groups are tested under 
8 different experimental conditions, designated respectively A, Bi 
C, 0, E, F, G and H 

Conditions 

A B C D E F G H 
64 73 77 78 63 75 78 55 
72 61 83 91 65 93 46 66 
68 90 97 97 44 78 41 49 
77 80 69 82 77 71 50 64 
56 97 79 85 65 63 69 70 
95 67 87 77 76 76 82 68 

Sums 432 468 492 510 390 456 366 372 Grand Sum: 3486 
M's 72 78 82 85 65 76 61 62 General Mean = 72.63 

A. CALCULATION OF SUMS OF SQUARES 

. (3486)2 
Step I CorrectIon term (C) = 48 = 253,171 

Step 2 Total Sum of Squares 

= (642 + 722 +. . . + 702 + 682) - C 
= 262,364 - 253,171 = 9193 

; Step 3 Sum of Squares among Means of A, B, C, D, E, F, G, and H 

(432)2 + (468)2 + (492)2 + (510)2 + (390)2 + (456)2 
6 

+ (366)2 + (372)2 _ C 
6 

= 1540188 _ 253,171 = 3527 
6 

Step 4 Sum of Squares within Conditions A, B, C, D, E, F, G and H 

= Total SS - Among Means SS 

= 9193 - 3527 = 5666 .. 
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TABLE 39 (Continued) 

B. SUMMARY: ANALYSIS OF VARIANCE 

Sums of Mean Square 
Source of Variation dt Squares (Variance) SD 

Among the means of 
Conditions 7 3527 503.9 

Within Conditions 40 5666 141.6 11.9 
Total 47 9193 

F = 503.9 = 3 56 From Table F for 
141.6 . dtl = 7 and dt2 = 40 

F at .05 = 2.26 
Fat .01 = 3.14 

C. TESTS OF DIFFERENCES BY USE OF t 

For dt = 40, t.05 = 2.02 (Table D) 
t.OI = 2.71 

D.05 = 2.02 X 6.87 = 13.9 
D.fll = 2.71 X 6.87 = 18.6 

fl":l 
SED = 11.9 '\/6 -r 6 

= 11.9 X .577 
= 6.87 

Largest difference is between D and G = 24 
Smallest difference is between G and H = 1 

[)istribution of 
mean differences 

22-24 
19-21 
16-18 
13-15 
10-12 
7-9 
4-6 
1-3 

_t 
2 
3 
3 
4 
4 
3 
S 
4 

28 

Approximately 5 differences significant 
at .01 level 

Approximately 10 differences significant 
at .05 level 

Individual scores are ,listed under the 8 headings which designate the 
conditions under which the test was given. Since "conditions" furnishes 
the category for the assignment of subjects, in the terminology of analysis 
of variance there is said to be one criterion of classification. The first step 
in our analysis is a breakdown of the total variance (0-2 ) of the 48 scores 
into two parts: (l~ the variance attributable to the different conditions, or 
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the variance among the 8 means, and (2) the variance arising from indi
vidual differences within the 8 groups. The next step is to determine 
whether the group means differ significantly inter se in view of the vari
ability within the separate groups (individual differences). A detailed 
account of the calculations required (see Table 39) is set forth in the 
steps on pages 280-281. 

Step I 

Correction term (C). When the SD is calculated from original measures 
lx2 lx2 . 

or raw scores,· the formula SD2 = N - C2 becomes SD2 = N - M2. 

The correction (C) equals M directly in this form of the equation, since. 
C = AM - M and the AM (assumed mean) here is zero. Replacing a2 by 
lx2 lx2 lX2 

N we have that N = N - M2. Now, if the correction term M2 is 

written (~/ we can multiply this equation thro~gh by N to find that 

(lX)2 . (lX)2 
lx2 = lX2 - ~. In Table 39 the correction term ~ is 253,171. 

This correction is applied to the sum of squares, lX2. 

Step 2 

(lX)2 
Total sum of squares around the general mean. Since lr = lX2 - T 

we need only square and sum the priginal scores and subtract the correc
tion term to find S~T (sum of squares around the general mean of all 48 
scores). In Table 39, squaring eacli score and summing we get a total of 

! 262,364; and subtracting the correction, the final SST is 9193. This SST 
may also be computed by taking deviations around the general mean 
directly. The general mean is 72.63. Subtracting 72.63 from each of the 
48 scores, squaring these x's and summing, we get 9193 checking the cal
culations from raw scores. The formula for sum of squares around the 
general mean is 

SST = IX2 _ (~)2 (73) 

(SST around general mean using raw scores) 

• See page 278. In analysis of variance calculations it is usually more convenient 
to work with original measures or raw scores. 
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Step 3 

Sum of squares among the means obtained under the 8 conditions. To 
find the sum of squares attributable to condition differences (SSM'S)' we 
must first square the sum of each column (i.e., each condition), add these 
sums and divide the total by 6, the number of scores in each group or 
column. Subtracting the correction found in Step 1, we then get the 
final SSM'. to be 3527. This SSM's is simply the SS of the separate group M's 
around the one general mean, multiplied by the number of scores in each 
column. We may carry out these calculations as a check on the result 
above. Thus for the present example: 

SSM'. = 6[ (72- 72.63)2 + (78 - 72.63)2 + (82 - 72.63)2 
+ (85 - 72.63)2 + (65 - 72.63)2 + (76 - 72.63)2 
+ (61 - 72.63)2 + (62 - 72.63)2] = 3527 

When, as here, we are working with raw scores, the method of calculation 
repeats Step 2, except that we divide the square of each column total 
by 6 (the number of scores in each column) before subtracting C. The 
general formula is 

(!X1)2 (!X2 )2 (!X~.)2 
SS (among means) =--+ --+ ... +---c (74) 

n l n2 nn 

(SS among means when calculation is with raw scores) 

When the number of scores in.the groups differ, the squares of the 
column sums will be divided by different n's before the correction is sub
tracted (see page 288 for illustration). 

Step 4 

Sum of squares w#hin conditions (individual differences). The SS 
within cohimns or groups (SSw) always equals the SST minus the SSM's' 
Subtracting 3527 from 9193, we have 5666. This SSw may also be calcu
lated directly from the data (see p. 303). 

Step 5 

Calculation of the variances from each SS and analysis of the total vari
ance into its components is shown in the B part of Table 39. Each SS 
becomes a variance when divided by the degrees of freedom (dt) allotted 
to it (p. 194). There are 48 scores in all in Table 39, and hence there are 
(N - 1) or 47 dJ in all. These 47 df are allocated in the following way. 
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The dt for "among the means of conditions" are (8 - 1) or 7, less by one 
than the number of conditions. The dt within groups or within conditions 
are (47 - 7) or 40. This last dt may also be found directly: since there 
are (6 - 1) or 5 dt for each condition (N = 6 in each group), 5 X 8 
(pumber of conditions) gives 40 dt for within groups. The variance 
among M's of groups is 3527/7 or 503.9; and the variance within groups 
is 5666/40 or 141.6. 

If N = number of scores in all and k = number of categories or groups, 
we have for the general case that. 

df for total SS = (N - 1) 
df for within groups SS = (N - k) 
df for among means of groups SS = (k - 1) 

Also: (N - 1) = (N - k) + (k - 1) 

Step 6 

In the present problem the null hypothesis asserts th"t the 8 sets of 
scores are in reality random samples drawn from the samf~ normally dis
tributed population, and that the means of conditions A, B, C, D, E, F, 
e and H will differ only through fluctuations of sampling. To test this 
hypothesis we divide the "among means" variance by the "wit~in groups" 
variance and compare the resulting variance ratio, called F, with the 
F values in Table F. The F in our problem is 3.56 and the dt are 7 for the 
numerator (dtl) and 40 for the denominator (dt2)' Entering Table F we 
read from column 7 (midway between 6 and 8) and row 40 that an 
F of 2.26 is significant at the .05 level and an F of 3.14 is significant at the 
.01 level. Only the .05 and .01 points are given in the table. These entries 
mean that, for the given dt's, variance ratios or F's of 2.26 and 3.14 can be 

. expected once in 20 and once in 100 trials, respectively, when the null 
, hypothesis is true. Since our F is larger than the .01 level, it would occur 
less than once in 100 trials by chance. We reject the null hypothesis, 
therefore, and conclude that the means of our 8 groups do in fact 
differ. 

F furnishes a comprehensive or over-all test of the significance of the 
differences among means. A significant F does not tell us which meaqs 
differ Significantly, but that at least one is reliably different froIll some 
others. If F is not significant, there is no reason for further testing, as none 
of the mean differences will be significant (see p. 184). But if F is signifi-' 
cant, we may proceed to test the separate differences by the t test (p. 191) 
as shown in Table 39 C. 
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Step 7 

The best estimate which we can make of the uncontrolled variability 
arising from individual differences is given by the SD of 11.9 computed 
from the "within groups" variance given in Table 39 B. This SD is based 
upon all of our data and is a measure of subject variability after tbe sys
tematic effects arising from differences in column means have been 
allowed for. In testing mean differences by the t test, therefore (Table 
39 C), the SD of 11.9 is used throughout instead of the SD's calculated 
from the separate columns, A, B, C, D, E, F, G and H. The standard error 

SDw -
of any meal (SEM ) is ~ or 11.9/y'6 = 4.86. And the SE of the differ-

y'N ' 
ence (D) between any two means is SED = y'4.862 + 4.862 or 6.87. A 
general formula for calculating SED directly is 

/1 1 
SEn = SDu"~Nl + N2 

(standard error of the difference between any two means In 

analysis of variance) 

(75) 

where SDw is the within-groups SD, and n] and n2 are the sizes of the 
samples or groups being compared. 

The means of the 8 groups in Table 39 range from 61 to 85, and the 
mean differences from 24 to 1. To determine the significance of the differ
ence between any two selected means we must compute a t ratio by divid
ing the given mean difference by its SED. The resulting t is then compared 
with the t in Table D for 40 df, viz., the number of df upon which our 
SDw is based. A more summary approach than this is to compute that 
difference among means which for 40 df will be significant at. the .05 or 
the .01 level and check our differences against these standards. This is 
done in Table 39 C. We know from Table D that for 40 dt, a t of 2.02 is 
significant at the .05 l~vel; and a t of 2.71 is significant at the .01 level. 
Since.t = mean difference/SED, we may substitute 2.02 for t in this equa
tion and 6.87 for SED to find that a difference of 13.9 is significant at the 
.05 level. Using the same procedure, we substitute 2.71 for t in the equa
tion to find that a difference of 18.6 is significant at the .01 level. 

Eight means will yield (
8 ~ 7) or 28 differences. From the distribution 

of these 28 differences (Table 39 C) it is clear that approximately 5 dif
ferences are significant at the .01 level (i.e., are 18.6 or more); and 
approximately 10 at the .05 level (i.e., are 13.9 or more). The largest dif
ference is 24 and~the smallest is 1. 
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Several additional comments may serve to clarify and summarize the 
computations relating to Table 39. 

(1) It must be kept in mind that we are testing the null hypothesis
namely, the hypothesis that there are no true differences among the 8 con
dition means. Said differently, the F ratio tests the hypothesis that our 8 
groups are in reality random samples drawn from the same normally dis
tributed population. The F test refutes the null hypotheSis for means by 
demonstrating differences which cannot be explained by chance, i.e., 
differences larger than those which might occur from sampling accidents 
once in 100 trials, if the null hypothesis were true. In addition to the 
assumption of normality in the common population, we also assume, in 
using the F test, that the samples have equal variances. 

(2) This second assumption of equal variances can be tested by means 
of Bartlett's test for homogeneity of variance.o Unless the samples are 
quite small, however, the experimental evidence shows that variances in 
the samples may differ conSiderably and the F test still be valid. A simple 

. check on the equality of sample variances is to calculate the sum of 
squares for each group separately, divide by the .appropriate dt, and test 
the largest V against the smallest V using the F test. In Table 39, for ex
ample, the largest V is for Group G and the smallest for Group D. The 
sum of squares for Group G is 1540 and the dt are (6 - 1) or 5, so that 
V G = 308. For Group D, the sum of squares is 302, and the dt are again 
5, so that V D = 6004. F is 308/60.4 or 5.1 and the dt are 5 and 5. From 
Table F we find that for 5/5 dt, F must equal 5.05 to be significant at 
the .05 level; and 10.97 to be significant at the .01 level. The observed F 
of 5.1 is barely Significant at the .05 level, and since the two V's tested are 
the extremes out of 8, we may feel sure that the 8 V s do not differ signifi
cantly the one from the other. It sometimes happens that the two extreme 
V's differ Significantly, but the complete set of V's is homogeneous by 
Bartlett's test. 

(3) The 47 dt (48 - 1) in the table are broken down into 7 dt allotted 
to the 8 condition means and the 40 dt allotted to individual differences 
(variations within groups or columns). Variances are calculated by divid
ing each SS by its own dt. 

( 4) In problems like that of Table 39 (where there is only one cri
terion of classification) all 3 variances (total, among means, and within 
groups) are in effect estimates of the variance in the population from 
which our 8 samples have been drawn. Only two of these variances are 
independent: the variance among condition means and the variance 
within groups, since V T is composed of these two. The two independent 

OSee Snedecor, G. W., op. cit., pp. 285-289 
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estimates of the population variance are used in computing the variance 
ratio and making the F test. 

Since the numerator in the F ratio is always the larger of the two V's 
and the denominator the smaller, F must be 1.00 or greater. This means 
that we are dealing with only the right (the positive) tail of the F dis
tribution: that we are making a one-tailed test. This is the appropriate 
test, as we are interested in knowing whether the first V is equal to or 
greater than the second. 

When samples are strictly random, these two estimates of the com
mon V are equal and F is 1.00. Moreover, when F is 1.00, the variance 
among group means is no greater than the variance within groups; or, 
put differently, group means differ no more than do the individuals within 
the groups. The extent to which F is greater than 1.00 becomes, then, a 
measure of the significance of the differences among group means. The 
larger the F the greater the probability that group mean differences are 
greater than individual variation-sometimes called "experimental error." 

( 5) According to the traditional method of treating a problem like that 
of Table 39, 8 SD's would first be computed, one around each of the 
8 column means. From these 8 SD's, SE's of the means and SE's of the dif
ferences between pairs of means would be computed. A t test would then 
be made of the difference between each pair of means and the significance 
of this difference determined from Table D. 

Analysis of variance is an improvement over this procedure in several 
respects. In Table 39 we first compute an F ratio which tells us whether 
any mean differences are significant. If F is significant, we may then com
pute a single SEn. This SEn is derived from the SDw calculated from the 
8 grQups after systematic mean differences have been removed. Moreover, 
this within-groups SD-based as it is upon all 48 scores and with 40 df
furnishes a better (i.e." more reliable) measure of uncontrolled (or experi
mental) variatiop in the table than could be obtained from SD's based 
upon only 8 scores and 7 df. Pooling of sums to obtain the within-groups 
SD is permissible, since the deviations in each group have been taken 
from their own mean. 

( 6) If the F test refutes the null hypothesis we may use the t test to 
evaluate mean differences. If the F test does not refute the null hypothesis 
there is no justification for further testing, as differences between pairs 
of means will not differ Significantly unless there are a number of them
in which case one· or two might by chance equal or approach significance." 

" In 100 strictly random differences, 5 will be significant at the .05 level; that is, 
2*% will exceed 1.96.,. at each end of the curve of differences (p. 214). Hence in 
28 differences (Table 39 C) 1 or 2 might be significant at the .05 level (28 X .05 = 
1.40) if differences are randomly distributed around zero. 

~ -
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(7) When samples are strictly random and V's are equal, F is a valid 
test. However, in practice, sample sizes may be small and the assumption 
of equal Vs precarious. Under these conditions, the F ratio is only an 
approximate test of significance. Repetition of the experiment, perhaps 
many times, is the only real guarantee against an erroneous conclusion. 

TABLE 40 Solution of example (5), page 223, through methods of analysis 
of variance 

Class 1 (Nl = 6) 
28 
35 
32 
24 
26 
35 

61 180 

Ml = 30 

SCORES 

A. SUMS OF SQUARES 

Class 2 (N2 = 10) 
20 
16 
25 
34 
20 
28 
31 
24 
27 
15 

101240 

M 2 = 24 

1. Correction: (420)2/16 = 11025 

2. SST = 282 + 352 + . , . + 152 - C 
= 11622 - 11025 = 597 

3 
SS - (180)2 (240)2 _ C 

• M'8 - 6 + 10 

= 11160 - 11025-= 135 
4. SSw = 597 - 135 = 462 

B. ANALYSIS OF VARIANCE 

Source 
Between 'means 
Within classes 

Total 

df 
1 

14 

15 

SS 

135 
462 
597 

MS(V) 
135 
33 

F = 135 = 4.09 
33 

t= VF= 2.02 

From Table F 
F at .05 level = 4.60 
F at .01 level = 8.86 
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2. When there are only two means to be compared 

In order to provide a further comparison of analysis of variance with 
the methods of Chapter 9, example (5), page 223, is solved in Table 40. 
This second example will show that when only two means are to be com
pared, the F test reduces to the t test. 

Step I 

The sum of all of the 16 scores is 180 + 240 or 420; and the correc
tion (C) is, accordingly, (420)2/16 or 11025 (see p. 282). 

Step 2 

When each score has been squared and the correction subtracted from 
the total, the SS around the general mean is 597 by formula (73), page 
282. 

Step 3 

The sum of squares between means (135) is found by squaring the 
sum of each column, dividing the first by 6 (nl) and the second by 10 
( n2) and subtracting C. 

Step 4 

The SS within groups is the difference between the SST and 
SSbetween M's' Thus SS'" = 597 - 135 = 462. 

Step 5. 

The analysis of variance is shown in Table 40. SST is divided into S5 
between means of groups and SS within groups. Since there are 16 scores 
in all, there are (N - }I) or 15 df for "total." The SSM'. is allotted (k - 1) 
or 1 df (k = 2). The remaining 14 df are assigned to within grpups and 
may be found either by subtracting 1 from 15 or by adding the 5 df in 
Class 1 to the 9 df in Class 2. Mean squares or variances are obtained by 
dividing each SS by its appropriate df. 

i) 
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Step 6 

The variance ratio or F is 135/33 or 4.09. The df for between means is 1 
and the df for within groups is 14. Entering Table F with these drs 
we read in column 1 and row 14 that the .05 level is 4.ro and the .01 
level is 8.86. Our F of 4.09 does not quite reach the .05 level so that our 
mean difference of 6 points must be regarded as not significant. The dif
ference between the two means (30 - 24) is not large enough, therefore, 
to be convincing; or, stated in probability terms, a difference of 6 can be 
expected to occur too trequently to render the null hypothesis untenable. 

When there are only two means to be compared, as here; F = t2 or 
t = VF and the two tests (F and t) give exactly the same result. In 
Table 40 B, for instance VF = y;r.oo or 2.02 which is the t previously 
found in example (8) on page 223. From Table D we have found 
(p. 225) that for 14 df the .05 level of significance for this tis 2.14. Our t 
of 2.02 does not quite reach this level and hence (like F) is not significant. 
If we interpolate between the .05 point of 2.14 and the .10 point of 1.76 
in Table D, our t of 2.02 is found to fall approximately at .07. In 100 
repetitions of this experiment, therefore, we can expect a mean differ
ence of 6 or more to occur about 7 times-too frequently to be significant 
under the null hypothesis. 

3. Example (6), page 225, solved by analysis of variance 

In problems requiring the comparison of two group means either F 
or t may be employed. From the standpoint of calculation, F is perhaps 
somewhat easier to apply. In example (6), page 225, it is easier to calcu
late t because raw scores are not given. But F may be calculated if 
desired in the following way. The general mean for the two groups is 

,. (40.39 X 31 + 35.81 X 42) divided by 73, or 37.75: it is the weighted 
mean obtained from the two group means. The SS between the means of 
the groups of boys and girls is 31( 40.39 - 37.75)2 + 42( 35.81 - 37.75)2 
or 374.13; namely, the deviation of each group mean from the general 
mean weighted in each case by the N of the group. 

To get the SS within groups we simply square each SD and multiply 
~ 2 . 

by (N - 1), remembering that SD2 = (N ~ 1) (p. 186). In example (6) 

we find that (8.69)2 X 30 = 2265.48; and (8.33)2 X 41 = 2844.94. The 
sum of these two is 5110.42, the SS within groups. The complete analysis 
of variance and F test are shown in Table 41; F = 5.20 and t = VF or 
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2.28, checking the result given on page 225. Our F of 5.20 exceeds the .05 
level of 3.98 but does not reach the .01 level of 7.01. As before, F and t 
give identical results. 

TABLE 41 Solution of example (6), page 225, by analysis of variance 

A. SUMS OF SQUARES AND GENERAL MEAN 

1. General mean = (40.39 X 31; 35.81 X 42) = 37.75 
, . 3 

2. SS between means: 
31(40.39 - 37.75)2 + 42~35.81- 37.75)2 = 374.13 

3. SS within groups: 
30(8.69)2 + 41(8.33)2 = 5110.42 

B. ANALYSIS OF VARIANCE 

Source of Variation 

Between means 
Within groups 

F = 374.1/72 = 5.20 

t = VF = yIK20 = 2.28 

df 

1 
71 

Sums of 
Squares 

374.13 
5110.42 

Mean Square 
(Variance) 

374.1 
72.0 

From Table F 

df = 1/71 
F at .05 = 3.98 
Fat .01 = 7.01 

III. THE SIGNIFICANCE OF THE DIFFERENCE BETWEEN MEANS 
OBTAINED FROM CORRELATED GROUPS 

(TWO CRITERIA OF CLASSIFICATION) 

I. When the same group is measured more than once (single group method) 

Means are correlated 'when the two sets of scores achieved by the group 
from which the means were derived are correlated. When a test is given 
and then repeated, analysis of variance may be used to determine whether 
the mean change is sig~ificant. The experimental design here is essentially 
the same as that of the Single Group Method of Chapter 9, page 226. 
Hence example (8), page 227, is used in Table 42 to illustrate the methods 
of analysis of variance and to provide a comparison with the difference 
method of page,2~. 
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TABLE 42 Solution of example (8), page 227, by analysis of variance 

A. SUMS OF SQUARES 

1537600 
1. Correction = (1240) 2/24 = 24 = 64066.67 

2. Total Sum of Squares = 68952 - 64066.67 = 4885.33 
3. Between trials sum of squares: 

(572)2 + (668)2 _ 64066.67 = 384.00 
12 

4. Among subjects sum of squares: 
68391 - 64066.67 = 4324.33 

5. Interaction sum of squares = 4885.33 - (384.00 + 4324.33) 
= 177 

B. ANALYSIS OF VARIANCE 

Source of Variation 

Between trials 
Among subjects 
Interaction 

Total 

384 
F tnal_ = 16.09 = 23.87 

393.12 
F_ubJectB = 16.09 = 24.43 

dt 

1 
11 
11 

23 

Sums of 
Squares 

384.00 
4324.33 

177.00 

4885.33 

Mean Square 
(Variance) SD 

384.00 
393.12 

16.09 4.01 

t = yI23.87 = 4.89 

From Table F " 
Trials Subjects 

dt = 1/11 dt = 11/11 
Fat .05 = 4.84 2.83 
F at .01 = 9.65 4.48 

The procedures for the analysis of variance in example (8) differ in at 
least two ways from the m~thods of Section II. First, since there is the 
possibility of correlation between the scores achieved by the 12 subjects 
on the first and fifth trials, the two sets of scores should not at the outset 
be treated as independent (random) samples. Secondly, classification is 
now in terms of two criteria: (a) trials and (b) subjects. Because of these 
two criteria, the total SS must be broken down into three parts: (a) SS 
attributable to trials; (b) 55 attributable to subjects; and (c) a residual 
55 usually called "interaction." Steps in the calculation of these three 
variances, shown in Table 42 A, may be summarized as follows. 



ANALYSIS OF VARIANCE· 293 

Step I. 

Correction (C). As in Section II, C = (,!)2. In example (8) C is 

(1240)2/24 or 64066.61. 

Step 2 

Total SS around general mean. Again the calculation repeats the proce· 
dure of Section II. 

Step 3 

SST = (502 + 422 + ... + 722 + 502 ) - 64066.67 

= 68952 - 64066.67 = 4885.33 

SS between the means of trials. There are two trials of 12 scores each. 
Therefore, 

SS = (572)2 + (668)2 _ 6406667 
trials 12 . 

= 64450.67 - 64066.67 == 384.0 

Step 4 

SS among the means of subjects. A second "between means" SS is 
required to take care of the second criterion of classification. There are 
12 subjects and each has two trials. Hence, 

SS - _:Ll22 + 822 + ... + 1342 + 882 
- 64066 67 

subJect. - 2 . 

= 68391.00 - 64066.67 = 4324.33 

Step 5 

Interaction SS. The ;residual variation or interaction is whatever is left 
when the systematic effects of trial differences and subject differences 
have been removed from the total SS. Interaction measures the tendency 
for subject performance to vary along with trials: it measures the factors 
attributable neither to subjects nor trials acting alone, but rather to both 

• 
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acting together. Interaction is obtained most simply 0 by subtracting 
trials SS plus subjects SS from total SS. Thus 

Step 6 

Interaction SS :;:: SST - (SSaubJects + SStrialS) 

:;:: 4885.33 - (384 + 4324.33) 

:;:: 177 

As before, SS's become variances when divided by their appropriate 
df. Since there are 24 trials in all we have (24 - 1) or 23 df for the 
total S8. Two trials receive 1 df, and 12 subjects, 11. The remaining 11 df 
are assigned to interaction. The rule is that the df for interaction is the 
product of the df for the two interacting variables, here 1 X 11. In gen
eral if N :;:: total number of scores, r :;:: rows and k :;:: columns, we have 

dt for total SS :;:: (N -1) 

dt for column SS (trials) :;:: (k - 1) 

df for row SS (subjects) :;:: (r - 1) 

dt for interaction SS :;:: (k - 1) (r - 1) 

The three measures of variance appear in Table 42. Note that we may 
now calculate two F's, one for trial differences and one for subject dif
ferences. In both cases the interaction variance is placed in the denomi
nator of the variance ratio, since it is our best estimate of residual vari
ance (or experimental error) after the systematic influences of trials and 
subjects have been removed. The F for trials is 23.87 and is much larger 
than the 9.65 we find in Table F for the .01 point when dfl:;:: 1 and 
df2 :;:: 11. This means that the null hypothesis with respect to trials is 
untenable and must be abandoned. The evidence is strong that real 
improvement took place from trial i to trial 5. 

Ordinarily in most two-criteria experiment~ we are concerned primarily 
with one criterion, as here. It is possible, however (and sometimes 
desirable), to test the second criterion-viz., differences among subjects. 
The F for subjects is 24.43 and again is far larger than the .01 point of 
4.46 in Table F for dtl :;:: 11 and df2 :;:: 11. It is obvious that some subjects 
were consistently better than others without regard to trial. 

Since there are two trials, we have two trial means. Hence, if we com
pute a t from the F for trials, it should be equal to that found by the 
difference method. The F of 23.87 yields a t of yI2}IJfl or 4.89 which 
checks the t of 4.89 on page 227. . 

• Interaction may be calculated directly from the data. 
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Computations needed for the difference method of example (8), page 
227, are somewhat shorter than are those for analysis of variance, and the 
difference method would probably be preferred if one wished to deter
mine only the significance of the difference between the two trial means. 
If, however, the significance of the differences in the second criterion 
( differences among subject means) is wanted, analysis of variance is more 
useful. Moreover, through a further analysis of variance w~ can determine 
whether individual differences (differences among subjects) are signifi
cantly greater than practice differences (differences between trials). Thus 
if we divide the Vsubjects by the VtTials, the resulting F is 393.12/384 or 1.02. 
For a dft = 11 and df2 = 1, the .05 point is 243. Hence, in the present 
experiment, at least, we may feel quite sure that individual differences 
were no greater than practice differences. Since the reverse is usually 
true, the implication to be drawn is that ,practice in the present experi
ment must have been quite drastic: a conclusion borne out by the F test 
for trials. 

IV. ANALYSIS OF COVARIANCE 

In many experimental situations, especially in the fields of memory and 
learning, we wish to compare groups that are initially unlike, either in 
the variablC() under study or some presumably related variable. In Chap
ter 9, two methods were given for equating groups initially-having them 
"start from scratch." In the first method, experimental and control groups 
were made equivalent initially by person-to-person matching; and in the 
second method, groups were matched initially for mean and u in one or 
more related variables. Neither of these methods is entirely satisfactory 
and neither is always easy to apply. Equivalent groups often necessitate 
a sharp reduction in size of N (and also in variability) when the match
ing of scores is difficult to accomplish. Furthermore, in matched groups it 
is often difficult to get the correlation between the matching variable and 
the experimental variable in the population from which our samples were 
drawn (p. 230). 

AnalysiS of, covariance represents an extension of analysis of variance 
to allow for the correlation between initial and final scores. Covariance 
analysis is especially useful to experimental psychologists when for vari
ous reasons it is impOSSible or quite difficult to equate control and experi
mental groups at the start: a situation which often obtains in actual ex
periments. Through covariance analYSis one is able to effect adjustments 
in final or terminal scores which will, allow for differences in some initial 
variable. (For many other uses of covariance the reader should consult 
the references on .fage 276. ) 
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Table 43 presents a numerically simple illustration of the application 
of analysis of covariance. The data in example (2) are artificial and are 
purposely meager so that the procedure will not be swamped by the 
numerical calculations. 

Example (2) Suppose that 15 children have been given one trial 
(X) of a test. Five are then assigned at random to each of three 
groups, A, B, and C. After two weeks, say, Group A is praised lav
ishly, Group B scolded severely, and the test repeated (Y). At the 
same time, a second trial (Y) is also given to Group C, the control 
group, without comment. 

TABLE 43 To illustrate covariance analysis 

(Original data from Example [2]) 

Sums 
M's 

GROUP A (praised) GROUP B (scolded) 

Xl YI XIYI X2 

15 30 450 25 
10 20 200 10 
20 25 500 15 

5 15 75 15 
10 20 200 10 

60 no 1425 75 
12 22 15 

For all 3 groups: IX = 185 
IX2 = 2775 

Y2 X2Y2 

28 700 
12 120 
20 300 
10 150 
10 100 

80 1370 
16 

IY = 255 
IY2 = 5003 

, Step I Correction terms: 

Step 2 Total SS 

G., = (185)2/15 = 2282 
Gil = (255)2/15 = 4335 

G = 185 X 255 = 3145 
"'II 15 

For x = 2775 - 2282 = 493 
Y = 5003 - 4335 = 668 

xy = 3545 - 3145 = 400 

GROUP C (control) 

Xa Y3 X3Y3 

5 10 50 
10 15 150 
20 20 400 
5 10 50 

10 10 100 

50 65 750 
10 13 

IXY = 3545 
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TABLE 43 (Continued) 

Step 3 Among Group Means SS 

For x = 60
2 + 7;2 + 50

2 
- 2282 = 63 

Y = 110
2 + 80

2 + 65
2 

- 4335 = 210 
5 

xy = 60 X lIO + 75 X 80 + 50 X 65 _ 3145 = 25 
5 

Step 4 Within Groups SS 

For x = 493 - 63 = 430 

Y = 668 - 210 = 458 

xy = 400 - 25 = 375 

Step 5 Analysis of Variance of X and Y scores, taken separately 

Source of Variation df SS", SSy MS",(V",) 

Among Means 2 63 210 31.5 
Within Groups 12 430 458 35.8 

Total 14 493 668 

MSy(Vy) 

105 
38.2 

F _ 31.5_ .88 
From Table F 

x - 35.8 - df 2/12 
105 F at .05 level = 3.88 

Fy = 38.2 = 2.75 F at .01 level = 6.93 

Neither F is significant. Mean differences on final trial approach significance. 
F", = .88 shows that the experimenter was quite successful in getting random 

samples in Groups A, B, C. 

Step 6 Computation of Adjusted SS for Y: i.e., SSy.a: 

'9 

. Total SS = 668 - (~0903) 2 = 343 
() . 

Within SS = 458 - (375)2 = 131 
430 

Among M's SS = 343 - 131 = 212 
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TABLE 43 (Continued) 

Analysis of Covariance 

Source of Variation dt SS c 

Among Means 2 63 
Within Groups 11 0 430 

Total 13 493 

106 
F" ~ = -- = 8.83 

.~ 12 

SSII 

210 
458 

668 

Step 7 Correlation and Regression 

400 
rtota! = = .70 

y493 X 668 

25 
r among = = .22 

mean. y63 X 210 

375 
r within = = .84 

y430 X 458 

S"'1I 

25 
375 

400 

Step 8 Calculation of Adjusted Y Means 

Groups N Mx 

A 5 12 
B 5 15 
C 5 10 

General Means 12.3 

My.x = My -'b(Mx - GMx) 

SSII." MSII .", (VII."') SDII . ., 

212 106 
131 12 3046 

343 

From Table F 

dt 2/11 
F at .05 lev~l = 3.98 
F at .01 level = 7.20 

400 
btota! = 493 = .81 

25 
bamong = 53 = AD 

means 

375 
bwithin = 430 = .87 

My My.x (adjusted) 

22 22.3 
16 13.7 
i3 15.0 

17 17.0 

For Group A: My - bx = 22 - .87(12 - 12.3) = 22.3 

B: M} - bx = 16 - .87(15 - 12.3) = 13.7 

C: My - bx = 13 - .87(10 -12.3) = 15.0 

o 1 dt lost, see p. 194. 
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TABLE 43 (Concluded) 

Step 9 Significance of differences among adjusted Y means 

SDI/.", = VI2 = 3.1,6 

SE = 3.46 = 1.55 
MI/ . ., V5 

/l 1 
SED between any two adjusted means = SDI/.3J "\JN

1 
+ N2 

~ = 3.46VS -r "5 = 3.46 X .63 = 2.18 

For df = 11, t.05 = 2.20; t.Ol = 3.11 (Table D) 

Significant difference at .05 level = 2.20 X 2.18 = 4.80 

Significant difference at .01 level = 3.11 X 2.18 = 6.78 

A differs significantly from both Band C at .01 level. 

Band C are not significantly different 

(75) 

We thus have three groups-two experimental and one control-with 
initial scores (X) and final scores (Y). The problem is to determine 
whether the groups differ in the final trial (Y) as a result of the incen
tives. The method permits uS to determine whether initial differences in 
(X) are important and to allow for them if they are. 

Table 43 gives the necessary computations. The following steps outline 
the procedure. 

Step I 

Correction term (G). There are three correction terms to be applied 
to 88's, one for X, one for Y and one for the cross products in X and Y. 
Calculation of C.~ and Gy follows the-method of page 282. The formula 

lX X lY , 185 X 255 
for C"'II is N or in our problem 15 

Step 2 

SS for totals. Again we have three 58's for totals: 88"" 8811 and 88"'11' 
of which only 8Sxy is new. The formula for 88",y is 

SSXY = ~XY - Cxy 
(sum of squares for xy in analysis of covariance) 

~ 

(75a) 
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The SS"'II is found by multiplying pairs of X and Y scores, summing 
over the range and subtracting C"'II: thus (15 X SO + 10 X 20 + ... + 
10 X ~O) - S145 = 400. 

Step 3 

SS among means of the three groups. Calculations shown in Table 43 
follow the method of page 283 for X and Y. The "among means" term 
for xy is the sum of the corresponding X and Y column totals (e.g., 
60 X 110 + 75 X 80 + 50 X 65) divided by 5 and minus C"'II' 

Step 4 

SS within groups. For x, y, and xy these SS's are found by subtracting 
the "among means" SS's from the SST. 

Step 5 
-

A preliminary analysis of variance of the X and Y trials, taken sepa-
rately, has been made in Table 4S. The F test applied to the initial (X) 
scores (F '" = .88) falls far short of significance at the .05 level, from 
which it is clear that the X means do not differ significantly and that the 
random assignment of subjects to the three groups was quite successful. 
The F test applied to the final (Y) scores (FII = 2.75) approaches closer 
to significance, but is still conSiderably below S.88, the .05 level. From 
this preliminary analysis of variance of the Y means alone w~ must con
clude that neither praise nor scolding is more effective in raising scores 
than is mere repetition of the test. 

: Step 6 

The computations carried out in this step are for the p'urpose of correct
ing the final (Y) scores for differences in initial (X) scores. The symbol 
SSII . ., means that the SSII have been "adjusted" for any variability in Y, 
contributed by X, or that the variability in X is held constant. The general 
formula (see p. S04) is - . ~ 

SS = SS _ (S",y)2 
II-X Y SS'" 

(SS in y when variability contributed by x has been removed 
or held constant) 

(76) 
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. (400)2 
For SST we have that SSI/.,. = 668 -~ or 343; for SSwUhin that 

(375)2 . . 
SSI/'''' = 458 - ---;mo = 131. The SS for among means IS the adjusted SST 

minus adjusted SSwithin' This last SSI/.", cannot readily be calculated 
directly. 

From the various adjusted sums of squares the variances (MSI/.,.) can 
now be computed by dividing each SS by its appropriate df. Owing to 
the restriction imposed by the use of formula (76) (reduction of vari
ability in X) 1 df is lost and the analysis of covariance (Table 43) shows 
only 11 df for within groups instead of 12, and only 13 instead of 14 
for total. 

The value of analysis of covariance becomes apparent in Table 43 when 
the F test is applied to the adjusted among and within variances. 
F 1/.:& = 106/12 or 8.83, and is highly significant-far beyond the .01 level 
(F. Ol = 7.20). This F 1/." should now be compared with the F 1/ of 2.75 
(p. 297) obtained before correcting for variability in initial (X) scores. 
It is clear from F 1/.X that the three final means-which depend upon the 
three incentives-differ significantly after they have been adjusted for 
initial differences in X. To find which of the three possible differe'nces is 
Significant or whether all are significant we must apply the t test (in 
Step 9). 

Step 7 

An additional step is u$eful, however, before we proceed to the t test 
for adjusted means. From the SS's in x, y and xy it is possible to compute 
several coefficients of correlation. These are helpful in the interpretation of 

the result obtained in Step 6. The general formula used is r = lxy 
. y'lx2 'ly2 

(p. 139); it may be applied to the appropriate SS's for total, among 
means and within groups. 

The within-groups correlation of .84 is a better measure of the relation
ship between initial (;X) and final (Y) scores than is the total correlation 
of .70, as systematic differences in means have been eliminated from the 
within r. It is this high correlation between X and Y which accounts for 
the marked significance among Y means when the variability in X is held 
constant. High correlation within groups reduces the denominator of the 
variance ratio, F I/.X, while low correlation between X and Y means 
(namely, .22) does not proportionally affect the numerator. Thus we note 
that the within-froups variance of 38.2 is reduced through analysis of 



I 

302 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

covariance to 12, while the among means variance is virtually unchanged 
(from 105 to 106). When correlation among scores is high and correlation 
among means low (as here), analysis of covariance will often lead to a 
significant F when analysis of variance fails to reveal Significant differ
ences among the Y means. These two is may be used, therefore, in a 
preliminary way to decide whether analysis of covariance is worth while. 

Regression coefficients for total, among means and within groups have 
~xy . 

been calculated by use of the formula b = ~X2 (p. 304). The bwithin IS the 

most nearly unbiased estimate of the regression of Y on X, since any sys
tematic influence due to differences among means has been removed. 
Therefore b within is used in the computation of the adjusted Y means 
in Step 8. 

Step 8 

Y means can be adjusted directly for differences in the X means by use 
of the formula My.x = My - b( Mx - Gen.Mx ) 0 in which the regression 
coefficient, b, is the bWithin of .87. My is the original or uncorrected Y mean 
of a grbup; Mx is the corresponding X mean of a group and Gen.Mx is the 
mean of all X scores. It will be noted that the Band C means receive more 
correction than the A mean which is only slightly changed. 

FV:3J tells us, it must be remembered (p. 298), that at least one of our 
adjusted Y means differs significantly from one other mean. To determine 
which mean differences are significant we must first compute the adjusted 
Y means and then test these differences by the t test. 

Step 9 

. The V 1/." is 12 (Table 43, Step 6, p. 298) as compared with the VI/ of 
38.2 (Table 43, Step 5, p. 297) and the SDI/.3J is VI2 or 3.46. From 
formula (75) we find that the standard error of the difference between 
any two means is 2.18. For 11 df, t is 2.20 at the .05 and 3.11 at the .01 
level. Substituting for t.05 and SED in the equation t = D /SED, we obtain 
Significant differences at the .05 level and .01 level of 4.80 and 6.78, 
respectively. It is clear by reference to Step 8 that the adjusted A mean ~s 
significantly higher than the Band C means (at the .01 level) but that B 
and C do not differ significantly. We may conclude, therefore, that when 
initial differences are allowed for, praise makes for Significant changes in 

• See p. 298. Y - bx = adjusted value of y, or Mr - bx = Mr.z. Substitute 
X = (Mz - Gen.Mz) to give M y.z = Mr - b(Mz - Gen.M,d. 
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final score, but that scolding has no greater effect than mere repetition 
of the test. Neither of these last two factors makes for significant changes 
in test score. 

V. SIGNIFICANCE OF THE DIFFERENCE BETWEEN SD's IN SMALL SAMPLES 

When samples are small and uncorrelated (independent), the signifi
cance of the difference between two SD's can be determined by the 
F test, through the use of variances. Formula (62) is not accurate when 
N's are small, as the SD's from small samples drawn at random from a 
normally distributed population will tend to exhibit skewed distributions 
around the population u. 

'fo make an F test, divide the larger V by the smaller and evaluate the 
resulting F in terms of the appropriate dt. We may illustrate the method 
with example (5), where N! = 6 and N2 = 10, respectively. The first V 
is 110/5 or 22; and the second V is 352/9 or 39.1. The F ratio found by 
dividing the larger by the smaller of the variances, is 39.1/22 or 1.78. This 
F test gives the probability that the larger V is equal to or greater than 
the smaller: it is a one-tailed test (p. 217). In testing the differences 
between two V's we want a two-tailed test-a test of the probability of F's 
below as well as above 1.00. It is not necessary, however, to get a sec
ond V by dividing the smaller V by the larger V. All we need do is double 
the probability of the one ratio at the .05 and .01 points. This gives a 
two-tailed test at the .10 and .02 levels 

Entering Table F with dt! = 9 (dt of the larger V) and with df2 = 5 
(dt of the smaller V), we get an F of 4.78 at the .05 and of 10.17 at the 
.01 levels. Our observed F of 1.78 is far below the smaller of these F's 
and hence is not significant at the .10 level, much less at the .02 level. 
There is no evidence that the two groups differ in variability, whether 
measured in terms of V or SD. 

APPENDIX TO CHAPTER II 

(a) Calculation SSw [Example (1), p. 280] 

Columns 

A: [642+ 722 + ... + 952] _ (432)2 = 890 
6 

B: [732 + ..... '" + 672] _ (4:8)2 = 944 

C:. [772 + ........ + 872] _ (4~2)2 = 454 
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Columns 

D: [782 + ........ + 772] - (5~0)2 = 302 

E: [632 + ........ + 762] - (3~0)2 = 710 

F: [752 + ........ + 762] _ (4~6)2 = 488 

c: [782 ~ ........ + 822] _ (3~6)2 = 1540 

H: [552 + ........ + 682] _ (3~2)2 = 338 

l b) Derivation of the formula 

55 ~ 55 _ (5"'rY 
II·'" 11 55", 

Let X = independent variable 

Y = dependent variable 

r XII = correlation between X and Y 

Then 

Substituting, 

In terms of S5: 55 = S5 _ (5"'11)2 
II·'" II· 5S", 

(c) Derivation of formula 

b=~ 
CT", 

r=~ 
Nu",ull 

Substituting b = !:EL = ~ 
Nu2", NuX2 

N 

5666 

p. 179 

p. 139 

p. 154 
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. PROBLEMS 

1. In a learning experiment, 10 subjects are assigned at random to each of 
six groups. Each group performs the same task but under slightly different 
experimental conditions. Do the groups differ in mean performance? 

1 2 3 4 5 6 
41 40 36 14 41 55 
40 36 33 38 35 36 
39 40 29 51 52 41 
41 34 30 41 41 36 
39 34 45 36 34 48 
41 39 39 36 10 36 
36 36 33 36 44 42 
35 34 32 32 26 42 
35 41 34 38 54 34 
37 37 34 36 30 40 Grand sum 

Sums 384 371 345 358 367 410 2235 

2. Solve problem (2), page 243, by the methods of analysis of variance. 
3. Twenty subjects are. paired on the basis of their initial scores on a test. Ten 

(one member of each pair) are then assigned to an experimental and 10 
to a control group. The experimental group is given special practice and 

. both groups are retested. Data for final scores are as follows: 

Control group 
Experimental group 

Pairs of Subjects 

1 2 3 4 5 6 7 8 9 10 Total 

25 46 93 45 15 64 47 56 73 66 530 
36 57 89 67 19 78 46 59 69 70 590 

(a) Do the groups differ significantly in mean performance? 
(b) Do subject pairs. differ significantly? 
(c) Check the result in (a) by taking the difference between pairs of 

scores, and testing the mean difference (by t test) against null 
hypothesis. ~ . 

4. In the following tabie" the entries represent blood cholesterol readings 
taken from 18 patients in April and in May. 

(a) Is the rise from April to May significant? 
(b) Are there signifipant individual differences, regardless of month? 
(c) From the column of differences, compute MD and SDD' Using the 

t test, measure of the significance of MD against the null hypothesis. 
Compare with the result in (a) 

.. Fertig, John W., "The Use of Interaction in the Removal of Correlated Vari
ation," Biometric Bull., 1936, 1, 1-14. 

'4 
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Individual April May Difference Sum 
1 158.0 190.5 32.5 348.5 
2 158.5 177.0 18.5 335.5 
3 137.5 172.0 34.5 309.5 
4 145.5 152.5 7.0 298.0 
5 130.5 147.0 16.5 277.5 
6 141.0 127.0 -14.0 268.0 
7 150.5 149.5 -1.0 300.0 
8 142.5 152.5 10.0 295.0 
9 148.0 147.0 -1.0 295.0 

10 137.5 130.5 -7.0 268.0 
11 137.0 133.0 -4.0 270.0 
12 160.0 145.5 --14.5 305.5 
13 145.0 124.5 -20.5 269.5 
14 149.5 156.0 6.5 305.5 
15 ~ 145.0 143.5 -1.5 288.5 
16 132.5 146.0 13.5 278.5 
17 139.0 148.0 9.0 287.0 
18 151.0 161.0 10.0 312.0 

Sum 2608.5 2703.0 94.5 5311.5 
SS 379288.25 410872.0 4311.25 1576009.25 

5. In an experiment by Mowrer," previously unrotated pigeons were tested 
for clockwise postrotational nystagmus. The rate of rotation was one revolu
tion in 1* sec. An average initial score for each pigeon based upon 2 tests 
is indicated by the symbol X. The 24 pigeons were then divided into 4 
groups of 6 each. Each group was then subjected to 10 daily periods of 
rotation under one of the experimental conditions indicated below. The 
rotation speed was the same as during the initial test and the ,rotation 
periods lasted 30 sec., with a 30-sec. rest interval between each period. 
Groups 1,2 and 3 were practiced in a clockwise direction only. For Group 
4 the environment was rotated in a counterclockwise direction. At the end 
of 24 days of practice, each group was tested \lgain under the same condi
tions as on the initial test. These records are called Y . 

.. From 'Edwards, A. L., Experimental Design in Psychological Research (New 
York: Rinehart, 1950), p. 357. 
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GROUP 1 GROUP 2 GROUP 3 GROUP 4 
ROTATION OF ROTATION OF ROTATION OF ROTATION OF 

BODY ONLY. BODY ONLY. BODY AND ENVIRONMENT 

VISION VISION ENVIRONMENT ONLY 

EXCLUDED PERMITTED 

Initial Final Initial Final Initial Final Initial Final 

X Y X Y X Y X Y 

23.8 7.9 28.5 25.1 27.5 20.1 22.9 19.9 
23.8 7.1 18.5 20.7 28.1 17.7 25.2 28.2 
22.6 7.7 20.3 20.3 35.7 16.8 20.8 18.1 
22.8 n.2 26.6 18.9 13.5 13.5 27.7 30.5 
22.0 6.4 21.2 25.4 25.9 21.0 19.1 19.3 
19.6 10.0 24.0 30.0 27.9 29.3 32.2 35.1 

134.6 50.3 139.1 140.4 158.6 118.4 147.9 151.1 

(a) Test the significance of the differences among X means. (Compute the 
among groups and within groups variance and use F test.) 

(b) Do same as in (a) for the Y scores. 
(c) By analysis of covariance test the differences among the adjusted means 

in Y. How much is the variance among Y means reduced when X is 
held constant? 

(d) Compute the adjusted Y means, My.x by the method of p. 298. 
(e) From the t test find that difference among adjusted Y means which is 

significant at the .05 level; at the .01 level. 

ANSWERS 

1. No. F = :~:~ or .93, and differences among means may be attributed en

tirely to sampling fluctuations. 

2. F = 5.16 and t = 2.3 (y'F). Significant at .05 level. 

180 
3. (a) No. F = 35.3 = 5.10 

911.8 
(b) Yes. F = 35.3 = 25.83 

(c) t = ~ = 2.26 t2 = F = 5.11 2.66 . 
248.0 

4. (a) No. F = 112.22 = 2.21, df = 1/17 and F.05 = 4.45 (Table F) 

255.12 . 
(b) Not significant. F = 112.22 = 2.27, df:= 17/17 and F.05 = 2.30 

• 
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(c) MD = 5.25; SED = 3.53. t = ~:~~ = 1.49; F = t2 = 2.22. df = 17 

5 () Dill X ··R F· 18.7 8 . a erence among means not Signi cant. x = 23.1 =. 1 

341.4 
(b) Y means differ significantly. F1/ = 24.9 = 13.7. For df of 3/20, 

F.Ol = 4.94. 

( ) 303.4 5 3 V . 
c F 1/.X = 19.8 = 1 .. anance among Y means is reduced 11 %-

from 341.4 to 303.4. 
(d) 9.3,23.9, 18.6 and 24.9 
(e) 5.37; 7.34 



CHAPTER 12 

THE SCALING OF MENTAL TESTS. 

AND OTHER PSYCHOLOGICAL DATA 

Various methods, many of them based upon the normal probability 
curve, have been used in the scaling of psychological and educational 
data. As used in mental measurement, a scale may be thought of as a 
continuum or continuity along which items, tasks, problems and the like 
have been located in terms of difficulty or some other attribute. The units 
of a scale are arbitrary and depend upon the method employed by the 
investigator. Ideally, scale units should be equal, have the same meaning, 
and remain stable throughout the scale. Some of the more useful scaling 
procedures will be described in this chapter. 

I. THE SCALING OF TEST ITEMS 

I. Scaling individual test items in terms of difficulty (a scaling) 

We sometimes wish to construct a test which is to contain problems or 
tasks grad~d in difficulty from very easy to very hard by known steps or 
intervals. If we know what proportion of a large group is able to solve 
each problem, it is comparatively easy to arrange our items in a percentage 
order of difficulty. Such an arrangement constitutes a scale, to be sure, but 
a crude one, as percentage differences are not satisfactory indices of dif
ferences in difficulty (p. 322). 

If we are justified in assuming normality in the trait being measured, 
the variability (i.e., a) of the group will give us a better scaling unit than 
will percentage passing (p. 310). Test iterhs" may be "set" or spaced in 
terms of a difficulty at definite points along a difficulty continuum; their 
positions with respect to each other as well as with respect to some refer
ence point or "zero" is then known in terms of a stable unit. To illustrate 
a scaling, suppose.that we wish to construct a scale for measuring "reason-

309 
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ing ability" (e.g., by means of syllogisms) in 12-year-olds; or a scale for 
measuring mechanical ingenuity in high-school juniors; or a scale for 
determining degree of suggestibility in college freshmen. The steps in 
constructing such a device may be outlined briefly as follows: 

-30" -2a -117 117 217 317 

FIG. 55 

(1) Compile a large number of problems or other test items. These should 
vary in difficulty from very easy to very hard, and should all sample the 
behavior to be tested~ 

(2) Administer the items to a large group drawn randomly from those for 
whom the final test is intended. 

(3) Compute the percentage of the group which can solve each problem. 
Discard duplicate items and those too easy or too hard or unsatisfactory 
for other reasons. Arrange the problems retained in an order of percentage 
difficulfy. An item done correctly by 90% of the group is obviously easier 
than one solved by 75%; while the second problem is less difficult than 
one solved by only 50%. The larger the percent passing the lower the 
item in a scale of difficulty. 

(4) By means of Table A convert the percent solving each problem into a 
(1" distance above or below the mean. For example: an item done correctly 
by 40% of the group is 10% -or .25(1" above the mean. A problem solved 
by 78% is 28% (78% - 50%) or .77(1" below the mean. We may tabulate 
the results for 5 items, taken at random, as follows (see Fig. 55): 
Jroblem A is solved by 93% of the group, i.e., by the upper 50% (the 
right half of the normal curve) plus the 43% to the left of the mean. Thig 
puts Problem A at a point -1.48(1" from the mean. In the same way, the 
percentage distance of each problem from the mean (measured in .the 
plus or minus direction) can be found by subtracting the percent passing 
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Problems A B C D E 
Percent solving: 93 78 55 40 14 
Distance from the mean 

in percentage terms: -43 -28 -5 10 36 
Distance from the mean 

in u terms: -1.48 -.77 -.13 .25 1.08 

from 50%. From these percentages, the u distance of the problem above 
or below the mean is read from Table A. 

(5) When the u distance of each item has been established, calculate the 
u distance of each item from the zero point of ability in the trait. A zero 
point may be located as follows; Suppose that 5% of the entire group fail 
to solve a single problem. This would put the level of zero ability 45% of 
the distribution below the mean, or at a distance of -1.65u from the 
mean'." The u value of each item in the scale may then be measured from 
this zero. To illustrate with the 5 problems above: 

Problems A B C D E 
u distance from mean: -1.48 -.77 -.13 .25 1.08 
u distance, from arbitrary 

zero, -1.65 .17 .88 1.52 1.90 2.73 

The simplest way to find u distances from a given zero is to subtract the 
zero point algebraically from the 11' distance of each item from the mean. 
Problem A, for example, is -1.48 - (-1.65) or .17u from the arbitrary 
zero; and problem E is 1.08 - (-1.65) or 2.7311' from zero. 

(6) When the distance of each item from the established zero has been deter
mined, the difficulty of each item with respect to each of the other items 
and with respect to zero is known-and the scaling is finished. The 'next 
steps depend upon the purposes of the investigator. He may select a large 
number of items separated by fairly small u distances, so that his test 
covers a fairly wide range of talent. Or he may limit the range of talent 
from 2.50u to -2.50u and space out a limited number of items at wider 
intervals-separated by a .5u, for example. Again, he may simply place 
his items along the base line of the normal curve and not attempt to set 
up equal difficulty steps. Norms may be determined for the final scale for 
children of different age levels or from different grades, or for adults ill' 
several occupational groups. 

2. Scaling scores on a test 

Instead of scaling separate test items, it is usually saving of time and 
effort to scale aggregates of items or total scores. In this section we shall 

"This is, of course, an arbitrary, not a true zero. It will serve, however, as a 
reference point (level of minimum ability) from which to measure performance. The 
point -3.00.,. is often taken as a convenient reference point. 

~ 
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outline two methods of scaling scores. These procedures are generally 
followed in constructing aptitude and achievement tests. They enable 
us to combine and compare scores originally expressed in different 
units. 

( 1) a SCORES AND STANDARD SCORES 

Let us suppose that the mean of a test is 122 and the a is 24. Then if 
John earns a score of 146 on this test, his deviation from the mean is 
146 - 122 or 24. Dividing John's deviation of 24 by the a of the test, we 
give hiin a a score of 24/24 or 1.00. If William's score is no on this test, 
his deviation from the mean is no - 122 or -12; and his score in a units 
is -.5. Deviations from the mean expressed in a terms are called a scores, 
z scores, and reduced scores. Of these designations, a score is certainly 
the most descriptive, but the other terms are often used. We have already 
used the concept of a a ~~ore in the problems in Chapter 5, page 120. 

The mean of a set of a scores is always 0 (the .,reference point) and the 
a is always unity or 1.00. As approximately half of the scores in a distribu
tion will lie below and half above the mean, about half of our a scores 
will be negative and half positive. In addition, a scores are often small 
decimal fractions and hence somewhat awkward to deal with in computa
tion. For these reasons, a scores are usually converted into a new distribu
tion with M and a so selected as to make all scores positive and relatively 
easy to ·handle. Such scores are called standard scores. Raw test scores of 
the Army General Classification Test, for example, are expressed as stand
ard scores in a distribution of M = 100 and a = 20; subtests of the 
Wechsler-Bellevue are converted into standard scores in a distribution of 
M = 10 and a = 3; and the tests of the Graduate Record Examination into 
standard scores in a distribution of M = 500 and a = 100. 

The shift from raw to standard sc_ore requires a linear transformation .... 
This transmutation does pot change the shape of the distribution in any 

/way; if the original distribution was skewed (or normal), the standard 
score distribution will be skewed or norma1 in exactly the same fashion. 
The formula for conversion of raw to standard score is as follows: 

Let X = a score in the original distribution. 

X' = a standard score in the new distribution 

M and M' = means of the raw score and standard score distributions 
,u and u' = SD's of raw and standard scores 

" When the ,equation connecting 'two variables, y and x, is that of a straight line, 
changing x's into y's involves a linear transformation. Formula (77) is the equation 
of a straight line, analogous to the general equation of a straight line, y =·mx + h. 
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X' - M' X"":'" M 
Then I =:---

U (T 

u ' or X' == - (X - M) + M' (71) 
u 

(formula for converting raw scores to standard scores) 

An example will show how the formula works. 

Example (1) Given a distribution with Mean = 86 and u == 15. 
Tom's score is 91 and Mary's 83. Express these raw scores as standard 
scores in a distribution with a mean of 500 and (T of 100. 

By formula (77) 

X' = 100 (X - 86) + 500 
15 

Substituting Tom's score of 91 for X we have 

X' = 6.67(91 - 86) + 500 
= 533 

Substituting Mary's score of 83 for X, 

X' = 6.67(83 - 86) + 500 
= 480 

In a distribution with a mean of 10 and a CT. of 3, Tom's standard score 
would be 11 and Mary's 9; in a distribution with a mean of 100 and a 
CT of 20, Tom's standard score would be 107 and Mary's 96. Other scaling 
distributions may, of course, be employed. 

Scores made by the same individual upon several tests cannot usually 
be compared directly owing to differences in test units. Thus a score of 
162 on a group intelligence test and a score of 126 Qn an educational 
achievement examination cannot be compared meaningfully. 1£ scores like 
these are expressed as standard scores, however, they can be compared 
provided the distributions of raw scores are of the same form. Fortu
nately, most distributions of scores are so nearly bell-shaped (p. 87) that 
no great error is made in treating them as normal. When we can assume 
normality, a Score of l.OOa on a mechanical aptitude test and a score of 
l.OOCT on a test of mechanical interests represent the same relative degree 
of achievement: both are exceeded by approximately 160/0 cif those taking 
the two tests (Table A). A problem will illustrate further this important 
aspect of standard scores. 

Example (2) Given a reading test with a mean of 81 and (T of 12; 
and an arithmetic test with a mean of 33 and a (T of 8. Sue's score is 
72 in reading and 27 in arithmetic. Assuming the distributions of • 
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reading and arithmetic scores to be of the same form (approximately 
normal), convert Sue's scores into a standard score distribution with 
Mean = 100 and u = 20 and compare them. 

In the reading test Sue's score is 9 below the mean, of 81. Hence, her 
score is at -.750' (-9/12) and her new score is 85 (100 - .75 X 20). In 
arithmetic Sue's score is 6 points below the mean; again her score is at 
-.750' and her new score 85 (100 - .75 X 20). Sue's two standard scores 
are comparable, and are also equivalent (represent same degree of 
achievement} if our assumption of normality of distributions is tenable. 

(2) NORMALIZING THE FREQUENCY DISTRIBUTION: THE T SCALE 

Instead of a scores, the obtained scores of a frequency distribution 
may be converted into a system of "normalized" a scores by transforming 
them directly into equivalent points in a normal distribution. Equivalent 
scores indicate the same level of talent. Suppose that in a chemistry test, 
2070 of the group earn scores below John's score of 73. And that in a 
physics test, 20% again fall below John's score of 46. From Table A we 
know that 20%. of the ~rea of the normal probability curve falls below 
- .840' (30% falls between the mean and .840'). Accordingly, John's scores 
of 73 and 46 are both equivalent to the "score" of -.840' in the normal 
distribution, and both represent the same level of achievement. 

Normalized standard scores are generally called T scores. T scaling was 
devised by McCall 0 and first used by him in the construction of a series 
of reading tests designed for use 'in the elementary grades. The original 
T scale was based upon the :.:eading scores achieved by 500 12-year-olds; 
and the scores earned by other age groups on the same reading test were 
expressed in terms of 12-year-old performance. Since this first use of the 
method, T scaling has been employed with various groups and with dif
ferent tests so that it no longer h~s reference specifically to 12-year-olds 
nor to reading tests. 

T Scores are normalized standard scores converted into a distribution. 
with a mean of 50 and a of 10. In the a scaling of individual items, the 
mean, as we know; is at zero and a is 1.00. The point of reference, there
fore, is zero and the unit of measurement is 1. If the point of reference is 
moved from the mean of the normal curve to a point 50' below the mean, 
this new reference point becomes zero in the scale and the mean is 5. As 
shown in Figure 56, the a divisions above the mean (10', 20-, 30', -40', 50'). 
become 6, 7, 8, 9 and 10; and the a divisions below the mean (-10', -20', 
-30', -40', -50') are 4, 3, 2, 1 and o. The a of the distribution remains, of 
course, equal to 1.00. 

o McCall, William A., Measurement (New York: Macmillan, 1939), Chap. 22. 
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-5 -4- -3 -2 0 2 3 ... 5 
0" - Scole. Zero Point at Mean 

I, 0 2 } 

'" 5 7 8 9 10 
0"- Scole.Zero Point at -SIT 1 JJ 0 10 20 30 '0 70 80 90 100 
T- Scale.Zero Point at -51T 

FIG. 56 T 0 iIIustrat~ u scaling and T scaling in a normal distribution 
(The T is in honor of Thorndike and Terman.) 

Only slight changes are needed in order to convert this u scale into a 
T scale. The T scale begins at -5u and ends at +5u .. But u is multiplied 
,by 10 so that the mean is 50 and the other divisions are 0, 10, 20, 30, 40, 
50, 60, 70, 80, 90 and 100. The relationship of the T scale to the ordinary 
u scale is shown in Figure 56. Note that the T scale ranges from 0 to 100; 
that its unit, i.e., T, is 1 and that the mean is 50. T, of course, equais .1 of u 

which is equal to 10. The reference point on the T scale is set at -5u in 
orde,r to have the scale cover exactly 100 units. This is convenient but it 
puts the extremes' of the scale far beyond the ability ranges of most 
groups. In actual practice, T scores range from about 15 to 85, i.e., from 
-3.5u to 3.5u. 

(3) CONSTRUCTING A T SCALE 

The procedure to be followed in 'T scaling a set of scores can best be 
shown by an example. We shall outline the process in a series of steps .. 
illustrating each step by reference to the data of Table 44. 

(1) Compile a large and representative group of test items which vary in 
difficulty from easy' to hard. Administer these items to a sample of subjects 
(children or adults) for whom the final test is intended. 

(2) Compute the percent passing each item. Arrange the items in an order of 
difficulty in terms of these percentages. 

(3) Administer the' test to a representative sample and tabulate the distribution 
of total scor~. Total scores may now be scaled as shown in Table 44 for 
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TABLE 44 To illustrate the calculation of T scores 

(1) (2) (3) (4) (5) (6) 

Test Cum. Cum. fbelow Col. (4) 
Score f f 

Score + 1/2 on in %'s T Scores 
Given Score 

10 1 62 61.5 99.2 74 
9 4 61 59 95.2 67 
8 6 57 54 87.1 61 
7 10 51 46 74.2 56 
6 8 41 37 59.7 52 
5 13 33 26.5 42.7 48 
4 18 20 11 17.7 41 
3 2 2 1 1.6 2~ 

N=62 

62 subjects. In column (1) the test scores are entered; and in column (2) 
are listed the frequencies-number of subjects achieving each score. Two 
subjects had scores of 3, 18 had scores of 4, 13 scores of 5, and so on. In 
column (3) scores have been cumulated (p. 62) from the low to the high 
end of the frequency distribution. Column (4) shows' the number of sub
jects who fall below each score plus one-half of those who earn the given 
score. The entries in this column may readily be computed from columns 
(2) and (3). There are no scores below 3 and 2 scores on 3, so that the 
number below 3 plus one-half on 3 equals 1. There are 2 scores below 4 
[see column (3)] and 18 on 4 [column (2)]; hence the number of scores 
below 4 plus one-half on 4 is 2 + 9 or 11. There are 20 scores below 
5 (2 + 18) and 13 scores on 5 [column (2)] so that the number below 
5 plus one-half on 5 is 20 + 6.5 or 26.5. The reason why one-half of the' 
frequency onp a given score must be added to the frequency falling below 
that score is that each score is an interval-not a point on the scale. The 
score of 4, for example, covers the interval 3.5-4.5, midpoint 4.0. If the 18 
frequencies on score 4 are thought of as distributed evenly over the inter
val, 9 will lie below and 9 above 4.0, the midpoint. Hence, if we add 9 to 
the 2 scores below 4 (i.e., below 3.5) we obtain 11 as the number of 
scores below 4.0, the midpoint of the interval 3.5-4.5. Each sum in column 
( 4) is taken up to the midpoint of a score interval. 

(4) In column (5) the entries in column (4) are expressed as percents of N 
(here 62). Thus, 99.2% of the scores lie below 10.0, midpoint of the inter
val 9.5-10.5; 95.2% of the' scores lie below 9.0, midpoint of 8.5-9.5, etc. 

(5) Turn the per cents in column (5) into T scores by means of Table G. 
T scores in Table G corresponding to percentages nearest to those wanted 
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are taken without interpolation, as fractional T scores are a needless refine
ment. Thus for l.6% we take l. 79 (T score = 29); for 17.7% we take 
18.41 % (T score = 41), and so on. 

In Table G, percentages lying to the left of (i.e., below) succeeding 
u points expressed as T scores have been tabulated, rather than percents 
between the mean and given u points as in Table A. In Table G, we are 
enabled, therefore, to read T scores directly; but the student will note that 
T scores can also be read from Table A. To illustrate with score 8 in 
Table 44, which has a percentage-below-plus one-haH-reaching of 87.1, 
note that a score failed by 87.1% lies 37.1% (87.1% - 50.0%) to the 
right of the mean. From Table A, we read that 37.10/0 of the distribution 
lies between the mean_a~d 1. 13u. Since the u of the T scale is 10, 1.13u 
becomes 11 in T units; and adding 11 to 50, the mean, we get 61 as the 
required T score (see Fig. 56). 

Figure 57 shows a histogram plotted from the· distribution of 62 scores 
in Table 44. Note that the scores of 3, 4, 5, etc., are spaced at equal inter-

2 

3 4- 5 (, 7 8 9 10 

FIG. 57 Histogram of the sixty-two scores· in Table 44 

vals along the base line, i.e., along the scale of scores. When these raw 
scores are transformed into normalized standard scores-into T scores
they occupy the positions in the normal curve shown in Figure 58. The 
unequal scale distances between the scores in Figure 58 show clearly 
that, when normality is forced upon a trait, the original scores do not 
represent equal difficulty steps. In other words, normalizing a distribution 
of test scores alters the original test units (stretching them out or com
pressing them) and t4e more skewed the raw score distribution, the 
greater is the change in unit. 

(4) ADVANTAGES OF THE T SCALE 

In T scaling, what is actually being scaled is the percentile rank of the 
. raw score. If Tom's PR on Test A is 84, his T score is 60-this .being the .. 
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40 50 60 70 80 
45678910 

FIG. 58 Normalized distribution of the scores in Table 44 and Figure 57. 
Original scores and T score e.quivalents are shown on base line. 

point below which 840/0 of normal curve area falls. If Tom's PR on Test B 
is 30, his T score is 45, etc. 

T scores have general applicability, a convenient unit, and they cover a 
wide range of talent. Besides these advantages, T scores from different 
tests are comparable and have the same meaning, since reference is always 
to a standard scale of 100 units based upon the normal probability curve. 
T scaling forces normality upon the scores of a frequency distribution and 
is unwarranted if the distribution of the trait in the population is not 
normal. For the distributions of most mental abilities in the popula
tion, however, normality is a reasonable-and is often the only feasible 
-assumption. 

( 5) THE STANINE SCALE 

The stanine scale <) is a condensed form of the T scale. Stanine scores 
run from 1 to 9 along the base line of the normal curve constituting a 
scale in which the unit is .50' and the median is 5. The percentage of 
scores in each stanine is shown in -Figure 59. These percents have been 

7'7. 12'70 17'7. 20'70 17'70 12'70 7'70 

2345678 
cn -1.75-1.25-0.75-0.25 0.25 0.75 1.25 1.75 

FIG. 59 Stanine scale showing percents on each score from I to 9 

o Stanine is a contraction for "standard nine," 
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found from Table A as follows: Since 9.87% of the area of the normal 
curve falls between the median and .250", then 19.74% (i.e., 9.87 X 2) or 
20% (to two digits) is found in the median interval (between -I- .250" ). 
The median 20% of test scores, therefore, are all given the single stanine 
Score of 5. The next 17% of area above 5 receives the stanine score of 6 
(lies between .250" and .750"); the next 12% of area is scored 7 (lies 
between .750" and 1.250"); the next 770 is scored 8, and the upper 470 
receives the stanine score of 9. In the lower half of the curve, the lowest 
4% is given the stanine score of 1, the next 7% 2, the next 12% 3, and 
the next 17% 4. The two end stanines include what is left over in the tails 
of the curve and thus complete 100% of the area. If the scores on an 
aptitude test achieved by 100 students are arranged in order of size, the 
first 4 will receive a stanine of 1, the next 7 a stanine of 2, the next 12 a 
stanine of 3, and so on to the last 4 who receive a stanine score of l. 

The 125 Reading Scores found in Table 13 have been converted into 
stanines in Table 45. The procedure is to 'count 4%, 11 %, 23% etc., into 

TABLE 45 The stanine score system applied to the 125 reading scores taken 
from Table 13 

Stanine scale % in each interval Cum. %'s Reading scores in 
(rounded) each stanine interval. 

(1) (2) (3) (4) 

9 4 100 70+ 
8 7 96 64-69 
7 12 89 59-63 
6 17 77 54-58 
5 20 60 51-53 
4 17 40 46-50 
3 12 23 41-45 
2 7 11 34-40 
1 4 4 25-33 

N=100 

the distribution, setting up score intervals (approximately) to fit the 
stanine intervals. Note that any score 41-45 is scored 3, any score 51-53 
is scored 5 and so on. In an ogive, stanine intervals of 4, 11, 23, etc., may 
be laid off on the Y axis and stanines corresponding to reading scores read 
directly from the graph. 

'( 6) A COMPARISON OF T SCORES AND STANDARD SCORES 

T scores are sometimes confused with standard scores, but the assump
tions underlying the two sorts of measures are quite different. Table 46 

~ 
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repeats the data of Table 44 and shows the T score equivalents to the 
giv~n raw scores. Standard scores with a mean of 50 and a of 10 are listed 

TABLE 46 Comparison of T scores and standard scores 
(Data from Table 44) 

Test 
Score 

10 
9 
8 
7 
6 
5 
4 
3 

f 

1 
4 
6 

10 
8 

13 
18 

2 
N=62 

For test scores: 
M= 5.73 

(T = 1.72 

T Scores Standard Scores 
M = 50, {]' = 10 

74 
67 
61 
56 
52 
48 
41 
29 

75 
69 
63 
57 
52 
46 
40 
34 

Equation for converting test 
scores into standard scores (see p. 313) 

X - 5.73 X' - 50 
. 1.72 10 

X' = ~OX _ 57.~ + 50 
1.72 1.72 

X' = 5.81X - 33.3 + 50 
X' = 5.81X + 16.7 

in column (4) for comparison with the T scores. These standard scores 
were calculated by means of formula (77) on page 313. The mean of the 
raw scores is 5.73 and the a is 1:72. A mean of 50 and a a of 10 were 
selected for the new standard score distribution so that these standard 
scores could be compared directly with T scores. Substituting in formula 

I (77) we have 

X' = 5.81X + 16.7 

as our' transformation equation. Putting 3, 4, 5, etc., for X in this equation 
we find X"s of 34, 40, 46, etc. These X' Scores will be found to correspond 
fairly closely to the T scores. This is often the case, and the more- nearly 
normal the: distribution of raw scores the closer the correspondence. The 
two kinds of scores are not interchangeable, however. With respect to 
original scores, T scores represent equivalent PR's in a normal distribution. 
Standard scores, on the other hand, always haye the same form of dis
tribution as raw scores, and are simply original scores expressed in {]' units. 
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Standard score's represent the kind of conversion we make when we 
change inches to centimeters or kilograms to pounds; that is, the trans
formation is linear. Standard scores correspond exactly to T scores when 
the distribution of raw scores is strictly normal. 

3. Percentile scaling 

( 1) DffiECT CALCULATION OF PERCENTILES 

A child who earns a certain score on a test can be assigned a percentile 
rank (PR) 0 of 27, 42 or 77, say, depending upon his position in the score 
distribution. Percentile rank locates a child on a scale of 100 and tells us 
immediately what proportion of the group has achieved scores lower than 
he. Moreover, when a child has taken several tests, a comparison of his 
PR's prOVides measures of relative achievement, and these may be com
bined into a final total score. As a method of scaling test scores, PR's have 
. the practical advantage of being readily calculated and easily understood. 
But the percentile scale also possesses marked disadvantages which limit 
its usefulness. 

Percentile scales assume that the difference between a rank of 10 and 
a rank of 20 is the same as the difference between a rank of 40 and a rank 
of 50, namely, that percentile differences are equal throughout the scale. 
This assumption of equal percentile units holds strictly only when the 
distribution of scores is rectangular in shape;. it does not hold when the 
distribution is bell-shaped, or approximately normal. Figure 60 shows 
gr~phically why this is true. In the diagram we have a rectangular dis
tribution and a normal curve of the same area plotted over it. When the 
rectangle is divided into 5 equal segments, the areas of the small rec
tangles are all the same (20%) and the distances from 0 to 20, 20 to 40, 
40 to 60, 60 to 80, and 80 to 100 are all equal. These percentiles, P20, P40, 

etc., have been marked off along the top of the rectangle. 
Now let us compare the distances along the base line of the normal 

curve when these are determined by successive 20% slices of area. These 
base-line intervals can be found in the following way. From Table A we 
read that the 30% of area to the left of the mean extends to -.84u. The 
first 20% of a normal distribution, therefore, falls between -3.00u and. 

,-.84u: covers a distance of 2.16u along the base line. The second 20% 
(P20 to P40 ) lies between -.84u and -.25u (since -.25u is at a distance 
of 10% from the mean); and covers a distance of .59u along the base line. 
The third 20% (P40 to P60 ) lies between -.25u a.nd .25u: straddles the 

o For method of ~omputing PH's, see p. 65. 
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FIG. 60 - To illustrate the position of the same five percenti.les in rectangular 
and normal distributions 

mean and covers .50u on the base line. The fourth and fifth 20ro's occupy 
the same relative positions in the upper half of the curve as the second 
and first 20%'s occupy in the lower half of the curve. To summarize: 

First 20% of area covers a distance of 2.16<T 
Second 20% of area covers a distance of .59u 
Third 20% of area covers a distance of .50u 
Fourth 20% of area covers a distance of .59u 
Fifth 20% of area covers a distance of 2.16u 

It is clear (1) that intervals along the base line from the extreme left 
end (0, to P 20, P 20 to P 40, etc.) to the extreme right end of the nor
mal curve are not equal when determined by successive 20ro slices of 

iarea; and (2) that inequalities are relatively greater at the two ends of 
the distribution, so that the two end fifths are 4 times as long as the 
middle one. 

Distributions of raw scores are rarely if ever rectangular in form. Hence 
equal percents of N (area) cannot be taken to represent equal increments 
of achievement and the percentile scale does not progress by equal. steps. 
Betweeen Ql and Q3, however, equal percents of area are more nearly 
equally spaced along the base line (see Fig. 60), so that the PR's of a 
child in two. or more tests may be safely combined or averaged if they 
fall within these limits. But high and low PR's (above 75 and below 25) 
should be combined, if at all, with full knowledge of their limitations. 
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( 2) PERCENTILE RANKS FROM THE NORMAL CURVE 

Differences between points on the percentile scale may be allowed 
for by proper spacing when scores are to be represented by a profile. 
Table 47 shows the PR's of various CT scores in the normal curve and their 

TABLE 47 Percentile ranks in the normal curve expressed as CT scores and as 
T scores 

PR u Score T Score 

99 2.33 73 
95 1.64 66 
90 1.28 63 
80 .84 58 
70 .52 55 
60 .25 53 
50 .00 50 
40 -.25 47 
30 -.52 45 
20 -.84 42 
10 -1.28 37 
5 -1.64 34 
1 -2.33 27 

corresponding T scores. Unequal gaps between PR's when compared with 
T score interyals at the-middle and the ends of the scale are clearly 
apparent. Figure 61 shows graphically the performance of a twelfth-grade 
boyan the Differential Aptitude Tests. Percentile ranks on the chart have 
been marked off in such a way (larger at extremes, smaller at middle) as 
to accord with the normal form of distribution. T scores (along the 
Y axis) may be compared with PR's. Note that James is very high in the 
mechanical and spatial tests, average in numerical and abstract, and low 
in verbal and spelling. 

II. SCALING JUDGMENTS 

I. The scaling of answers to a questionnaire 

Answers to the queries or statements in most questionnaires admit of 
several possible replies? such as Yes, No, ?; or Most, Many, Some, Few, 
No; or there are four or five answers one of which is to be checked. It is 
often desirable to "weight" these -different selections in accordance with 
the degree of div€Jgence from the "typical answer" which they indicate. 
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First we assume that the attitude or personality trait expressed in answer
ing a given proposition is normally distributed. From the percentage who 
accept each of the possible answers to a question or statement, we then 
find a (F equivalent, which expresses the value or weight to be given that 
answer. The Internationalism Scale furnishes an example of this scaling 
technique. This questionnaire contains 24 staterrients upon each of which 
the subject is requested to give an opinion. Approval or disapproval of 
any statement is indicated by checking one of five possibilities "strongly 
approve," "approve," "undecided," "disapprove," and "strongly disap
prove." The method of scaling as applied to statement No. 16 on the 
Internationalism Scale is shown in Table 48. This statement reads as 
follows: 

16. All men who have the opportunity should enlist in the Citizens' Military 
Training Camps. 
Strongly approve Approve Undecided Disapprove 
Strongly disapprove 

TABLE 48 Data for statement No. 16 of the Internationalism Scale 

Strongly Dis- Strongly 
Answers Approve Undecided Dis-

Approve approve approve 

Percent checking 
Equivalent 

13 43 21 ..... 13 10 

cr values -1.63 -.43 .43 .99 1.76 
Standard scores 34 46 54 60 68 

The percentage selecting each of the possible answers is shown in the 
table. Below the percent entries are the (F equivalents aSSigned to each 
alternative on the assumption that opinion on the question is normally 
distributed-that few will wholeheartedly agree or disagree, and many 
take intermediate views. The (F values in Table 48 have been obtained 
from Table H in the following way: Reading down the first column 
headed 0, we find that beginning at the upper extreme of the normal 
distribution, the highest 10% has an average cr distance from the mean of 
1.76. Said differently, the mean of the 10% of cases at the upper extreme 
of the normal curve is dt a distance of 1.76cr from the mean of the whole 
distribution. Hence, the answer "strongly disapprove" is given a u equiva
lent of 1.76 (see Fig. 62). 

To find the (F value for the answer "disapprove," we select the column 
headed .10 and running down the column take the entry opposite 13, • 
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namely, .99. This means that when 10% of the distribution reading from 
the upper extreme has been accounted for, the average distance from the 
mean of the next 13'1'0 is .99a. Reference to Figure 62 will make this 
clearer. Now from the column headed 23 (13'1'0 + 10% "used up" or 
accounted for), we find entry .43 opposite 21. This means that when the 

30' 

FIG. 62 To illustrate the scaling of the five possible answers to statement 16 
on the Internationalism Scale 

23'1'0 at the upper end of the distribution has been cut off, the mean 
CT distance from the general mean of the next 21 % is .43a, which becomes 
the weight of the preference "undecided." The weight of the fourth 
answer "approve" must be found by a slightly different process. Since a 
total of 44% from the upper end of the distribution has now been 
accounted for, 6% of the 43% wh.o marked "approve" will lie to the right 
of the mean, and 37% to the left of the mean, as shown in Figure 62. 

I From the column headed 44 in Table H, "ve take .08 (entry opposite 6'1'0 ) 
which is the average distance from the general mean of the 6% lying just 
above the mean. Then from the column headed 13 (50% - 37%) we 
take entry .51 (now -.51) opposite 37%, as the mean distance from 

. the general mean of the 37% just below the mean. The algebraic sum 
-.51 X .37 + .08 X .06 h h h h' h .43 = -.43, w ic is t e weig t assigned to t e pref-

erence "approve." The 13% left, those marking "strongly approve," occupy 
the 13'1'0 at the extreme (low end) of the curve. Returning to the column 
headed 0, we find that the mean distance from the general mean of the 
13% at the extreme of the distribution is -1.63a. 



THE SCALING OF MENTAL TESTS AND OTHER PSYCHOLOGICAL DATA' 327 

~In order to avoid negative' values, each a weight in Table 48 can be 
expressed as a a distance from -3.00a (or -5.00a). If referred to -3.00a, 
the weights become in order 1.37, 2.57, 3.43, 3.99, and 4.76. Dropping 
decimals, and taking the first two digits, we could also assign weights of 
14,26,34,40, and 48. Again each a value in Table 48 may be expressed as 
a standard score in a distribution the mean of which is 50 and the a 10. 
The category "strongly approve" is -16 (-1.63 X 10) from the mean 
of 50, or at 34. Category "approve" is -4 (-.43 X 10) from 50 or at 46. 
The other three categories have standard scores of 54, 60, and 68. 

When all 24 statements on the Internationalism Scale have been scaled 
as shown above, a person's "score" (his attitude toward internationalism 
in general) is found by adding up the weights assigned to the various 
preferences which he has selected. 

One advantage of a scaling is that the units of the scale are equal and 
hence may be compared from item to item or from scale to scale. More
over, a scaling gives us a more accurate picture of the extent to which 
extreme or biased opinions on a given question are divergent from typical 
opinion than does some arbitrary weighting method. 

2. Scaling ratings in terms of the normal curve 

In many psychological problems individuals are judged for their posses
sion of characteristics or attributes not readily measured by tests. Honesty, 
interest in one's work, tactfulness, originality are illustrations of such 
traits. Suppose that two teachers, Miss Smith and Miss Brown, have rated 
a group of 40 first-grade pupils for "social responSibility" on a 5-point 
scale. A rating of A means that the trait is possessed in marked degree, a 
rating of E that it is almost if not completely absent, and ratings of B, C 
and D indicate intermediate degrees of responsibility. Assume that the 
percentage of children assigned each rating is as shown below: 

Judges 

Miss Smith 
Miss Brown 

Social Responsibility 

A B 

10% 15% 
20% 40% 

c D 

50% 20% 
20% 10% 

E 

5% 
10% 

It is obvious that th~ second teacher rates more leniently than the first, 
and that a rating of A. by Miss Smith may not mean the same degree of 
social responsibility as a rating of A by Miss Brown. Can we assign 
weights or numerical values to these ratings so as to render them com
parable from teacher to teacher? The answer is Yes, provided we may 
assume that the distribution of sOcial-responsibility is normal in the popu-• • 



328 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

lation of first-grade children, and that one teacher is as competent a judge 
as the other. From Table H, we read the 0" equivalents to the percents 
given each rating by Miss Smith and Miss Brown as follows: 

Miss Smith 
Miss Brown 

A 

1.76 
lAO 

B C 

.95 .00 

.27 -.53 

D 

-1.07 
-1.04 

E 
-2.10 
-1.76 

These 0" values are read from Table H in the same way as were the 
0" equivalents in the previous problem. If we refer each of our 0" values to 
-3.000" as an arbitrary origin or reference point, multiply each 0" value 
by 10 and round to two digits, we have the following: 

Miss Smith 
Miss Brown 

A 

48 
44 

B 

40 
33 

C 

30 
25 

D 

19 
20 

E 

9 
12 

Table H is valuable when one wishes to transmute various sorts of quali
tative data into numerical scores. Almost any trait upon which relative 
judgments can be obtained may be scaled, provided we can assume nor
mality of distribution in the general population. 

3. Changing orders of merit into numerical scores 

It is often desirable to transmute orders of merit into units of amount or 
"scores." This may be done by means of tables, if we are justified in assum
ing normality for the trait. To illustrate, suppose that 15 salesmen have 
been ranked in order of merit for selling efficiency, the most efficient 
salesman being ranked 1, the least efficient being ranked 15. If we are 
justified in assuming that "selling _ efficiency" follows the normal prob
ability curve in the general population we can, with the aid of Table 49, 

" assign to each man a "selling score" on a scale of 10 or of 100 points. Such 
a score will define ability as a salesman better than will a rank of 2, 5, or 
14. The problem may be stated specifically as follows: 

Example (3) Given 15 salesmen, ranked in order of merit by 
their sales manager, (a) transmute these rankings into scores on a 
scale of 10 points; (b) a scale of 100 points. 

Fir~t, by means of the formula 

P 
. . lOO(R - .5) 

ercent posztwn = N 

(formula for converting ranks into percents of the normal curve) 

(78) 
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TABLE 49 The transmutation of orders of merit into units of amount or 
.. If scores 

Example If N 25 d R 3 P P ., . 100(3 - .5) = , an =, ercentage OSItIOn IS 
25 

or 10 (formula 78) and from the table, the equivalent rank is 75, 
on a scale of 100 points. 

Percent Score Percent Score Percent Score 

.09 99 22.32 65 83.31 31 

.20 98 23.88 64 84.56 30 

.32 97 25.48 63 85.75 29 

.45 96 27.15 62 86.89 28 

.61 95 28.86 61 87.96 27 

.78 94 30.61 60 88.97 26 

.97 93 32.42 59 89.94 25 
1.18 92 34.25 58 90.83 24 
1.42 91 36.15 57 91.67 23 
1.68 90 38.06 56 92.45 22 
1.96 89 40.01 55 93.19 21 
2.28 88 41.97 54 93.86 20· 
2.63 87 43.97 53 94.49 19 
3.01 86 45.97 52 95.08 18 
3.43 85 47.98 51 95.62 17 
3.89 84 50.00 50 96.11 16 
4.38 83 52.02 49 96.57 15 
4.92 82 54.03 48 96.99 14 
5.51 81 56.03 47 97.37 13 
6.14 80 58.03 46 97.72 12 
6.81 79 59.99 45 98.04 11 
7.55 78 61.94 44 98.32 10 
8.33 77 63.85 43 98.58 9 
9.17 76 65.75 42 98.82 8 

10.06 75 67.48 41 99.03 7 
11.03 74 69.39 40 99.22 6 
12.04 73 71.14 39 99.39 5 
13.11 72 72.85 38 99.55 4 
14.25 71 74.52 37 99.68 3 
15.44 70 76.12 36 99.80 2 
16.69 69 77.68 35 99.91 1 
18.01 68 79.17 34 100.00 0 
19.39 67 80.61 33 
20.93 66 81.99 32 
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in which R is the rank of the individual in the series <) and N is the 'num
ber of individuals ranked, determine the "percentage position" of each 
man. Then from these percentage positions read the man's score on a scale 
of 10 or 100 points from Table 49. Salesman A, who ranks No.1, has a per-

., 100(1-.5). . 
cent pOSItIon of 15 or 3.33, and his score from Table 49 IS 9 or 85 

(finer interpolation unnecessary~: Salesman B, who ranks No.2, has a 
. . 100(2 - .5) . .. 

percentage pOSItIon of 15 or 10, and hIs score, accordmgly, IS 8 

or 75. The scores of the other salesmen, found in exactly the sam't(___)Yay, 
are given in Table 50. 

TABLE sb The order of merit ranks of IS salesmen converted into normal 
curve " scores" 

Percentage Scores 
Order of Merit Position 

Salesmen Ranks (Table 49) Scale (10) Scale (100) PR's 

A 1 3.33 9 85 97 
B 2 10.00 8 75 90 
C 3 16.67 7 69 83 
D 4 23.33 6 64 77 
E 5 30.00 6 60 70 
F 6 36.67 6 57 63 
G 7 43.33 5 53 57 
H 8 50.00 5 50 50 
I 9 56.67 5 47 43 

J 10 63.33 4 43 37 
K 11 70.00 4 40 30 
L 12 76:67 4 36 23 
M 13 83.33 3 31 17 
N 14 90.00 2 25 10 
a 15 96.67 .1 15 3 

It has been frequently pointed out that the assumption of normality in a 
trait implies that differences at extremes of the trait are relatively much 
greater than differences around the mean. This is clearly brought out in 
Table 50; for, while all differences in the order of merit series equal, 1, 
the differences between the transmuted scores in the scale of 100 vary 
considerably. The largest differences are found at the ends of the series, 

o A rank is an interval on a scale; .5 is subtracted from each R because its midpoint 
best represents an interval. E.g., R = 5 is the 5th interval, namely 4-5, and 4.5 (or 
5 - .5) is the midpoint. 
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the smallest in the middle. Fbr example, the difference in score between 
A and B or between Nand 0 is three times the difference between G 
and H. If selling ability is normally distributed, it is three times as hard 
for a salesman to improve sufficiently to move from second to first place as 
it is for him to move from eighth to seventh place. 

The percentile ranks (PR's) of our 15 salesmen in example (3) have 
been entered in Table 50 for comparison with the normal curve scores. 
These PR's were calculated by the method given on page 68. 

Another use to which Table 49 may be put is in the combining of incom
plete order of merit ratings., To illustrate with a problem: 

Example (4) Six graduate students have been ranked for research 
competence by 3 professors. Judge 1 knows all 6 well enough to rank 
them; Judge 2 knows only 3 well enough to rank them; and Judge 3 
knows 4 well enough to rank them. Can we combine these orders into 
a composite when two are incomplete? 

The data are as follows: 

Judge 1 
Judge 2 
Judge 3 

A 
1 

2 

Students 

BCD E 
2 345 
2 1 

1 3 

F 
6 
3 
4 

It seems fair that A should get more credit for ranking first in a list of 
six than D for ranking first in a list of three, or C for ranking first in a list 
of four. In the order of merit ratings, all three individuals are given the 
same rank. But when we assign scores to each person, in accordance with 
his position in the list, by means of formula (78) and Table 49, A gets 77 
for his first place, D gets 69 for his, and C gets 73 for his. See table. 

All of the ratings have been transmuted as shown in example (3). Sepa
rate SCores may be combined and averaged to give the final order of merit 
shown in the table. 

Persons 

A B C D E F 
Judge l's ranking 1 2 3 4 5 6 

score 77 63 54 46 37 23 
Judge 2's ranking 2 1 3 

score 50 69 31 
Judge 3's ranking 2 1 3 4 

score 56 73 44 27 
Sum of scores 133 113 127 115 81 81 
Mean 67 57 64 58 41 27 
Order of Merit 1 4 2 3 5 6 

i 
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By means of formula (78) and Table 49 it is possible to convert any set 
of ranks into "scores," if we may assume a normal distribution in the trait 
for which the ranking is made. The method is useful in the case of those 
attributes which are not easily measured by ordinary methods, but for 
which individuals may be arranged in order of merit, as, for example, 
athletic ability, personality, beauty, and the like. It is also valuable in 
correlation problems when the only available criterion <> of a given ability 
or aptitude is a set of ranks. Transmuted scores may be combined or aver
aged like other test scores. 

A word of explanation may be added with regard to Table 49. This 
table represents a normal frequency distribution which has been cut off 
at ±2.50u. The base line of the curve is 5u, divided into 100 parts, each 
.05u long. The first .05u from the upper limit of the curve takes in .09 of 
1 % of the distribution and is scored 99 on a scale of 100. The next .05u 
(.10u from the upper end of the curve) takes in .20 of 1 ro of the entire 
distribution and is scored 98. In each case, the percentage position gives 
the fractional part of the normal distribution which lies to the right of 
( above) the given "score" on base line. 

PROBLEMS 

1. Five problems are passed by.15%, S4%, 50%, 62%, and 80%, respec
tively, of a large unselected group. If the zero point of ability in this test 
is taken to be at -Su, what is the CT value of each problem as measured 
from this point? 

2. (a) The fifth-grade norms for a reading examination are Mean = 60 and 
SD = 10; for an arithmetic examination, Mean = 26 ·and SD = 4. 
Tom scores 55 on the reading and 24 on the arithmetic test. Compare 
his er scores. In which test is' he better? . 

(b) Compare his standard scores_ in a distribution with M of 100 and 
SD of 20. 

IS. (a) Locate the deciles in a normal distribution in the following way. 
Beginning at -Su, count off successive 10%'s of area up to -t.Ser. 
Tabulate the u values of the points which mark off the limits of each 
division. For example, the limits of the first 10% from -Su are 
-S.OOer and -1.28u (see Table A). Label these points in order from 
-Ser as .10, .20, etc. Now compare the distances in terms of er between 
successive 10 percent points. Explain why these distances are un
equal. 

(b) Divide the base line of the normal probability curve (take as 6er) 
into ten equal parts, and erect a perpendicular at each point of 
division, Compu~e the percentage of total area comprised by each 

o For definition of a criterion, see p. 354. 
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division. Are these percents of area equal? If not, explain why. Com
pare these percents with those found in (a). 

4. Fifty workers are rated on,a 7-point scale for efficiency on the job. The 
following data represent the distributions of ratings (in which 1 is best 
and 7 worst) for two judges. Judge X is obviously very lenient and Judge 
Z is very strict. To make these two sets of judgments comparable, use the 
following three procedures: 

(a) Percentile scaling: divide each distribution into 5 parts by finding 
successive 20%'s of N. Let A = first 20%, B the next 20%, and so 
on to E, the fifth 20%. 

(b) Standard scores: Find the M and SD for each distribution and con
vert each rating into a common distribution with M of 50 and SD 
of 10. 

(c) T scores: Find T scores corresponding to ratings of 1, 2, 3 . . . 7. 
Now compare Judge X's rating of:) with Judge_ Z's rating of:) by the 
three methods. 

Judge X Rating f Judge Z Rating f 
1 5 1 2 
2 10 2 4 
3 20 3 4 
4 5 4 5 
5 4 5 20 
6 4 6 10 
7 2 7 5 

N=50 N,=50 

5. In a large group of competent judges, 77% rank composition A as better 
than composition B; 65% rank B as better than C. If C is known to have 
a (1' value of 3.50 as measured from the "zero composition," i.e., the 
composition of just zero merit, what are the (1' values of B and A as 
measured from this zero point? 

6. Twenty-five men on a football squad are ranked by the coach in order of 
merit from 1 to 25 for all-around playing ability. On the assumption. that 
general playing ability is normally distributed, transmute these ranks into 
"scores" on a scale of 100 points. Compare these scores with the PR's of 
the ranks, and with the stanines for each man. 

7. (a) In accordance with their scores upon a learning test, 20 children are 
ranked in ord(lr of merit. Calculate the percentile rank of each child. 

(b) If 60 children, are ranked in order of merit, what is the percentile 
rank of the first, tenth, fortieth, and sixtieth? 

8. On an Occupational Interest Blank, each occupation is followed by five 
symbols, L! L ? D D!, which denote different degrees of "liking" and 
"disliking." T~e answers to one item are distributed as follows: 
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L! 
8% 

L 
20% 

? 
38% 

D 
24% 

D\ 
10% 

(a) By means of Table H convert these percents into u units. 
(b) Express each u value as a distance from "zero," taken at -3u, and 

multiply by 10 throughout. . 
(c) Express each u value as a standard score in a distribution of mean 

50, u 10. 
9. Letter g~ades are assigned three classes by their teachers in English, 

history, and mathematics, as follows: 

Mark English History Mathematics 
A 25 11 6 
B 21 24 15 
C 32 20 25 
D 6 8 20 
F 1 2 8 

85 (65 74 

(a) Express each distribution of grades in percents, and by means of 
Table H transform these percents into u values. 

(b) Change these u values into 2-digit numbers and into standard scores 
following the method on page 312. 

(c) Find average grades [from (b)] for the following students: 

Student English History Mathematics 
S.H. ABC 
~M C B A 
D.B. B D F 

10. Calculate T scores in the following problem: 

Scores f 
91 2 
90 4 
89 6 
88 20 
87 24 
86 28 
85 40 
84 36 
83 _ 24 
82 12 
81 4 

200-

Percent below given score 
- Plus One-half 

Reaching 
99.5 
98.0 

T score 
76 
71 
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11. (a) Calculate T scores for the midpoints of the class intervals in the follow
ing distribution: 

1. 
2. 

3. 

Scores 
40-44 
35-39 
30-34 
25-29 
20-24 
15-19 

f 
8 

12 
20 
15 
15 

Percent below given interval 
Plus One-half reaching 

Midpoint 

5 
75 

94.6 

(b) Convert these 75 scores into the stanine scale. 

ANSWERS 

In order: 4.04; 3.41; 3.00; 2.69; 2.16. 
(a) In neither, same score in both 
(b) Reading 90; arithmetic 90 
(a) .00 .10 .20 .30 .40 .50 .60 

-3.00 -1.28 -.84 -.52 -.25 0 .25 
Diffs: 1.72 .44 .32 .27 .25 25 

.70 

.52 

.27 

.80 

.84 

.32 

Tscore 
66 

.90 
1.28 

.44 

1.00 
3.00 
1.72 

(b) Percents of area in order: .68; 2.77; 7.92; 15.92; 22.57; 22.57; 15.92; 
7.92; 2.77; .68. 

4. (a) C vs. A (b) 52 vs. 61 (c) 50 vs. 60 
5. B, 3.89; A, 4.63 
6. Rank: 1 2 3 4 5 6 7 8 9 10 11 12 13 

Score: 89 80 75 71 68 65 63 60 58 56 54 52 50 
PR's: 98 94 90 86 82 78 74 70 66 62 58 54, M 

Stanine: 9 8 8 7 7 7 6 6 6 6 5 5 5 
Rank: 14 15 16 17 18 19 20 21 22 23 24 25 
Score: 48 46 44 42 40 37 35 32 29 25 20 11 
PR's: 46 42 38 34 30 26 22 18 14 10 6 2 

Stanine: 5 5 4 4 4 4 3 3 3 2 2 1 
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7. (a) 

Rank PR Rank PR 
1 97.5 11 47.5 
2 92.5 12 42.5 
3 87.5 13 37.5 
4 82.5 14 32.5 
5 77.5 15 27.5 
6 72.5 16 22.5 
7 67.5 17 17.5 
8 62.5 18 12.5 
9 57.5 19 7.5 

10 52.5 20 2.5 

(b) Rank' 1 10 40 60 
PR 99.2 84.2 34.2 0.8 
PR (to nearest whole 

number) 99 84 34 1 
8. Ll L ? D D! 

(a) -1.86 -.94 -.08 .80 1.76 
(b) 11 21 29 38 48 
(c) 31 41 49 58 68 

F D C B A 
9. (a) English -2.70 -1.74 -.65 .22 1.18 

History -2.28 -1.38 -.53 .39 1.49 
Math. -1.71 - .71 .13 .94 1.86 

(b) 

ENGLISH HISTORY MATHEMATICS 
-3.00er Stan. Score -3.00er Stan. Score -3.00er Stan. Score 

A 42 62 45 65 49 69 
B 32 52 34 54 39 59 
C 24 44 - 25 45 31 51 
D 13 33 16 36 23 43 
F 3 23 7 27 13 33 

(c) S.H., 36 or 56; F.M., 36 or 56; D.B., 20 or 40 
10. T scores: 

76,71,67,62,58,54,49,44,39,34,27 
11. (a) T scores: 66,59,53,47,40,32 

( b) Stanine scale 1 2 3 4 
Score range: 15- 18- 22- 25-

56789 
29- 33- 37- 40- 44-

17 21 24 28 32 36 39 43 

. 



CHAPTER 13 

RELIABILITY AND VALIDITY 
OF TEST SCORES 

I. THE RELIABILITY OF TEST SCORES 

A test score is called reliable when we have reasons for believing the 
score to be stable and trustworthy. Stability ana trustworthiness depend 
upon the degree to which the score is an index of "true ability"-is free of 
chance error. The Stanford-Binet LQ., for example, is known to be a 
dependable measure. Hence, if a child's LQ. is reported to be 110 by a 
competent examiner, we feel confident that this "score" is a good estimate 
of the child's ability-to handle tasks like those represented by the test. 
Scores achieved on unreliable tests are neither stable nor trustworthy. In 
fact, a comparison of scores made upon repetition of an unreliable test, or 
upon two parallel forms of the same test, will reveal many discrepancies
s-onie large and some small-in the two scores made by each individual in 
the group. The correlation of the test with itself-computed in several 
ways to be described later-is called the reliability coefficient of the 
test. 

I. Methods of determining reliability 

There are four procedures in common use for computing the reliability 
coefficient (sometime~ called the self-correlation) of a test. These are 

( 1) Test-retest (repetition) 
(2) Alternate or parallel forms 
(3) Split-half technique 
( 4) Rational equivalence 

All of these methods furnish estimates of the reproducibility of test 
scores; sometimes one method and sometimes another will provide the 
better measure. 

'4 
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(1) TEST-RETEST (REPETITION) METIIOD 

Repetition of a test is the simplest method of determining agreement 
between two sets of scores: the test is given and repeated on the same 
group, and the correlation computed between the first and second set of 
scores. Although test-retest is sometimes the only available procedure, the 
method is open to several serious objections. If the test is repeated imme
diately, many subjects will recall their first answers and spend their time 
on new material, thus tending to increase their scores-sometimes by a 
good deal. Besides immediate memory effects, practice and the confidence 
induced by familiarity with the material will almost certainly affect scores 
when the test is taken for a second time. Moreover, transfer effects are 
likely to be different from person to person, If the net effect of transfer is 
to make for closer agreement between scores achieved on the two givings 
of the test than would otherwise be the case, the reliability coefficient will 
be too high. On the other hand, if the interval between tests is rl.lther long 
(e.g., six months or more) and the subjects are young children, growth 
changes will affect the- retest score. In general growth increases initial 
score by various amounts and tends to lower the' reliability coefficient. 

Given sufficient time interval between the first and second administra
tion of a test to offset-in part at least-memory, practice and other carry
over effects, the retest coefficient becomes a close estimate of the stability 
of the test scores. In fact, when the test is given and repeated, the relia
bility coefficient is primarily a stability coefficient. 

The test-retest method wi,ll estimate less accurately the reliability of a 
test which contains novel features and is highly susceptible to practice 
than it will estimate the reliability of test scores which involve familiar 
. and well-learned operations little affected by practice. Owing to diffi
culties in controlling conditions which influence scores qn retest, the test
retest method is generally less useful than are the other methods. 

(2) ALTERNATE OR PARALLEL FORMS METHOD 

When alternate or parallel forms of a test can be constructed, the corre
lation between Form A, for example, and Form B may be taken as a·meas
ure of the self~correlation of the test. Under these conditions, the reli
ability coefficient becomes an index of the eqUivalence of the two forms 
of the test. Parallel forms are usually available for standard psychological 
and educational achievement tests. 

The alternate forms method is satisfactory when sufficient time has 
interveneq between the administration of the two forms to weaken or 
eliminate memory and practice effects. When Form B of a test follows 
Form A closely, scores on the second form of the test will often be 
increased because of familiarity. If such increases are approximately con- I 
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stant (e.g., 3 to 5 points), the 'reliability coefficient of the test will not be 
affected, since the paired A and B scores maintain the same relative 
positions in the two distributions. If the mean increase due to practice is 
known, a constant may be subtracted from Form B scoreS to render them 
comparable to those of Form A. 

In drawing up alternate test forms, care must be exercised to match 
test materials for content, difficulty and form; and precautions must be 
taken not to have the items in the tw.o forms too similar. When alternate 
forms are virtually identical, reliability is too high; whereas when parallel 
forms are not sufficiently alike, reliability will be too low. For well-mad~ 
standard tests, the parallel' forms method is usually the most satisfactory 
way of determining reliability. If possible, an interval of at least two to 
four weeks should be allowed between administrations of the test. 

(3) THE SPLIT-HALF METHOD 

In the split-half method, the test is first divided into two equivalent 
"halves" and the correlation found for these half-tests. From the reli
ability of the half-test, the self-correlation of the whole test is then esti
mated by the Spearman-Brown prophecy formula (19). The procedure, 
in detail, is to make up two sets of scores by combining alternate items in 
the test. The first set of scores, for example, represents performance on 
the odd-numbered items, 1,3,5,7, etc.; and the second set of scores, per
formance on the even-numbered items, 2, 4, 6, 8, etc. Other ways of 
making up two half-tests which will be comparable in content, diffictllty 
and susceptibility to practice are employed, but the odds-evens split is the 
one most commonly used. From the self-correlation of the half-tests, the 
reliability coefficient of the whole test may be estimated from the formula 

2r 1 1 

r - 2 II (79) 
1I-1+rll 

'2ll 
(Spearman-Brown pt:ophecy formula for estimating reliability from two 

comparable halves of a test) 

where ru = reliability coefficient of the whole test 

and 

r1 _!_ = reliability coefficient of the half-test, found experimentally. 
2Il 

When the reliability coefficient 'of the half"test ('.1.v is .60, for example, 
.2 II 

the reliability coefficient of the. whole test by formula 

or .75. 

2X.60 
(79) is 1 + .60 
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The split-half method is employed when it is not feasible to construct 
parallel forms of the test nor advisable to repeat the test itself. This situa
tion occurs with many performance tests, as well as with questionnaires 
and inventories dealing with personality variables, attitudes and interests. 
Performance tests (e.g., picture completion, puzzle solving, form boards) 
are often very different tasks when repeated, as the child is familiar with 
content and procedure. Likewise, many personality "tests" (as for exam
ple, the Rorschach) cannot readily be given in alternate forms, nor 
repeated, owing to changes in the subject's attitudes upon taking the test 
for the second time. 

The split-half method is regarded by many as the best of the methods 
for measuring test reliability. One of its main advantag~s is the fact that 
all data for computing reliability are obtained upon one occasion; so !hat 
variations brought about by differences between the two testing situations 
are eliminated. A marked disadvantage of the split-half technique lies in 
the fact that chance errors may affect scores on the two halves of the test 
in the same way, thus tending to make the reliability coefficient too high. 
This follows because the test is administered only once. The longer the 
test the less the probability that effects of temporary and variable dis
turbances will be cumulative in one direction, and the more accurate the 
estimate of score reliability. 

Objection has been raised to the split-half method on the grounds that 
a test can be divided into two parts in a number of ways, so that the reli
ability coefficient is not a unique value. This criticism is true only when 
items are all of equal difficulty; or when, as in personality inventories, 
items may take any order. It is true also, of course, in speed tests. In most 
standard tests (power tests) items are arraI1ged in order of difficulty so 
that the split into odds and evens provides a unique determination of the 
reliability coefficient. 

I (4) THE METHOD OF "RATIONAL EQUIVALENCE" 

The method of rational equivalence '0 represents an attempt to get an 
,estimate of the reliability of a test, free from the objections raised against 
the methods outlined above. Two forms of a test are defined as "equiva
lent" when corresponding items, a, A, b, B, etc., are interchangeable; and 
when the inter-item correlations are the same for both forms. The method' 
of rational. equivalence stresses the intercorrelations of the items- in the 
test and the correlations of the items with the test as a whole. Four 

.. Richardson, M. W" and Kuder, G. F., "The Calculation of Test Reliability 
Coefficients Based upon the Method of Rational Equivalence," Journal of Educational 
Psychology, 1939, 30, 681-687. 
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formulas for determining test reliability have been derived, of which the 
one given below is perhaps the most useful: 

_ n 0-2t - !'pq (80) 
r1I - ( 1) X 2 n- crt 

(reliability coefficient of a test in terms of the difficulty and the inter
correlations of test items) 

in which 

rll = reliability coefficient of the whole test 
n = number of items in the test 

crt = the SD of the test. scores 
p = the proportion of the group answering a test item correctly 
q = (1 - p) = the proportion of the group answering a test item incorrectly 

To apply formula (80) the following steps are necessary: 

Step I 

Compute the SD of the test scores for the whole group, namely, Ut. 

Step 2 

Find the proportions passing each item (p) and the proportions failing 
each item (q). 

Step 3 

Multiply p and q for each item and sum for all items. This gives "Spq. 

Step 4 

Substitute the calculated values in formula (80). 
To illustrate, suppose that a test of 60 items has been administered to a 

group of 85 subjects; Ut = 8.50 and "Spq = 12.43. Applying (80) we have 

_ 60 72.25 - 12.43 _ 842 
rn - 59 X 72.25 -. 

which is the reliability coefficient of the test. 
A simple approximation to formula (80) is often useful to teachers and 

others who want to determine quickly the reliability of short objective 
classroom examinations. It reads: 

nu2t - M(n - M) 
(ll = cr2t(n - 1) (81) 

(approxifMtion to formula 80) 
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in which 

'11 = reliability of the whole test 
n = number of items in the test 

CTt ~ SD of the test scores 
M = the mean of the test scores 

Formula (81) is a labor saver ~ince only_ the mean, SD. and number of 
items in the test need be kpown in order to get an estimate of reliability. 
The correlation need not be computed between alternate forms or be
tween halves of the test. Suppose that an objective test of 40 multiple
choice items has been administered to a small class of students. An item 
answered correctly is scored 1, an item answered incorrectly is scored O. 

,The mean test score is 25.70 and Ut = 6.0Q. What is the reliability coeffi
cient of the test? Substituting in (81) we have 

, 40 X 36.00 - 25.70(40 - 25.70) 
'lI = 36 X 39 

=.76 

The assumption is made in the above formula that all test items have 
the same difficulty, i.e., that the same proportion of subjects, but not nec
essarily the same persons, solve each item correctly. In a power test the . 
items cover a wide range of difficulty. Practice has shown, however, that 
formula (81) provides a fairly good index of the test's reliability even 
when the assumption of equal item difficulty is not satisfied. national 
equivalence formulas tend to underestimate somewhat the reliability 
CGefficjent as found by other methods. These formulas provide a minimum 
estimate of reliability-we may feel sure that the test is at least as. reliable 
as we have found it to be. 

The rational equivalence formulas are not strictly comparable to the 
three methods already outlined.' Like the split-half technique, these 

; formulas provide an estimate of the internal consistency of the test and 
thus of the dependability of test scores. Rational ~quivalence is superior 
to ,the split-half technique in certain theoretical aspects, but the actual 
difference in reliability coefficients found by the two methods i~ never 
large and is often negligible. 

2. The effect upon reliability of lengthening or repeating a test 

(1) THE RELIABILITY COEFFICIENT FROM SEVERAL APPLICATIONS OR REP.

ETITIONS OF A TEST 

The mean of 5 determinations of a child's height will usually be more 
trustworthy than a single !Deasurement; and the mean of 10 determina-
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tions will be more dependable t1_l~n the mean of 5. Increasing the length 
of a test or averaging 0 the scores obtained from several applications of 
the test or from parallel forms will also increase reliabiHty. If the self
correlation of a test is not satisfactory, what will be the effect of doubling 
the test's length? To answer this question experimentally would require 
considerable time and work. Fortunately a good estimate of the effect of 
lengthening or repeating a test can be obtained by use of the Spearman
Brown prophecy formula: 

r",,= 1+ (n-1)ru 
(82) 

(Spearman-Brown prophecy formula for estimating the correlation between 'n 
forms of a test and n comparable forms) 

where r "" = the correlation between n forms of a test and n alternate 
forms (or the mean of n forms vs. the mean of n other forms) 

and 
'11 = the reliability coefficient of Test 1. 

To iHustrate, suppose that in a group of 100 college freshmen the reli
ability coefficient of an achievement test is .70. What will be the effect 
upon test reliability of tripling the length of the test? Substituting' in 
(82), ~u = .70 and n = 3, we have -, 

3 X .70 2.10 87 
r31II = 1 + 2 X .70 = 2.40 = . 

Tripling the test's length, therefore, increases the reliability coefficient 
from .70 to .87. Instead of tripling the test's length, we might have admin
istered 3 parallel forms of the test and averaged the 3 scores made by each 
examinee. The reliability of these avemged scores will be the same (as far 
as statistical factors are concerned) as the reliability obtained by tripling 
the length of the test. 

(2) THE SPEARMAN-BROWN FORMULA APPLIED TO RATINGS 

The Spearman-Brown formula Play be used to estimate the reliability 
of ratings, paired comparisons and other judgments, as wen as test scores. 
Suppose that in judging the competence of a group of employees, the 
ratings of two supervisors (both equally well acquainted with the ratees) 
correlate .50. How reliable are the averages of these two sets of ratings? 

2X.50 . 
By formula (79), '211 = 1 + .50 or .67. If we had had 3 superVIsors whose 

o Mathematically, averaging the scores from 3 applications of a test gives the same 
result as increasing te length of the test _ 3 times. 
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ratings on the average correlated .50, the mean of these 3 sets of ratings 
3X.50 . 

would be r3III = 1 + 2 X .50 or .75. The confidence we can place III these 

estimates will depend upon how well the assumptions underlying the. 
formula are met: whether the judges are in reality "equally well ac
quainted" with the ratees, are equally competent as judges, etc. In many 
instances, "stepped-up estimates" like these must be taken as rough 
approximations, useful but not exact. 

(3) LENGTHENING THE TEST TO ATTAIN A DEsmED DEGREE OF RELIABILITY 

The prophecy formula may also be used to find how many times a test 
sholl.ld be lengthened or repeated in order to reach a given standard of 
reliability. Suppose that an educational achievement test has a reliability 
coefficient of .80. How much should we lengthen the test in order to 
ensure a reliability coefficient of .95? Substituting rn = .80 and fn" = .95 
in formula (82), and solving this time for n, we have that 

.95 = .BOn = .BOn 
I + .80n - .80 .W + .BOn 

and 
n = 4.75 or 5 in whole numb~rs 

This achievement test must be 5 times its present length or 5 parallel 
forms must be given and averaged if the reliability coefficient is to 
reach .95. 

( 4) PRECAUTIONS TO BE OBSERVED IN USING THE PROPHECY FORMULA 

Predictions of increased reliability by the Spearman-Brown formula are 
valid when the items or questions added· to the test cover the same 
ground, are of equahrange of difficulty, and are comparable in other re
spects to the items in the original test. Often these conditions are not well 
satisfied in practice. When this is true, Spearman-Brown formula predic
tions must be taken as approximations rather than at face value. 

When the conditions for prediction are satisfied, there would seem to 
be no reason why the reliability coefficient of a test should not be boosted 
to almost any figure, simply by increasing the test's length. Such a result 
is highly improbable, however. In the first place, it is impractical tq 
increase a test's length 10 or 15 times, for example. Not only is it difficult 
to find suitable material, but boredom, fatigue and other factors lead to 
diminishing returns. When the content added to the test is made strictly 
comparable to the original by a careful selection and matching of items, 
and when motivation remains substantially constant, the experimental 
evidence indicates that a test may be increased 5 or 6 times its original 
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length and the prophecy form~la will give a close estimate of the experi
mentally determined results. With greater increase in length the prophecy 
formula tends to "overpredict" -give higher estimated reliability coeffi
cients than those actually found. Perhaps this is not especially serious, 
however, as a test which needs so much lengthening should probably be 
radically changed or discarded in favor of a better test. 

3. Chance and constant errors 

Many psychological factors affect the reliability coefficient of a test
fluctuations in interest and attention, shifts in emotional attitude, and dif
ferential effects of memory and practice. To these must be added environ
mental factors such as distractions, noises, interruptions, scoring errors, 
and the like. All of these variable and transitory influences are called 
"chance errors." To be truly chance, errors must affect a score in such a 
way as to cause it to vary up or down from its true value, as often one 
way as the other. Chance errors are by definition independent and uncor
related. When for various reasons such errors are correlated, they can no 
longer be regarded as chance. Chance errors are sometimes called errors 
of measurement. 

Constant errors, as distinguished from chance errors, work in only one 
direction. Constant errors raise or lower all of the ss::ores on a test but do 
not affect the reliability coefficient. Such errors are easier to avoid than are 
chance errors and may sometimes be allowed for by subtracting two 
points, say, from a retest score to allow for practice. 

II. RELIABILITY IN TERMS OF TRUE SCORES AND MEASUREMENT ERRORS 

I. The reliability coefficient as a measure 01 true variance 

A score on a mental test may be thought of as an index of the exam
inee's "true ability" '* plus errors of measurement. If "a score has a large 
component of ability and a small component of error, its reliability is high; 
and, contrariwise, if a ,test score has a small component of ability and a 
large error component, its reliability is low. The reliability coefficient 
becomes, then, a measure of the extent to which true ability exceeds error 
in the obtained scores. The relations of obtained score, true score, and 
error may be expressed mathematically as follows: 

o True score = a measure which would be obtained by taking the mean of an 
an infinitely large number of measurements of a given individual on 
similar tests under similar conditions. A true score cannot, of course, 
b\ determined experimentally. 
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Then 

Let X = the obtained score for an individual on a test 
X .. 0 = true sc.ore of the same individual 

e = the variable (chance) errors 

X=X",+e 

or in deviation units 

It can be shown that if chance errors and true scores are uncorrelated, 

That is, the variance .of the .obtained SCDres can be divided intD two parts: 
the variance .of the true SCDres and the variance .of chance errDrs. If we 
divide both sides .of the abDve equatiDn by a2 "', we have 

shDwing that 100% .of the .obtained SCDre variance can be resDlved intD the 
propDrtiDn cDntributed by true-SCDre variance and the prDpDrtiDn CDn
tributed by error variance. When the fractiDn a2",/a2", is large, ·reliability 
is high; when a2e/r?", is large, reliability is IDW. 

Under certain reasDnable assumptiDns, namely, that true scores and 
errors are independent or ~ncorrelated, we may write: 

and the reliability cDefficient becomes a measure .of the proportion .of test 
variance which is tr!-le variance. We may alsD write 

showing that when the proportion .of errDr variance is IDW the reliability 
coefficient is high. Both .of these formulas reveal the reliability cDefficient 
tD be an index of the precision of measurement. If the reliability cDeffi
cient of a t~st is .90, fDr example, we know that 90% .of the variance .of 
test scores is true-SCDre variance, and .only 10% errDr variance. If the 
reliability coefficient is .50, .only 50% .of SCDre variance is attributable to 
true score variance, the .other 50% being errDr variance. 

o The symbol co ( infinity) is used to designate a true score. 
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2. Estimating true scores by way" of the regression equation and the reliability 
coefficient 

We have seen in the preceding section that the reliability coefficient is 
an index of the degree to which obtained score variance is a measure of 
true score variance-and is free of error variance. True scores cannot be 
found experimentally, but we can estimate an individual's true score by 
way of the regression equation, when we know the reliability coefficient. 
It can be shown mathematically that 

x'" = rUXI + (1 - rU)MI 
(true score estimated from the regression equation) 

Obtained scores (X) 

..... 
8 

i {1-------+--7t:.....?" 
o 
u .. 
E 

(83) 

FIG. 63 True scores may be estimated from obtained scores by means of a 
regression equation. The par911el lines mark pff the .95 confidence 
interval 

in which 

x'" = estimated true score on a test (Test 1, for example) 
Xl = obtained score on Test 1 
MI = mean of Test 1 distribution 
ru = reliability coefficient of Test 1 

The standard error of an estimated true score is 

SE",1 = uiVru - r\r (84) 

(SE of a true score estimated from a regression equation) 
I 

where SE.,1 = standard error of an estimated true score (predicted from 
an obtained score) in Test 1 

and 
r11 ::;:: th~ reliability coefficient of Test 1. 
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The example below shows how these formulas are applied. 

Example (1) The, reliability coefficient of a test is .75, the M is 60 
and the CT is 10. If John Brown has a score of 50 on the test, what is 
his estimated true score and its error of estimate? Compute the .95 
confidence interval for John's true score. 

Substituting in equation (83) we have that 

X", = .75 X 50 + .25 X 60 
= 52 (to nearest whole number) 

From equation (84), the SE of John's estimated true score is 

SE,Xll = 10Y.75 - .56 
= 4 (to the nearest whole number) 

The .95 confidence interval for John's true score is 52 ± 1.96 X 4 or 
52 ± 8. We may feel quite sure, therefore, that the interval 44-60 contains 

,John's true score. Note that John's estimated true score of 52 is nearer the 
mean of 60 than was his obtained score of 50. Scores below the test mean 
yield estimated true scores (regressed scores) which are closer in toward 
the mean. This is an illustration of the "regression effect" described on 
page 174. A diagram showing how a regressed true score may be esti
mated or predicted from an obtained score will be found in Figure 63. 

A second example will demonstrate the considerable variation to be 
expected in an estimated true score, even when the reliability coefficient 
is high. 

Example (2) The M of the Stanford-Binet is 100 and the CT is 16. 
The reliability coefficient is .92. If Mary's ,I.Q. is 120, what is her 
estimated true I.Q. and its Se? Compute the .95 confidence interval 
for Mary's true I.Q. 

" From formula (83), 

X<x> = .92 X 120 + .08 X 100 
= 118 (to the nearest whole number) 

and the SE by (84) is 

SEoo1 = 16y.92 - .85 
= 4 (to the nearest whole number) 

The .95 confidence interval is 118 + 1.96 X 4 or 118 + '8. The limits of the 
interval are 110 and 126-and the range is quite wide, 16 I-,Q. pOints. It is 
clear that even when the reliability of a test is high, the prediction of true 
scores is subject to considerable error. 
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3. The index of reliability 

An individual's true score on a test has been defined as the mean of a 
very large number of determinations made of the same person on the 
same test or on parallel forms of the test administered vnder standard 
conditions. The correlation between a set of obtained scores and their cor
responding true counterparts is given by the formula 

rl", = yr;-; (85) 
(correlation between obtained scores on a test and true scores in the function 

measured by the test) 

in which '1", = the correlation of obtained and true scores 

and 'n = the reliability coefficient of the Test 1. 

The symbol 00 (infinity) designates true scores (p. 346). 
The coefficient rl", is called the index of reliability. It measures the 

dependability of test scores by showing" how well obtained scores agree 
with their theoretically true values. The index of reliability gives the 
maximum correlation which the given test is capable of yielding in its 
present form. This is true because the highest correlation which can be 
obtained between a test and a second measure is b~tween the test scores 
and their corresponding true scores. II> 

By squaring both sides of equation (85) we find that 

and the reliability coefficient (as before, p. 346) gives the proportion of 
the variance of the obtained scores which is determined by the variance 
of the true scores. Suppose that the reliability coefficient of a certain test 
is .64. Then 6470 of th~ variance of obtained scores is attributable to the 
variance of true scores. Furthermore, since rl", = v'M or .80, we know 
that .80 is the highest correlation which this test is capable of yielding in 
its present form. If the reliability coefficient of a test is as low as .25, so 
that rl", = y':25 or .50, it is obviously a waste of time to use such a test 
without lengthening it or otherwise improving it. A test whose index of 
reliability -is only .50 i~ an extremely poor estimate of the function it is 
trying to measure. The index of reliability has no practical advantage 
over the reliability coefficient. It is useful mainly as a means of showing 
how T1I is a measure of true variance. 

II> OccaSionally, chance may lead to a higher spurious correlation (p. 441). 

" 
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4. The Sf of an obtained score (the Sf of measurement) 

The effects of variable or chance errors in producing divergences of test 
scores from their true values is given by the formula 

<T8e == <Tfyl - rn (86) 

(standard error of an obtained score) 

in which 

<T,e = the SE of an obtained score (also called the SE of measurement) 
<Tl = the standard deviation of test scores (Test 1) 
'11 = the reliability coefficient of Test 1 

The subscript sc indicates that this SE is a measure of the error made in 
taking a,n obtained score as an estimate of its true score. The example 
below provides an illustration of formula (86). 

Example (3) In a group of 300 college sophomores, the reli
ability coefficient of an Aptitude Test in mathematics is .75, the test 
M is 80 and the SD of the score distribution is 16. William achieves 
a score of 86. What is the SE of this score? 

From formula (86) we find that 

<T,e == 16yr=-:-15 
=8 

and the odds are roughly 2:1 that the obtained score of any individual in 
the group of 300 does not miss its true value by more than ±8 points 
(i.e., ±1 SEBe). The ,95 confidence interval for William's true score is 
86 ± 1.96 X 8 or 70 to 102. Gen,eralizing for the entir,e group of 300 
sophomores, we may expect about 1/3 of their scores to be in error by 8 
or more points, and 2/3 to be in error by less than this amount. 

It is of interest to compare the estimate of William's true Score given 
, by (86) with that obtained by the methods of section 2, page 347. 

William's estimated true score is 

x'" = .75 X 86 + .25 X 80 
= 84 (to the nearest whole number) 

and the SE",l by (84) is 

SE",l = 16y.75 - .56 
=7 

We thus have an estimated true score of 84 with a SE",l of 7 as against 
an obtained score of 86 (taken as an estimate of the true score) with an 
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SEse of 8. When using the SE~h the .95 confidence interval for the true 
score is 84 ± 1.96 X 7 or from 70 to 98. This may be compared with the 
.95 confidence interval of 70 to 102 by the SE.e method (p. 350). When 
the reliability coefficient is high (as here), little is to be gained by taking 
the estimated true score instead of the obtained score. But when the relia
bility coefficient is low, SE."l is considerably smaller than SE.e and the 
more precise method is to be preferred. 

The student should note carefully the difference between the SE of 
estimate (see p. 160) and the SEse, i.e., the SE of an obtained score. The 
first SE enables us to say with what assurance we can 1?redict an indi
vidual's score on Test A when we know his score on Test B (a different 
measure) and the correlation between the two. The prediction is made, 
of course, by way of the regression equation connecting the two variables. 
The SEse is aiso an estimate formula, but it tells us how adequately an 
obtained score represents its true score. The SEae is a better way of 
expressing the reliability of a test than is the reliability coefficient, as it 
takes into account the variability within the group as well as the sel£
correlation of the test (see p. 336). 

5. Some other factors in reliability 

(1) WHEN IS TIIE RELIABIT..ITY COEFFICIENT SATISFACTORY? 

How large a reliability coefficient we should require depends upon the 
nature of the test, the size and variability of the group, and the purpose 

, for which the test was given. In order to differentiate between the means 
of two school grades of relatively narrow range, a reliability coefficient 
need be- no higher than .50 or .60. If the test is to be used to make indi
vidual diagnoses (i.e:, to separate pupil from pupil), its reliability coeffi
cient for a single grade should be .90 or higher. Most of the authors of 
standard intelligence and educational achievement examinations report 
reliability coefficients ofl at least .90 between alternate forms of their tests. 
The reliability coefficient of a test is affected by the variability of the 
group (see below); and in reporting a reliability coefficient, the SD of the 
test distribution should always be given. The method used in computing 
the reliability should also be reported, as well as relevant information 
about the group and the' testing procedures employed. Frequently teachers 
want to compare test results obtained from their classes with those cited 
in the literature. Such a comparison is impossible unless the author has 
outlined in some detail his methods of test administration and sampling 
procedures. 
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(2) THE EFFECTS OF DIFFERENT ~ANGES UPON RELIABILITY 

The reliability coefficient of a test administered to a group of wide 
range of talent (e.g., to children from several school grades) cannot be 
compared directly with the reliability coefficient of a test adminIstered to 
a group of relatively narrow spread, a single grade, for example. The self
correlation of a test (like any correlation coefficient) is affected by the 
variability of the group. The m?re heterogeneous the group, the greater 
the test variability and the higher the reliability coefficient. Figure 64 

x 

y 

_ Wide range-

FIG. 64 Correlation within the narrow range (small rectangle) will be low 
(close to zero). Correlation in the wide range will be high (see 
p.171) 

/ shows how the correlation may be low in a group of restricted variability 
and at the same time quite high in a group of wider range (see p. 171). 

If we know the reliability coefficient of a test in a wide range, we can 
estimate the reliability coefficient of the saine test in a group of narrow 
range, provided the test is equally effective throughout both ranges. The 
fomlUla is 

Un _ yl- rww 

U w - vr=r: (87) 

(relation between u's and reliability coeffiCients obtained in different stages 
when the test is equally effective throughout both ranges) 
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in which 

Un and U w = the u's of the test scores in the narrow and wide ranges, re-
spectively 

r nn and r ww = the reliability coefficients in the narrOw and wide ranges 

To illustrate, suppose that in grades 3-7 the reliability coefficient of an 
educational achievement test is reported to be .94 and the (Tw is 15.00. 
A teacher finds that in her fifth grade the (T" is 5.00. Assuming the test, to 
be just as effective in the single grade as in grades 3-7, what is the reli
ability coefficient in the narrow range? Substituting for an, (T'D and rIA"" in 
formula (87), we find ron to'be .46. This means that a reliability coefficient 
of .46 in the narrow range (i.e., the restricted range) indicates as much 
score dependability as a reliability coefficient of .94 in a group in which 
the range is three times as wide. 

Usually, perhaps, one wishes to estim;lte the reliability of a test given 
to a group of narrow range (e.g., a single grade) from data published for 
a standard test administered to groups of much greater spread. It is pos
sible, also, if the assumption of equal effectiveness throughout both ranges 
holds true, to estimate from the reliability coefficient in a narrow range 
the most probable self-correlation of the test in a wider range. Formula 
( 87) works both ways. 

( 3) RELIABILITY OF SPEED TESTS 

Speed tests are tests in which the time limit imposed is so short that 
usually not all examinees can attempt all of the items. Speed tests differ 
from power tests in which ample time is allowed for all examinees 
to try every item. Speed tests are of low difficulty level, whereas in 
power tests the difficulty of the items increases steadily. The split-half 
technique and the rational equivalence methods should not be employed 
with speed tests. If there are relatively few errors-as will be true when 
the difficulty level is low-an odd-even split will give a correlation close 
to 1.00. Most examinees will have the same score in the two parts of the 
test. Sometimes the reliability of mazes used in animal learning experi
ments is estimated by correlating the time taken to learn the first and 
second halves of the maze. This procedure is rarely satisfactory. The first 
half of the maze is usually learned more quickly than the second half. 
Scores on the first half, therefore, will tend to be roughly the same for all, 
whereas scores on the second half will vary widely. There is little vari
ability in the first half and much in the second. This situation leads to a 
half vs. half correlation which is close to zero. Parallel forms or test-retest 
are the methods to be used when speed is an important factor in the 
test score. ~ 
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(4) RELIABILITY AT DIFFERENT PARTS OF THE TEST RANCE 

The SE of an obtained score (p. 350) provides a general estimate of the 
dependability _ of a score over the entire range of the test. When the 
spread of ability is wide, however, agreement of scores on the two forms 
of the same test may differ considerably at successive parts of the scale
i.e., the test may not have equal discriminating powe~ all along the scale. 
It is possible to refine our estimates of score reliability by computing the 
SE8e for different levels of achievement. This has been done for the 
Stanford-Binet, a test which covers a very wide range of talent. The SE 
of an I.Q. of 130 and above, for example, is 5.24; for LQ.'s of 90-109,4.51; 
for I.Q.'s of 70' and below, 2.21, etc. The method of computing these dif
ferential SE8 e's is given in the reference in footnote. '" 

III. THE VALIDITY OF TEST SCORES 

The validity of a test, or of any measuring instrument, depends upon 
the fidelity with which it measures what it purports to measure. A home
made yardstick is entirely valid when measurements made by it are accu
rate in terms of a standard measuring rod. And a test is valid when the 
performances which it measures correspond to the same performances as 
otherwise independently measured or objectively defined. The difference 
between validity and reliability can be made clear, perhaps, by the 
following illustration. Suppose that a clock is set forward 20 minutes. If 
the clock is a good timepiece, the time it "tells" will be reliable (i.e., con
sistent) but will not be valid as judged by "standard time." The reliability 
of measurements made by scales, thermometers, chronoscopes, ammeters 
is determined by making repeated measurements of the same facts; and 
validity is found by comparing the _data obtained from the instrument· 
with standard (and sometimes arbitrary) measures. The validity of a test 
i,s found in the same manner. But since independent standards (i.e., cri-
teria) are hard to get in mental measurement; the validity of a mental test 
can never be estimated as accurately as can the validity of a physical 
instrument. 

Validity is a relative term. A test is valid for a particular purpose or in a 
particular situation-it is not generally valid. After World War I, seyeral 
business concems used the Alpha psychological test in the selection of 
applicants for routine clerical jobs. Those chosen often proved to be poor 
workers, indicating that the test was not a valid measure of the skills 
needed in many office jobs. 

'" McNemar, Q., ''The expected average dilfere~ce between individuals paired at 
random," JOUT. of Genetic J:sychol., 1933, 43, 438-439. 



RELIABILITY AND VALIDITY OF TEST SCORES' 355 

I. Determining validity by means of judgments 

What has been called "content validity" is employed in the selection of 
items in educational achievement tests, and in many trade tests. Standard 
educational achievement examinations represent the consensus of many 
educators as to what a child of a given age or grade should know about 
arithmetic, reading, spelling, history, and other subject fields. A test of 
English history or of geography is judged to be valid if its cqntent cor:,sists 
of questions covering these areas. The validation of content through com
petent judgments is most satisfactory when the sampling of items is wide 
and judicious, and when adequate standardization groups are utilized. 

Less defensible than content validity is the judgment process called 
"face validity.'" A test is said to have face validity when it appears to 
measure whatever the author had in mind, namely, what he thought he 
was measuring. Rating scales for various hypotheSized traits, neurotic 
inventories, attitude scales, and even intelligence tests often can claim 
little more than face validity. Judgments of face validity are very useful in 
helping an author decide whether his test items are relevant to some 
specific situation (e.g., the military) or to specialized occupational experi
ences. Arithmetic problems dealing witb military operations, for example, 
are more relevant to army jobs' than are fictitious probl~ms dealing with 
men rowing against a river, or the cost of papering a wall. Face validity is 
necessary, too, when we must decide what items are suitable for children 
and which are acceptable to adults. A feeble-minded man of 40 will feel 
affronted if asked how many fingers he has on his hand, whereas a child 
of 6 qr 7 will regard the question as entirely proper (though easy). Face 
validity should never be more than a first step in testing an item; it should 
not be the .final word. 

2. Determining validity ~xperimenta"y * 
The validity of a test is determined experimentally by finding the cor

relation between the test and some independent criterion. A criterion may 
be an objective measure of performance, or a qualitative measure such as 
a judgment of the character or excellence of work done. Intelligence tests 
were first validated against school grades, ratings for a~titude by teachers, 
and other Indices of ability. A trade test may be validated ~gainst time 
taken to carrY out standard operations, amount done in a given time, or 
excellence of work. Personality, attitude and interest inventories are va li-

o See Anastasi, A.~Psychdlogical Testing (New York: Macmillan, 1954), Chap. 6. 
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dated in a variety of ways. One of the nest is to check test predictions 
against actual outcomes. A high correlation between a test and a criterion 
is evidence of validity provided (1) the criteriop was set up independently 
and (2) both the test and the criterion are reliable. 

The index of reliability (p. 349) is sometimes taken as a measure of 
validity. The correlation-coefficient, it will be recalled, gives the relation
ship between obtained scores and their theoretical true counterparts. If 
the reliability coefficient of a test is .81, for example, r100 is y:gr or .90. 
This means that the test measures true ability to the extent expressed by 
anr of .90. . 

3. Factorial validity 

In the statistical method called factor analysis, the intercorrelations of 
a large number of tests are examined and if possible accounted for in 
terms of a much smaller number of more general "factors" or trait cate
gories. The factors presumably run through the often complex abilities 
measured by the individual tests. It is sometimes found, for example, that 
3 or 4 factors will account for the intercorrelations obtained among 15 or 
more tests. The validity of a given test is defined by its factor loadings
and these are given by the correlation of the test with each factor. A 
vocabulary test, for example, may correlate .85 with the verbal factor 
extracted from the entire test battery. This coefficient becomes the test's 
factorial validity. 

Factor analysiS is a specialized mathematical technique widely used 
and highly important in modern test construction. For a comprehensive 
account of its application to mental measurement, see Anastasi, Psycho
logical Testing, Chapter 14. 

4. Validity and the length of a test 

Lengthening a test not only increases its reliability; it also increases its 
validity, thus rendering the test a better measure of its criterion. The 
effect upon the validity coefficient of increasing a test's length may be 
measured by the following formula: 

nre"'1 
re(""'1) = ,=;=::;==::::;=;:= 

yin + n(n - l)rll 
(88) 

(correlation between. a criterion (c) and (1) a test lengthened n times or (2) 
the average of n parallel forms of the test) 
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in which 

r O(""I) = the correlation between the criterion (c) and n forms of Test Xl or 
Test Xl lengthened n times 

rO"l = the correlation between the criterion (c) and the given Test Xl 
ru = reliability coefficient of Test Xl 

n = number of parallel forms of Test Xl or the !lumber of times it is 
lengthened 

The following example will illustrate formula (88) 

Example (4) Test A has a reliability coefficient of .70 and a corre
lation of 040 with the criterion (c). What would be the correlation of 
Test A with the same criterion (its validity coefficient) if the test were 
tripled in length? 

Substituting rlI = .70, '0"1 = .40 and n = 3 in (88), we have that 

3 X 040 
r - --;;;;.~;::=;::;:=.=:;;;: 

"(SA) - \)3 +3 X 2 X .70 

= 045 

Thus, tripling the length of the test or averaging 3 administrations of the 
same test should increase the validity coefficient from .40 to .45. It may be 
noted that tripling the test's length also increases the reliability coefficient 
from .70 to .87 (p. 343). The increase in reliability with increase in 
validity shows the close relation between the two measures of test 
efficiency. 

To find how much the test would have to be lengthened in order to 
reach a given level of validity, we can rearrange (88) and solve for n: 

_ r2
0 (""1) (1 - rlI) (89) 

n- 2 2 
r c'"l - r 0(""'1) X rn 

(amount by which a test must be lengthened in order to give a specified 
validity coefficient) 

Suppose that an oral trade test, Test T, has a reliability coefficient of .50 
in a small group (narrow range of talent) and a criterion correlation of 
.30. How much lengthening is necessary in order that this test will yield a 
validity coefficient of .40? Substituting 'c(n,,!) = .40, 'll = .50 and rC'"l = .30 
in (89) and solving for n, we have that 

.16 X .50 
n = .09 _ .16 X .50 

=8 
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Thus, Test T must be 8 times its present length in order for the validity 
coefficient to go from .30-to .40. Note that increasing Test 1S length 8 
times also raises its reliability coefficient from .50 to .89. It seems likely 
that a test which needs so much lengthening had best be abandoned in 
favor of a new test. 

5. Dependence of validity on reliability 

The correlation between a test and its criterion will be reduced or 
attenuated if either the test or the criterion or both are unreliable. In 
order to estimate the correlation between two sets of true scores, we need 
to make a correction which will take into account errors of measurement 
( chance errors). Such a correction is given by the formula 

r~~ = r 1
2 (90) 

12 yrll X r2II 

(correlation between Tests 1 and 2 corrected for attenuation) 

in which 

r ~~ = correlation between true measures in 1 and 2 
12 
r12 = correlation between obtained scores in 1 and 2 
'u:= reliability coefficient of Test 1 

r2I1 ;;: reliability coefficient of Test 2 

Formula (90) provides a correction for those chance errors which lower 
the reliability coefficients and thus reduce the correlation between test and 
criterion. Suppose the correlation between criterion (.c) and Test A is .60, 
the reliability coefficient bf c is .80 'and the reliability coefficient of Test A 
is .90. What is the corrected -correlation between c and A-the correla
tion freed of errors of measurement? Substituting in (90), we have 

.60 ' 
r ~~ = ---;~=;::=;;;:;: 

12 y.80 X .90 

= .71 

as the estimated correlation between true measures in c and A. Our cor
rected coefficient of correlation represents the relationsliip which we 
should expect to get if our two sets of scores were perfect measures. ' 

It is clear from formula (90) that correcting for chance errors will 
always raise the correlation between two tests-unle~s the reliability co
efficients are both 1.00. Chance errors, therefore, always lower or attenu
ate an obtained correlation coefficient. The expression yrll X r2II sets an 



RELIABILITY AND VALIDITY OF TEST SCORES· 359 

upper limit to the correlation which we can obtain between two measures 
as they stand. In example (4), y.80 X .90 = .85; hence, Test A and the 
criterion c cannot correlate higher than .85, as otherwise their corrected r 
would be greater than 1.00. 

Let us assume the correlation between first-year college grades (the 
criterion) and a general intelligence test is .46; the reliability of the intel
ligence test is .82; and the reliability of college grades is .70. The maxi
mum correlation which we could hope to attain between these two meas
ures is 

.46 
r~; =' -V-;.~7:X:O :::;:X:;:::::;;.8~2 

= .61 

Knowing that the correlation between grades and general intelligence, 
corrected for errors of measurement, has a probable maximum value of 
.61 gives us a better notion of the "intrinsic" relationship between the two 
variables. At the same time, the investigator should remember that r oocr, 

. 12 

of .61 is a theoretical, not a computed, value; that it gives an estimate of 
the relationship to be expected when tests are more effective than they 
actually were in the present in·stance. If many sources of error are present, 
so that considerable correction is necessary, it is better experimental 
procedure to improve the tests and the sampling than to correct the 
obtained r12' 

It is often (perhaps usually) true that the criterion is less reliable than 
the test or test battery. This will cause the battery to seem less valid than 
is actually the case. An experimenter, therefore, may correct a validity 
coefficient for attenuation in the criterion only, making no correction for 
unreliability in the tests. The formula for a one-way correction is 

r (91) 
(~)'" 

(validity correction for attenuation in the criterion only) 

jn which 

r . = the correlation of the true criterion and the obtained test score 
(~)'" 

rC3J = the correlatipn of criterion and obtained test scores 
r cc = the reliability coefficient of the criterion (c) 

The following example illustrates th_e use of (91): 

Example (5) A comprehensive achievement examination corre
lates .38 wit\ mean grade in the first year of a high. school. The re-
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liability coefficient of the grades is low, .57. What is the validity coeffi
cient of the test battery when the criterion is corrected for attenuation? 

Substituting in (91), r eil: = .38 and r ee = .57, we have 

.38 
l' ---

(<i,) '" -y.57 

= .50 

The r = .50 is a better estimate of the true validity of the achievement 
(<i,)'" 

test than is the observed. correlation of .38. 
Workers with tests must be careful how they apply the attenuation 

formulas to correlations which have been averaged, as in such cases the 
reliability coefficients may actually be lower than the intercorrelations 
among the different tests. When this happens, corrected is may be greater 
than 1.00-a result which is statistically and psychologically meaningless. 
Corrected ,.'s close to 1.00 or even slightly greater than 1.00 may be taken 
as indicating complete agreement between true measures of the correlated 
variables, within the error of computation. 

6. The relation of validity to reliability 

There is a close connection between the two concepts, reliability and 
validity, in that both stress test efficiency. Reliability is concerned with 
the stability of test scores-does not go beyond the test itself. Validity, on 
the other hand, implies evaluation iIi terms of outside-and independent
criteria. Perhaps the greatest difficulty encountered in test validation is 
the problem of finding authentic criteria. Criteria must of necessity often 
be. approximate and indirect, for if readily accessible and reliable criteria 
were available, these measures would be used instead of the tests. The 
purpose of a test is to find a measure which will be an adequate and time
saving substitute for criterion measures (e.g., school grades or perform
ance records) obtainable only after long intervals of time. 

To be valid a test must be reliable. A highly reliable test is always a 
valid measure of some function. Thus, if a test has a reliability coefficient 
of .90, its index of reliability is y(9O or .95. This means that the test cor
relates .95 with true measures of itself-these true measures constituting 
the criterion. A test may be theoretically valid, however, and show little or 
no correlation with anything else. The simple tapping test and the word 
cancellation tests are examples. Scores in these tests can be made highly 
reliable by lengthening or repeating the test so that the index of re1i-
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ability is high. But the correlations of these tests with various criteria 
(e.g., speed or accuracy of factory work) are so low that they possess 
little practical validity in these situations. 

7. Summary on the relation of validity and reliability 

(1) The two concepts, reliability and validity, refer to different aspects 
of what is essentially the same thing, namely, test efficiency. 

(2) A reliable test is theoretically valid, but may be practically invalid, 
as judged by its correlations with various independent criteria. 

(3) A highly valid test cannot be unreliable since its correlation with 
a criterion is limited by its own index of reliability. 

8. Validation of a test battery 

A criterion of job efficiency, say, or of success in salesmanship may be 
forecast by a battery consisting of four, five, or more tests. The validity of 
such a battery is determined by the multiple correlation coefficient, R, 
between the battery and the criterion. The weights to be attached to 
scores on the subtests of the battery are given directly by the regression 
coefficients (p. 412). 

If the regression weights are small fractions (as they often are), whole 
numbers may be substituted for them with little if any loss in accuracy. 
For example, suppose that the regression equation joining the criterion 

, and the tests in a battery reads as follows: 

c (criterion) ::::: 4.32X1 + 3.12X2 - .65Xa + 8.35X4 + K(constant) 

Dropping fractions and taking the nearest whole numbers, we have 

c = 4X1 + 3X2 - lXa + 8X4 + K 

Scores in Test 1 are multiplied by 4, scores in Test 2 by 3, scores in Test 3 
by -1, and scores in T.est 4 by 8, in order to provide the best forecast 
of c, the criterion. The fact that Test 3 has a negative weight does not 
mean that this test has no value in forecasting c, but simply.that the best 
estimate of c is obtained by giving scores in Test 3 a negative value 
(p.419). 

IV. ITEM ANALYSIS 

In preceding sections we have considered reliability and validity of test 
scores as being tw~ aspects of a common attribute-namely, test effiCiency. 
The adequacy of a test-whatever its purpose-depends upon the care 
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. with which the items of the test have been chosen. There are many 
approaches to the study of item analysis and the topic properly belongs in 
a book on test construction. We shall be concerned here, therefore, only 
with those features of item analysis which are primarily dependent upon 
statistical method. For a comprehensive discussion and summary of item 
analysis and its problems, see references listed in footnote. I) -

Item analysis will be treated under three heads (1) item selection, 
(2) item difficulty, and (3) item validity. 

I. Item selection 

The choice of an item depends, in the first instance, upon the judgment 
of competent persons as to its suitability for the purposes of the test. This 
is the "content validity" discussed on page 355. Certain types of items 
have proved to be generally useful in intelligence examinations. Problems 
in mental arithmetic, vocabulary, analogies, number series completion, 
for example, are found over and over again; so also are items requiring 
generalization, interpretation, and the ability to see relations. The validity 
of the items in most tests of educational achievement depends, as a first 
step, upon the consensus of teachers and educators as to the adequacy of 
the material included. Courses of study, grade requirements, and curricula 
from various parts of the country are carefully culled over by test makers 
in order to determine what content should be included ·in the various 
su~ject fields. In its prelimipary form (before statistical analysis) the edu
cational achievement test represents items carefully selected from all 
sources of information judged to be suitable. 

Items chosen for aptitude tests, for tests in special fields, and items used 
in personal data sheets, interest and attitude t'ests are selected in the same 
manner. Such questions represent ~ consensus of experts as to the most 
relevant (and diagnostic) problems in the areas sampled. 

2. Item difficulty 

The difficulty of an item (problem or question) may be determined'in 
several ways: (1) by the judgment of competent people who rank the· 

.. Ross, C. C., and Stanley, J. C., Measurement in Today's Schools (New York: 
Prentice-Hall, 1954), Part II and Appendix B. 

Lindquist, E. F. (ed.), Educational Measurement (Washington: American Council 
on Education, 1951), Part II. 

Thorndike, R. L., Personnel Selection (New York: John Wiley and Sons, 1949), 
Chap. 8. 
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items in order of difficulty, (2)" by how quickly the item can be solved. 
and (3) by the number of examinees in the group who get the item right. 
The first two procedures are usually a first step, especially when the items 
are for use in special aptitude tests, in performance tests, and in areas 
(such as music and art) where qualitative distinctions and opinions must 
serve as criteria. But the number right, or the proportion of the group 
which can solve an item correctly, is the "standard" method for determin
ing difficulty in objective examinations. This is the statistical as contrasted 
with the judgmental approach to item validitY. 

(1) ITEM VARIANCE AND DIFFICULTY 

The proportion (p) passing an item is an index of item difficulty. If 
90% of a standard group pass an item, it is easy; if only 10% pass, the 
item is hard. When p = the percentage passing an item and q = the per
. centage failing, it can be shown that the SD of the item (its variability) 
is v'Pci and its variance (u2) is pq. When p = .50 and q = .50, the item 
variance is .25. This is the maximum variance which an item can have; 
hence an item with a difficulty index of .50 (p = .50) brings out more 
individual differences (spreads the examinees out more) than a harder 
or easier item. In general, as p drops below .50 or goes above .50, the 
variance of the item steadily decreases. Thus, an item passed by 60% 
(and failed by 40%) has a variance of .24, and an item passed by 90% 
and failed by 10% has a variance of .09. The relation of item variance to , 
difficulty can be shown in another way. If 5 examinees in a group of 10 
pass an item and 5 fail (P. = q = .50), there are 25 differentiations or dis
criminations possible as each of the 5 "passers" is separated, from each of 
the 5 who fail (5 x)5 = 25). If 6 pass and 4 fail, there are 24 differentia
tions, if 8 pass and 2 fail, 16. The larger the variance of the item, there
fore, the greater the number of separations among individuals the test 
item is able to make. Other things being equal, items of moderate diffi
culty (40--50-60'1'0 passing) are to be preferred to those which are much 
easier or much harder. 

(2) ITEM INTERCORRELATIONS AND RANGE OF DIFFICULTY 

In item selection, not only must individual item difficulty be consid
ered, but the intercorrelations of the items of the test as well. It is hardly 
ever feasible to compute all of the item intercorrelations. For a test of only 

- 50X49 
50 items, for example, there would be 2 or 1225 tetrachoric r's or 

phi coefficients. If the items of a test all correlate +1.00, then a single 
item will do the work of all. At the other extreme, if all item correlations 
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are .00, the mean score of every examinee will tend to be about 1/2 of 
the total number of items for the following reason: when the items are 
independent (uncorrelated), the probability of passing any given item 
will depend upon its difficulty index. For the whole test (if items range 
from easy to hard) the probability would then be roughly 1/2 of all items. 
In mental tests, the intercorrelations among items are usually positive and 
fairly high, items close together in the scale correlating higher than items 
far apart. 

In the absence of precise knowledge concerning item correlation, it is 
impossible to say exactly what is the best distribution of item difficulties. 
There is general agreement among test makers, however, that (1) for the 
sharpest discrimination among examinees, items should be around 50% in 
difficulty; that (2) when a certain proportion of the group (the upper 
25910, for example) is to be separated from the remainder (the lower 
75% ), but comparisons within each group are of no special interest, diffi
culty indices should be close to 25%, i.e., the cutting point. Finally, (3) 
when item correlations are high (as is true in most educational achieve
ment tests), and the talent range wide (over several grades), difficulty 
indices may range from high to low. The normal curve can be taken as a 
guide in the selection of difficulty indices. Thus, 50% of the items might 
have difficulty indices between .25 and .75; 25% indices larger than .75, 
and 25% smaller than .25. An item passed by 0% or 100% has no differ-' 
entiating value, of course, but such items may be included in a test solely 
for the psychological effect. Difficulty indices within more narrow ranges 
may, of course, be taken from the normal curve. 

(3) CORRECTING DIFFICULTY INDICES FOR CHANCE SUCCESS 

It is important to try to estimate the number of examinees who get the 
right answer through correct knowledge or correct reasoning and to rule 
out answers which are based upon guesswork. In correcting for chance 

, success, we assume that (1) wrong answers_ are due to absence of know i
edge and that (2) to one who does not know the right answer, all of the 
response options are equally attractive. Under these assumptions, it is 
reasonable to expect that some of those who really did not know the right 
answer selected it by chance. A formula for correcting the difficulty index: 
of an item for chance success is the following: 

w 
p _ R - (k -1) 
c- N-HR 

(to correct a difficulty index for chance success) 

(92) 



RELIABILITY AND VALIDITY OF TEST SCORES • 365 

in which 

Pc = the percent who actually know the right answer 
R = the number who get the right answer 

W = the number who get the wrong answer 
N = the number of examinees in the sample 

HR = the number of examinees who do not reach the item (and hence do not 
try it) 

k = the number of options or choices 

To illustrate, suppose that a sample of 300 ~xaminees take a test of 100 
items, each item having 5 options. Suppose further that 150 answer 
item #46 correctly, that 120 answer it incorrectly, and that 30 do not 
reach the item and hence do not attempt it in the time limit. Instead of a 
difficulty index of .50, item #46 has a corrected difficulty index of .44. 
Thus 

120 
150 - (5 - 1) 

Pc= 300 - 30 

= .44 

The corrected value of the difficulty index is, to l?e sure, an approxima
tion; but it probably gives a more nearly true measure than does the 
experimentally obtained percentage. 

3. Item validity 

( 1) THE VALIDITY INDEX 

The validity index of an item (i.e., its discriminative power) is deter
mined by the extent to which the given item discriminates among exam
inees who differ sharply in the function (or fuilCtions) measured by the 
test as a whole. A number of methods have been devised for use in deter
mining the discriminative power of an item. But biserial correlation 
(p. 375) is usually regarded as the standard procedure in item analysiS. 
Biserial r gives the correlation of an item with total score on the test, or 
with scores in some independent criterion. The adequacy of other methods 
(some of them quite summary) is judged by the degree to which they 
are able to yield results which approximate those obtained by biserial 
correlation. 

One method of detennining validity indices, much favored by test 
makers, sets up extreme groups in computing the validity of an item. This 
procedure will be described here, as one of the best among several 
methods. First, th~ number who answer the item correctly in selected 
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upper and lower subgroups is found. Next, the discriminative power of the 
item-its consistency with total score on the test-is gauged by the corre
lation ('bi8) of the item and the whole test. The biserial, is read from a 
table like that shown in abbreviated form in Table 51. The procedure in 
detail is as follows: 

(1) Arrange the test papers in order of size for test score. Put the paper with 
the highest score on top. 

(2) Assume that we have 200 examinees. Count off the top 27% of papers 

fABLE 51 * Normalized biserial coefficients t of correlation as determined 
from proportions of correct responses in upper and lower 27 per
cent of the group 

PROPORTION 0" CORRECT RESPONSES IN THE UPPER 21 PER cENTf 

02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 70 14 78 82 86 90 94 91 
"i!02 00 19 30 37 43 48 51 55 58 61 63 66 68 70 72 73 75 17 79 80 82 84 86 88 91 02 
506 001119263136404441505356596164666871737678"81848S 06 
~10 00 08 15 21 26 30 34 38 41 45 48 51 54 51 60 63 65 68 71 14 71 81 86 10 
~14 00 07 12 18 22 21 31 34 38 42 45 48 51 54 57 60 63 67 70 74 78 84 14 
... 18 00 06 11 16 20 25 28 32 36 39 43 47 49 53 56 60 63 67 71 76 82 18 
":22 00 06 10 15 19 23 27 31 34 38 42 45 49 52 56 60 63 68 73 80 22 
11126 " 00 05 09 14 18 22 26 30 33 37 41 44 48 52 56 60 65 71 79 26 
il=30 00 04 09 13 11 21 25 29 33 37 40 44 49 53 57 63 68 77 30 
S34 00 04 09 13 17 21 25 29 33 31 41 45 49 54 60 66 75 34 III 
~38 00 04 08 13 16 20 25 29 33 37 42 47 51 57 64 73 38 
11:42 00 04 08 12 16 20 25 29 33 38 43 48 54 61 72 42 
"46 00 04 08 12 16 21 25 30 34 39 45 51 59 70 46 
!50 00 04 08 13 17 21 26 31 36 42 48 56 6S 50 
~S4 00 04 08 13 17 22 27 32 38 45 53 6~ 54 
eJ58 00 04 09 13 18 23 28 34 41 50 63 58 
=62 00 04 09 14 19 25 31 38 47 61 62 
!:i66 00 04 09 15 20 27 34 44 5e 66 
=70 00 05 10 16 22 30 40 55 70 
~74 00 06 11 18 26 36 51 74 
~78 - 00 06 12 21 31 41 78 
082 00 07 15 26 43 82 
~86 0008 19 3 86 
;::90 00 11 3( 90 

294 00 11 94 
~98 O( 98 .. 02 06 10 14 18 22 26 30 34 38 42 46 50 54 58 62 66 10 14 18 82 86 90 94 91 

o This table is abridged from J. C. Flanagan's table of normalized biserial coeffi
cients originally prepared for the Cooperative Test Service. It is included here with 
the generous permission of Dr. Flanagan and the Educational Testing Service of 
Prin~eton, New Jersey. This version is taken from Merle W. Tate, Statistics in Educa
tion (New York: The Macmillan Co., 1955), p. 364. Reproduced by permission. 

t D~cimal points are omitted. -
t If the proportion of correct responses in the lower 27 percent exceeds that in the 

upper, enter the table with the lower 27 percent proportion at the top and attach a 
negative sign to the coefficient. " 
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and the bottom 27%. {> This puts 54 papers in the first pile and 54 in the 
second. 

(3) Lay aside the middle 92 papers. These are used simply to mark off the two 
end groups. 

(4) Tally the number in the top group which 'passes each item on the test; 
and the number in the bottom group which passes each item. Convert 
these numbers into percentages. 

(5) Correct these percents for chance success. 
(6) Entering Table 51 with the percent of successes in the two groups, read 

the biserial T from the intersecting column and row in the body of the table. 
(7) Average the two percentages (top and bottom groups) to find the diffi

culty index of the item. 
",' 

The following example will illustrate, for 5 sample items, how difficulty 
indices and validity indices are computed. 

Example (6) The data below were obtained from 5 items of an 
achievement test (multiple choice, 4 options). Find the difficulty and 
validity indices for each item. 

% right in % right in Difficulty t Validity t 
the top 27% the bottom 27% 

Index Index 
Item # ( corrected) ( corrected) 

5 73 58 .65 .17 
21 61 38 049 .23 
36 50 50 .50 .00 
54 43 36 .39 .07 
75 36 8 .22 040 

The difficulty index of each item is found by averaging the percents 
correct in the upper and lower groups. This percentage is approximate, 
but is accurate enough for most purposes a-nd has the great advantage of 
easy computation. The discriminative power (validity index) of each 
item is read directly from Table 51. Thus, Tbis for the split 73-58 (item 
#5) and test score is .17; for the split 61-38, Tbis is .23, and so on. 

The size of an accept\lble validity index will depend upon the length of 
the test, the range of the difficulty indices, and the purposes for which the 

o It has been shown that the discriminative power of an item is most accurately 
determined when item analysis is based on the top and bottom 27% rather than some 
other percentage of the distribution. 

t It would be more accurate to determine the difficulty index from the whole 
_ sample. 

t These indices were found by interpolation in the table; but the increase in accll
racy in so doing is hardly worthwhile. 

'4 



368 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

test is designed. If one has analyzed 200 items and wants a test of 100 
items, he could take the 100 most valid items in terms of their validity 
indices. Some valid items according to this criterion might be discarded if 
their difficulty indices were unsatisfactory. In the example above, items 
#36 and 54 have no validity; item #75 is highly valid; and items #5 
and 21 are fairly satisfactory. As a general rule, items with validity indices 
of .20 or more are regarded as satisfactory; but items with lower indices 
will often serve if the test is long. Items having zero validity are, of course, 
useless. These items and items haVing negative validity (a larger percent 
right in the bottom group than the top) must be discarded; or they must 
be carefully examined for ambiguities, inaccuracies and other errors. 

An experimentally excellent but somewhat laborious method of validat
ing a test is to remove the obviously poor items, and compute the corre
lation of the remaining total scores (in tentative form) and the criterion. 
Then again remove the less valid items and recompute the criterion cor
relation, repeating the process until diminishing returns appear. In one 
study, a test of 86 items of high validity had a better correlation with the 
criterion than did the whole set of 222 items. Much evidence showing the 
effects of item analysis can be cited.o 

The fbi. read from Table 51 is a biserial, not a point biserial f (p. 380). 
This coefficient is less accurate than~ is the usual fbiB as it u~ilizes only 
about 1/2 of the test data-the middle 460/0 are not used. The loss of accu
racy in these validity indices is of little consequence when they are used 
comparatively; and the ease of computation is a practical advantage. 

(2) CROSS VALIDATION 

The validation of a completed test should always be computed on a new 
sample-i.e., one different from that used in the item analysis. This process 
is called "cross validation." The validity of a test, when computed from 
the "standardization sample," will of necessity be exaggerated, as the 

: items are so selected as to maximize differences between high and low 
scorers. Furthermore, the validity coefficient of the test will be increased 
by chance factors peculiar to the standardization sample. 

The effects of chance factors upon validity can be shown in the follow
ing way: Suppose that the items on an aptitude test, specially designed 
for retail salesmen, have been so selected as to yield satisfactory validity 
indices in terms of the top and bottom 27%'s of a "standard" sample of 
sales personnel. Many irrelevant factors are likely to be present in this 
group, some of which will be correlated with scores on the test. Such 
factors will often be correlated with responses to the items in one extreme 

o Anastasi, A., op. cit., Chap. 7. 
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group more often than in the other. Unless the same incidental factors are 
present in a new group of retail salesmen to the same degree (which is 
not likely), the validity coefficient of the final (completed) test will be 
lower in the new groups than in the original standardization group. Va
lidity correlations tend always to be spuriously high in the standard group, 
thus making cross validation necessary. 

PROBLEMS 

1. The reliability coefficient of a test is .60. 
(a) How much must this test be lengthened in order to raise its. self

correlation to .90? 
(b) What effect will doubling the test's lengtlr have on its reliability? 

tripling the test's length? _ 
2. A test of 50 items has a reliability coefficient of .78. What is the reliability 

coefficient of a test 
(a) having 100 items comparable to those of the original test? 
(b) having 125 items comparable to those of the Original test? 

3. A test of 75 items has a Uf of 12.35. The !'pq = 16.46. What is the 
reliability coefficient by the method of rational equivalence? 

4. Estimate the reliability of the test in (3) above by formula (81) if the 
M=40. 

5. A test is administered to 225 students with the following results: 
M = 62.50, U = 9.62 and rlI = .9l. 
(a) If Bob Jones makes a score of 50 on this test, what is his estimated 

true score and its standard error? 
(b) What is the standard error of an obtained score of 50? 
(c) Compare the .95 confidence intervals for the true score as determined 

from the methods used in (a) and (b). 
6. A given test has a reliability coefficient of .80 and CT of 20. 

(a) What is the index of reliability? 
(b) What is the SE of an obtained score on this test? 
(c) What is the estimated reliability of this test in a group in which 

CT is 15? 
(d) What proportion of the variance of scores in this test is attributable to 

"true" variance?· 
7. Show that when (a) the reliability coefficient of a test is zero, the stand

ard error of a score: equals the SD of the test; and that (b) when the 
reliability coefficientds 1.00, the SE,e equals zero. 

8. A test of mathematics correlates .52 with a test of mechanical aptitude. 
The reliability coefficient of the mathematics test is .82 and of the 
mechanical aptitude test is .76. 
,( a) What is the correlation between the two tests when both have been 

correcte_d ~r chance errors? 
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(b) What is the maximum correlation which the mathematics test is 
capable of yielding? 

(c) What is .th~ correlation between fallible scores in mathematics and 
true scores in mechanical aptitude? 

9. A test of 40 items has a validity coefficient of .45 with a criterion, and a 
reliability coefficient of .75. If the test js lengthened to 120 items compute 
(a) the new validity coefficient 
(b) the new reliability coefficient. 

10. A group of 150 students take a test of 50 items, each item having 4 
choices. Suppose that 80 answer item #34 correctly, that 50 answer it 
incorrectly, and that 20 do not try the item. What is the difficulty index 
of the item? 

11. Show that if 50 examinees in 100 pass an item and 50 fail more individual 
differences are brought out than when different numbers pass and fail. 

12. Given the following data for 5 items on an aptitude test, multiple choice, 
4 options. The percentages have been corrected for chance success. Com
plete the table. 

Item No. % right in upper 
27% 

% right in lower 
, 27% 

I 

1. 
2. 
3 . 
4 . 
5. 

6. 
8. 
9. 

10. 
12. 

23 
34 
45 
51 
63 

81 
62 
56 
50 
47 

54 
46 
23 
50 
58 

ANSWERS 

(a) 6 times (b) doubling, .75; tripling, .82 
(a) .88 (b) .90 
. 90 
. 89 
(a) 51.12; 2.69 
(b) 2.89 
(c) 45.85 to 56.39; 44.34 to 55.66 
(a) .89 (b) 9.0 (c) .64 
(a) .66 (b) .91 (c) .60 
(a).49 (b) .90 
.48 

(d) 80% 

Difficulty indices: .67, .54, .39, .52, .53 
Validity indices: .31, .16, .35, .00, -.11 

Diff'y 
Index 

Validity 
Index 



CHAPTER 14 

FURTHER METHODS 
OF CORRELATION 

In Chapter 6 we described the linear, or product-moment correlation 
method, and in Chapter 7 showed how, by means of r and the regression 
equations, one can "predict" or "forecast" values of one variable from a 
knowledge of the other. Test scores, as we have seen, represent a series 
of determinations of a continuous variable taken along a numerical scale. 
The correlation coefficient is valuable to psychology and education as a 
measure of the relationship between test scores and other measures of 
performance. But many situations arise in which the investigator does not 
have scores and must work with data in which differences in a given 
attribute can be expressed only by ranks (e.g., in orders of merit); or by 
classifying an individual into one of several descriptive categoriet This 
is especially true in vocational and applied psychology and in the ReId of 
personality and character measurement. Again, there are problems in 
which the relationship among the measurements made is nonlinear, and 
cannot be described by the product-moment r. In all of these cases other 
methods of determining correlation must be employed; and the purpose of· 
this chapter is to develop some of the more useful of these techniques. 

I. CORRELATION FROM RANKS 

Differences among individuals in many traits can often be expressed 
by ranking the subjects in 1-2-3 order when such differences cannot be 
measured directly. For; example, persons may be ranked in order of merit 
for honesty, athletic ability, salesmanship, or social adjustment when it is 
impossible to measure these complex behaviors. In like manner, various 
products or specimens, such as advertisements, color combinations, com
positions, jokes and pictures, which are admittedly hard to evaluate 
numerically may ~e put in order of merit for aesthetic quality, beauty, 
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humor, or some other characteristic. In computing the correlation between 
two sets of ranks, special methods which take account of relative position 
have been devised. These techniques may also be applied to measUre
ments (i.e., to scores) when these have been arranged in order of merit. 
If we have only a few scores-under 25, for example-it is often advisable 
to rank these scores and to compute the correlation coefficient p (read 
rho) by the rank-difference method, instead of computing r by the longer 
and more laborious product-moment method. Whenever N is small, the 
rank-difference method will give as adequate a result as that obtained by 
finding r; and p is much easier to compute. 

I. Calculating p from ranked data 

Table 52 shows how to compute the correlation from rank-differences. 

TABLE 52 To illustrate the calculation of p (rho) 

(1) (2) (3) (4) 

Traits Judge X Judge Y D D2 

A 2 1 1 1 
B 1 2 -1 1 
C 4 5 -1 1 
D 3 6 -3 9 
E 6 4 2 4 
F 5 3 2 4 

0 20 

6 X 20' 
p = 1 - '6 X 35 = .43 (93) 

.' Six traits (A, B, C, D, E, F) believed to be important in the work of an 
executive have been ranked in order of -merit by Judges X and Y. In col
umn (S), the differences (D) between each pair of ranks is entered, 
Judge Y's ranks being subtracted from those of Judge X. The sum of the 
D's is zero. This calculatfon is of no value per se, but is a check on the 
computation to this point. Each D is now squared in column (4), ~nd the 
column is summed to give ~D2. The coefficient of correlation, p, is given 
by the formula: 

6 X !,D2 
P = 1 - N(N2 _ 1) (93) 

(rank-difference correlation coefficient, p) 
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in which 

p = coefficient of correlation from rank differences 
!,D2 = sum of the squares of differences in rank 

N = number of pairs 

Substituting for lD2 = 20, and N = 6, we have that p = .43. 

2. Comparing p and r: the question of tied ranks 

If the ranks in Table 52 are treated as scores, we may calculate r 
directly, using formula (30) in which scores are taken as deviations from 
an assumed mean of zero. Columns (3), (4) and (5) give the squares of 
the Ks, the squares of the Y's, and the cross products XY. 

(1) (2) (3) (4) (5) 

Traits Judge X Judge Y X2 y2 Xy 

A 2 1 4 1 2 
B 1 2 1 4 2 
C 4 5 16 25 20 
D 3 6 9 36 18 
E 6 4 36 16 24 
F 5 3 25 9 15 

21 21 91 91 81 

Substituting in (SO), we have th.at 

r= 
(6 X 81) - (21 X 21) 

\/[(6 X 91) - 2J2J1f6 X 91) - 212] 

= .43 

which checks the coeffiCient, p, given by formula (93). When ranks are 
treated as scores, and there are no ties, p = r. But when there are tied 
positions, a correction sl,lould be added to p to have it equal r exactly. This 
correction is small I) unless the number of ties is large and may usually be 
safely ignored and p taken as a close approximation to-r. Table 53 shows 
how to handle ties in ranked data. The problem is to find the relationship 
between length of service and selling efficiency in a group of 12 salesmen. 
Tqe names of the men are listed in column (1), and in column (2) 0PJ?o~ 
site the name of each man is the number of years he has been in ~the 
service of the company. In column (S) the men have been ranked in 

o See Edwards, A. L.. Statistical Methods for the Behavioral Sciences (New York: 
Rinehart, .1954), pp.427-429. 
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,/TABLE 53 The rank.difference method when there are tied ranks 

(1) (2) (3) (4) (5) (6) 

Years of Order of Order of \ Diffs. Diffs. 
Salesmen 

Service Merit Merit in Ranks Squared 
(service) ( efficiency) D D2 

Walsh 5 9.5 11 -1.5 2.25 
Stevens 2 11.5 12 - .5 .25 
Brown 10 2.0 1 1.0 1.00 
Perry 8 3.5 9 -5.5 30.25 
Johnson 6 7.0 8 -1.0 1.00 
Cohen 6 7.0 5 2.0 4.00 
Williams 6 7.0 2 5.0 25.00 
Smith 12 1.0 3 -2.0 4.00 
Shapiro 2 11.5 10 1.5 2.25 
Ferrari 7 5,0 7 -2·0 4.00 
Hastings 5 9.5 4 5.5 30.25 
Mitchell 8 3.5 6 -2.5 6.25 

0.0 110.50 

_ 1 _ 6 X 110.50 
p - 12 X 143 (93)' 

= .61 

order of merit in accordance with their length of service. Smith who has 
been longest with the company is ranked :#= 1; Brown whose service is 
next longest is ranked #2; and so on down the list. Note that Perry and 
Mitchell have the same length of ~ervice, and that each is ranked 3.5. 

,Instead of ranking one man 3 and the other 4, or both 3 or both 4, we 
simply average the ranks and give each man a rank of 3.5. Johnson, 
Cohen, and Williams all have 6 years of service. Since they occupy ranks 
6, 7 and 8, each is given the median rank of 7; and Walsh and Hastings 
who follow in the 9th and 10th places are each ranked 9.5. Finally, 
Stevens and Shapiro who are 11th and 12th in order, are both ranked 11.5. 

The difference between each pair of ranks is entered in column (5), and 
in column (6) each D is squared. The sum of the column is 110.50. Sub
stituting for ~D2 and for N, we have that p = .61. If we compute r by 
formula (30) as was done in Table 52, its value also is .61 (to two deci· 
mals ). The agreement between p and r is to the second decimal despite 
the number of ties in the service rankings. 
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3. Testing the significance of p . 

The stability of an obtained p can be tested against the null hypothesis 
by means of Table 25. The number of degrees of freedom is (N - 2). For 
Table 52, we find that for 4 df a coefficient of correlation must be .81 to be 
significant at the .05 level. It is clear, therefore, that our p of .43 is not 
significant. When the df are 10, an r of .58 is significant at the .05 level, 
and an r of .71 significant at the .Ol level. Hence, in Table 53, the p of .61 
is just significant at the .05 level. 

4. Summary on rank-difference correlation 

The product-moment method deals with the size of the measures (or 
scores) as well as with their positions in the series. Rank differences, on 
the other hand, take account only of the positions of the items in the 
series, and make no allowance for gaps between adjacent scores. Indi
viduals, for example, who score 90, 89 and 70 on a test would be ranked 
1, 2, 3 although the difference between 90 and 89 is much less than the 
difference betweeen 89 and 70. Accuracy may be lost in translating scores 
over into ranks, especially when there are a· number of ties. In spite of its 
mathematical disadvantages, p provides a quick and convenient way of 
estimating the correlation when N is small, or when we only have ranks. 
With larger N's, the rank-difference coefficient is still useful for explora
tory purposes. 

II. BISERIAL CORRELATION 

In many problems it is important to be able to compute the correlation 
beween traits and other attributes when the members of the group can 
be measured (given scores, for example) in the one variable, but can be 
classified into only two categories in the second or dichotomous variable. 
(The term "dichotomous" means "cut into two parts.") We may, for 
example, wish to know the correlation 'Qetween M.A. and "social adjust
ment" in a group of nursery children, when our subjects are measured in 
the first trait, but are simply classified as "socially adjusted" or "socially 
maladjusted" in the second. Other instances of twofold classification with 
reference to some attribute are athletic-nonathletic, radical-conservative, 
"drop outs" and "stay ins" in school, socially minded-mechanically 
minded, seventh grade and above-below seventh grade. When we can 
assume that the trait in which we have made a two-way split would be 
found to be continuous and normally distributed were more information 
available, we may' compute a biserial r between the set of scores and two-

~ 
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category groupings like those listed above. Under the conditions specified, 
this biserial r is an estimate of. the product-moment r (see also p. 382). 

Many test questions and various sorts of items are scored to g!ve two 
responses: for example, problems are marked Passed or Failed, statements 
True or False, personality inventory items Yes or No, interest items Like 
or Dislike, and so on. When a two-category split cannot be regarded as 
representing an underlying normal distribution upon which an arbitrary 
division has been imposed, but is in fact two discrete groupings, the point 
biserial r is the appropriate measure of correlation. 

I. Biserial r 

(1) CALCULATION OF BISERIAL r 
The calculation of biserial r is shown in Table 54. The data are a dis

tribution of scores on a Music Appreciation Test achieved by 145 high
school seniors. The total distribution of 145 scores has been broken down 

TABLE 54 To illustrate the computation of biserial r. The two subdistributions 
represent the scores achieved on a Music Appreciation Test by 
students with and without training in music 

Scores 

85-89 
.80-84 
75-79 
70-74 
65-69 
fJO-64 
'55-59 

(1) (2) 
Training No-training 
Group Group 

f f 

(3) 

Total 
f 

5 6 11 
2 16 18 
6 19 25 
6 27 33 
1 19 20 
o 21 21 
1 16 17 

Nl = 21 N2 = 124 N = 145 

77.00 - 70.39 (.145 X .855) 
'Ilia = 8.80 X .228 (94) 

= .41 

,(\1'.145 X .855 -(.41)2) (95) 
.228 _ fIr . = -'-_______ -L-

bt8 VI43 
=.11 

MT = 71.35, mean of all 145 
scores 

(T = 8.80, SD of all scores 
Mp = 77.00, mean of trained 

group 
Mq = 70.39, mean of un

trained group 
p = .145, proportion in 

Group No.1 
q = .855, proportion in 

Group No.2 
u = .228, height of ordinate 

separating .145 anq 
.855 in a unit normal 
distribution (Table 
56) 
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into two subdivisions, the first made up of 21 students who had training in 
music [column (1) 1, and the second of 124 students without any formal 
musical training [column (2)]. The problem is to nnd whether there is a 
correlation between test score and previous training in music. Training in 
music is dichotomized or split into two categories, but it may reasonably 
be thought of as a graduated variable ranging from high level at the one 
extreme to complete lack of training at. the other. The nrst column of 
Table 54 gives the intervals of the test distribution. Column (1) is the 
distribution of scores achieved by the 21 students with training; and 
column (2) is the distribution of scores made by the 124 students with
out training. The sum of the fs for the two distributions gives the total 
distribution in column (3). Computation of biserial r may be outlined 
conveniently in the following steps: 

Step I 

Compute Mp , the mean of the group of 21. Also, compute Mq, the mean 
of the untrained group of 124. In our example, Mp = 77.00 and Mq = 70.39. 

Step 2 

Compute ()" for the whole distribution of 145 cases. In Table 54, 
Utot = 8.80. 

Step 3 

There are 21 or 14.5% of the sample in the trained group; and 124 or 
85.5% in the untrained group. Assuming a normal distribution in musical 
training, upon which an arbitrary cut has been imposed at a point 35.50/0 
above the mean, we have the situation pictured below: 

Untrained. 

~ 
FIG. 65 
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The height of the ordinate of the normal curve (u) at the division point, 
i.e., at 35.5%, may be found from Table 56. This table gives the heights 
of the ordinates in a normal distribution of unit area, that is, with 
N = 1.00, M = .00, and u = 1.00. Interpolating halfway between .35 and 
.36 in Table 56, we get a u-value of .228. 

Step 4 

Having computed Mp, M q, u, p and q, we find biserial r by substituting 
in the formula (94): 

M - M nn 
rbi8 = p q X c:.::L 

U U 
(94) 

(biserial coefficient of correlation or biserial r) 

in which 

M p = the M of the group in the 1st category-usual1y the group showing 
superior or desirable characteristics 

Mq = M of the group in the second category or split 
u = SD of the entire group 
p = proportion of the entire group in Category 1 
q = proportion of the entire group in Category 2 (q = 1 - p) 
u = height of the normal curve ordinate dividing the two parts, p and q. 

In Table 54 rbiB = .41, indicating as might be expected a fairly strong 
association between training and test score on the Music Appreciation 
Test. Figure 66 shows schematically how the entire group is divided into 
two parts on the basis of training. The distance between the means of the 
two subgroups (Mp and Mq) is a measure..of the effect of the split, i.e., of 
the effect of the dichotomy. 

(2) THE STANDARD ERROR OF BISERIAL r 
Provided neither p nor q is very small (less than .10 to be on the safe 

side) and that N is large, formula (95) will give a close approximation to 
the standard error of biserial r: 

(~-r2biB) 
crrbi• = VN - (95) 

(standard error of biserial r when neither p nor q is less than .1 0 and 
N is large) 

The SE of the rbi. of .41 found in Table 54 is .11 by formula (95). To 
test the significance of this rbia in terms of its S~, we assume the sampling 

\ 
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Who!eGroup Group 1 Group 2 

FIG. 66 To show relation between total group and two subgroups in biserial 
correlation. The distance between the means of Groups I and 2 is a 
measure of correlation. When the two means are equal, biserial r 
is zero. 

distribution of Tbi. to be normal around the population r, and SErb!' to be 
the SD of this sampling distribution. The .99 confidence interval for the 
population rbis is then from .13 to .69 (i.e., Al ± 2.58 X .11). It appears 
that we can be quite confident of a positive relationship between training 
and the music test of at least .13, and probably the relation is much 
higher. A comparison of formula (95) with the classical formula for the 
SE of the product-moment r (p. 198) will show that SErbiB is larger than 
SEr and that it becomes increasingly larger as the difference between p 
and q widens: for example, from a split of p = .50 and q = .50 to one of 
p = .95 and q = .05. Formula (95) provides only an approximate meas
ure of the stability of TbiB as the exact sampling distribution of biserial r is 
not known. 

(3) AN ALTERNATIVE FORMULA FOR BISERIAL r 
There is another f<;>rmula for biserial r which is often more convenient 

to use than is formula (94). This is 

Mp-Mp p 
rbia = X-

CT U 
(96) 

(biserial coeOicieut of correlation in terms of MT , the mean of the total s4mpZe) 
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in which MT = the M of the entire group and Mil' IJ', P and u have the 
same meaning as in formula (94). 

Substituting in formula (96), the values of MT , Mp, IJ', P and u found in 
Table 54 we have 

. _ 77.00 - 71.35 .145 = 41 
rll", - 8.80 X .228 . 

which checks Ollr previous result. 
Formula (96) is especially well suited to those problems in which sub

groups having different characteristics are drawn from some larger group, 
the mean of the larger group, M T , remaining the same. 

( 4) SUMMARY ON BISERIAL r 
Biserial r gives an estimate of the product-moment r to be expected 

for the given data when certain assumptions have been met. These are 
( 1) continuity in the dichotomized trait, (2) normality of distribution, 
underlying the dichotomy, (3) a large N, and (4) a split that is not too 
extreme (the closer to .50 the better). Still further limitations to the use 
of biserial r should be noted. Biserial r cannot be used in a regression 
equation. This coefficient has no standard error of estimate, and the score 
predicted for all of the members of a group is simply the mean of that 
category. Biserial r is not limited as is r to a range of ±l.OO, rendering 
comparisons with other coefficients of correlation difficult. 

2. The point biserial r 

When items are scored simply as .1 if correct and 0 if incorrect, that is, 
as right or wrong, the assumption of ~ormality in the distribution of right-· 
wrong responses is unwarranted. In such cases the point biserial r rather 
than biserial r is appropriate. Point biserial r assumes that the variable 
which has been classified into two categories can be thought of as concen
trated at two distinct points along a graduated scale or continuum. Exam
ples of true dichotomies are male-female, living-dead, loyal-disloyal. Other 
traits or characteristics which constitute what are virtually genuine 
dichotomies (when the criteria are exact) are delinquent-nondelinquent, 
psychotic-normal, color blind-normal. 

The formula for the point biserial r is 

(97) 

(point biserial r, a coefficient of correlation) 
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in which Mp and Mq are the means of the two categories, p is the propor~ 
tion of the sample in the first group, and q is the proportion in the second 
group, and (T is the SD of the entire sample (p. 376). 

The point biserial r is especially useful in the analysis of the items of a 
test, i.e., in item~test correlations. Table 55 shows the kind of data used in 

TABLE 55 Calculation of point biserial r. To illustrate its value in item analy~ 
sis. (I = item passed, 0 = item failed.) 

(1) (2) (3) (4) (5) (6) 
Test 

Students Criterion Item #13 
(X) (Y) X2 y2 XY 

1 25 1 625 1 2.5 
2 23 1 529 1 23 
3 '18 0 324 0 
4 24 0 576 0 
5 23 1 529 1 23 
6 20 0 400 0 
7 19 0 361 0 
8 22 1 484 1 22 
9 21 1 441 1 21 

10 23 1 529 1 23 
11 21 0 441 0 
12 20 0 400 0 
13 21 1 441 1 21 
14 21 1 441 1 21 
15' 22 1 484 1 22 

Sums: 323 9 7005 9 201 

Nl (number passing) =9 
No (number failing) =6 

201 
Ml =9=22.33 

122 p=.60 
M2 =(f=20.33 q =.40 

323 
Mtot = Is = 21.53 

22.33 - 20.33 
rpbis = 1.82 y'.60 X .40 (97) 

(TtQt = 1.82 =.54 
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item analysis, except that in a real item analysis the sample would be 
very much larger and more than one item would be analyzed. For con
venience in demonstrating the method, there are only 15 subjects in the 
group. These are listed in column (1) by number. Column (2) gives the 
total scores achieved by these subjects on a test (used as the criterion); 
and in column (3) the response of each student to item # 13 on the test 
is shown. A 1 means that the item was passed, a 0 that it was failed. Col
umns (4), (5) and (6) are used later in the computation of the product
moment r, and are not needed for the computation of the point biserial r. 

The computations at the bottom of the table are utilized in finding rpbiS• 

Nt. the number who got the item right, is 9; and No, the number who got 
the item wrong, is 6. The mean of those passing or M 1 is 201/9 or 22.33; 
and the mean of those failing or M2 is 122/6 or 20.33. The mean of the 
entire sample is 21.53; and the SD of the entire sample is 1.82. The pro
portion passing (p) is .60 and the proportion failing (q) is 040. Substitut
ing in (97) we have that 

22.33 - 20.33 
rpM. = 1.82 Y·60 X 040 (97) 

=.54 

and it seems clear that item # 13 is substantially correlated with the cri
terion-is passed by high scorers more often than by low scorers. Items 
like # 13 are good items, whereas items which correlate negatively or zero 
with the criterion are poor items. 

The point biserial r is a product-moment r. To show this, we have com
puted r for the data of Table 55 by means of the formula 

(N'!.XY) - (:!.X·:!.Y) 
r = (see p. 143) 

Y[(N:!.Y2) - (:!.Y)2][(N:!.X2) - (:!.X)2] 

Substituting the necessa.ry data from- Table 55 we have that 

r = (15 X 201) - (323 0 9) = .54 
y[(15 X 9 - (9)2][(15 X 7005) - (323)2] 

thus checking the r pbi •• 

( 1) SIGNIFICANCE OF POINT BISERIAL r 
A point biserial r may be tested against the null hypothesis with the aid 

of Table 25. There are (N - 2) degrees of freedom in the correlation 
table. To test the rpbiB of .54 obtained from Table 55, we enter Table 25 
with 13 df to find that r must be .51 in order to be Significant at the .05 
level, and .64 to be Significant at the .01 level. As our r of .54 just exceeds 
.51, it can be taken to be Significant, though not highly so. 

'" 
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(2) COMPARISON OF BISERIAL r AND POINT BISERIAL r 
On most counts rpbiB is a better-more dependable-statistic than fbiB' The 

point biserial r makes no assumptions regarding the form of distribution in 
the dichotomized variable; its range is -+-1.00; it may be used in a regres
sion equation; and its standard error can be determined exactly. Point 
biserial r is always lower than rbis for the same two variables, but this char
acteristic is not especially important, as both coefficients are rarely com-

77.00 - 70.39 
puted from the same data. In Table 54 rpbi• = 8.80 X '.1'.145 X .855 

or .26 as against a fbi. of .41. In Table 55 where f pbi• = .54, fbiB is .68. The 
point biserial r is a product-moment r and can be checked against r, as 
we saw in Table 55. This is usually not possible with rbis. In favor of rbis, 

TABLE 56 Ordinates (u) for given areas measured from the mean of a nor
mal distribution with total area of 1.00 

Area from the Mean 
.00 
.01 
.02 
.03 
.04 
.05 
.06 
.07 
.08 
.09 
.10 
.11 
.12 
.13 
.14 
.15 
.16 
.17 
.18 
.19 
.20 
.21 
.22 
.23 
.24 
.25 

Ordinates (u) 
.399 
.399 
.398 
.398 
.397 
.396 
.394· 
.393 
.391 
.389 
.386 
.384 
.381 
.378 
.374 
.370 
.366 
.362 
.358 
.353 
.348 
.342 
.337 
.331 
.324 
.318 

Area from the Mean 
.26 
.27 
.28 
.29 
.30 
.31 
.32 
.33 
.34 
. 35 
.36 
.37 
.38 
.39 
.40 
.41 
.42 
.43 
.44 
.45 
.46 
.47 
.48 
.49 
.50 

Ordinates (u) 
.311 
.304 
.296 
.288 
.280 
.271 
.262 
.253 
.243 
.233 . 
.223 
.212 
.200 
.188 
.176 
.162 
.149 
.134 
.119 
.103 
.086 
.068 
.048 
.027 
.000 
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however, it should be said that a normal distribution in the split variable 
is often a more plausible hypothesis than is the dubious assumption of a 
genuine dichotomy. 

Biserial T and point biserial T are both useful in item analysis, but Tbi8 

is ordinarily not as valid procedure (nor as defensible) as is T Pbis' The 
coefficient Tbi8 has the distinct advantage over Tpbis in that tables are avail
able from which we can read values of Tbi8 qUickly and with sufficient 
accuracy for most purposes. All we need to know (p. 367) are the per
centages passing a given item in selected upper and lower groups. 

Ill. CORRELATION FROM FOURFOLD TABLES 

I. T etrachoric r 

We have seen in the preceding section that when one variable is con
tinuous and is expressed as test scores, and the other variable is dichoto
mous or in a twofold classification, biserial T or point biserial r provides 
an adequate measure of relationship between the two. An extension of the 
problem of finding the correlation between categories, to which the bi
serial method is not applicable, presents' itself when both variables are 
dichotomous. We then have a 2 X 2 or fourfold table, from which a variety 
of the product-moment r, called tetrachoric T, may be computed. Tetra
choric T is especially useful when we wish to find the relation between two 
characters or attributes neither of which is measurable in scores, but both 
of which are capable of being separated into two categories. If we want to 
find the correlation between school attendance and current employment, 
for example, persons might first b.e classified' into those who have gradu
ated from high school and those who have not; and classified a second 
time into those who are presently' employed and those who are unem
ployed. Or, if we wish to discover the relationship between intelligence 
and social maturity in first-graders, children might be classified as above 
or below average in intelligence, on the one hand, and as SOcially mature 
or socially immature, on the other. Tetrachoric correlation assumes that 
the two variables under study are essentially continuous and would be 
normally distributed if it were possible to. obtain scores or exact measures 
and thus be able to classify both variables into frequency distributions. 

(1) CALCULATION OF TETRACHORIC r 
The diagrams belO\~ represent schematically the arrangement of a four

fold table. In the first table, entries are frequencies; in the second, pro
portions. 
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-x-
+ 

+ b a (a + b) or p 
y 

d c (c+d) orq 

B+D A+C if ~ 

Both variables, X and Y, are classified into two categories, marked + 
and -. Entries in cell A are + +, entries in D - -, so that concentration 
of frequencies into these two cells means close agreement and positive cor
relation. Concentration of entries in Band C (- + and + -) imply dis
agreement and negative correlation. For example, if X and Y represent two 
items on a test to be answered Yes or No, a clustering of tallies in cells A 
and D (Yes-Yes and No-No) means that the two items are positively 
correlated; a clustering of entries in Band C (No-Yes and Yes-No) that 
correlation is negative. Equal numbers of frequencies in each of the 4 cells. 
means that there is no relationship and the correlation is zero. In the sec
ond diagram, a, b, c, and d are proportions so that a + b + c + d = 1.00. 

The full equation for tetrachoric T is algebraically complex, and requires 
the solution of a quadratic equation in order to compute T. Fortunately, 
there are several useful approximations to Tt which ·are sufficiently accu
rate for most purposes; hence, the long formula will not be reproduced 
here. When two variables X and Yare divided close to the medians of 
each, so that (A + B) and (C + D) are virtually equal, and (B + D) 
and (A + C) also are nearly equal, the follOWing equation will yield a 
goo~ approximation to rt: 

(
1800 X VRC) rt = cos . 
VAD+V1JC 

(98) 

(approximate formula for tetrachoric r) 

in which A, B, C and D are frequencies as shown in the first diagram 
above. The value of tetrachoric r is read from Table J which gives the 
cosines of angles from 0° to 90°. The sign of Tt is positive when the AD 
entries (agreements) exceed the BC entries (disagreements), and nega
tive when the BC entries exceed the AD. When BC is greater than AD, 
put y'A15 in the numerator instead of vrrc. When correlation is negative, 
the minus sign is affixed by the experimenter. 

Table 57 illustrates the computation or Tt. The problem is to find 
whether a larger number of successful than unsuccessful salesmen tend to 

4 
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TABLE 57 To illustrate the calculation of '1 (J 00 salesmen) 

X Variable 

Unsuccessful 

Socially Well 25 
Adjusted (B) . 

Socially Poorly 30 
Adjusted (D) 

Totals 55 
(B + D) 

't = cos (' 180
0 

X v'BC) 
VAi5+VtJC 

= cos ( 180
0 

X y'25O ) 
y'I05O + y.25O 

Successful 

35 
(A) 

10 
(C) 

45 
(A+ C) 

= cos 59 0 From Table J't = .52 , 

Totals 

60 
(A+ B) 

40 
(C +D) 

N= 100 
(A+ B + C + D) 

be "socially well adjusted." The X variable is divided into two categories 
"successful" and "unsuccessful"; and the Y variable is divided into two 
categories "socially well adjusted" and "sqcially poorly adjusted." The 
sums of the rows show that 60 salesmen (A + B) out of the sample of 
100 are classed as socially adjusted; and that 40 salesmen (C + D) are 
described as poorly adjusted SOcially. Substituting for A = 35, B == 25, 
C = 10 and D = 30 in formula (98) we have that 

't == cos ( 
1800 X y1250 ) 
vm50+~ 

== cos 59 0 

From Table J the cosine of an angle of 590 is found to be .52 and, accord
ingly, ft = .52. A very simple approximatif?n to ft can be found by first 
dividing AD by BC. Then, entering Table K with this ratio, we read ft 
directly. In the present example, AD/BC = 1050/250 or 4.20. And from 
Table K the corresponding f, is .51, checking the result obtained from 
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formula (98). If BC is greater than AD, the ratio for use in Table K is 
BC / AD and the correlation is negative (disagreements exceed agree
ments ). The experimenter affixes the minus sign. 

Table 58 shows how ft may be used in the evaluation of a test. The 
problem is to find whether a test of deductive reasoning (a syllogism 

TABLE 58 T etrachoric r in test evatuation (125 college juniors) 

X Variable 

Nonscience Science Totals 
Majors Majors 

Above Test 30 44 74 -
Mean (B) (A) (A + B) 

Below Test 36 15 51 
Mean (D) (C) (C + D) 

66 59 125 Totals 
(B+D) (A+ C) (A + B+C + D) 

( 
1800 X yI450 ) 

ft = cos (\/1584 + y145O) 

= cos 630 From Table J f t = .45 

test) will differentiate 59 college juniors majoring in science from 68 
juniors majoring in literature and history (nonscience). The X variable is 
divided into science majors and non science majors; the Y variable into 
those above and those below the mean of the test (the mean established 
by the group as a whole). It should be noted that X is a true dichotomy, 
whereas Y is a continuous variable, arbitrarily divided into two parts. 
Substituting for A = 44, B = 30, C = 15 and D = 36 in formula (98) we 
have that 

( 
1800 X y'451) ) 

f t = cos yfI584 + y'451) 
=63 0 

and from Table J the cosine of.an angle of 630 is .45, so that ft = .45. This 
ft can be checked by dividing AD by BC and going to Table K. Since 

4 
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AD = 1584 and BC =: 450, AD/BC = 3.52. From Table K we get an rt of 
.46 (to two decimals). As AD is greater than BC, rt must be positive. 

( 2) RESTRICTIONS TO. THE USE OF FORMULA (98); USE OF COMPUTING 

DIAGRAMS 

Formula (98) and the AD/BC ratio work well when N is large and 
when the splits into X and Yare not too far removed from .50-fall, for 
example, between .40 and .60. For extreme cuts in X or in Y or in both 
(e.g., .95-.05, or .90-.10) neither formula (98) nor the AD /BC ratio 
gives accurate estimates of rt and neither can be recommended. In 
Table 57, the proportions (A + B) and (A + C) are .60 and .45, respec
tively. In Table 58, these proportions are .59 and .47. Both splits lie in the 
040-.60 range. 

The investigator who finds it necessary to compute many tetrachoric r's 
will be well advised to use the computing diagrams devised by Thurstone 
and his coworkers." These diagrams are not subject to the limitations as 
to split which apply to formula (98) and the AD/BC ratio. Moreover, 
they enable us to read (and check) the rt directly from a graph as soon 
as we kno\Y the proportions within the 4 cells of the correlational table. 
For example, from Thurstone's charts, the rt for Table 57 is .51, and for 
Table 58 is 045. Tetrachoric r's read from the computing charts are usually 
accurate to at least .01 when compared with r/s from the full formula. 

(3) STANDA.RD ERROR OF A TETRACHORIC r 
The SE of a tetrachoric r is mathematically complex and is too _long to 

be useful practically. Its derivatiol) will be found in books dealing with 
mathematical statistics. t Tetrachoric r is most stable when (1) N is large 
and the cuts in X and in Y close to the median of each variable; and least 
stable when (2) N is small and the splits in X and Y depart sharply from 
.50. The standard error of rt is from 50% to 100ro linger than the SE of a 

,product-moment r of the same size and based upon the same N. If r is 
, computed from 100 cases,Jor example, rf to be equally stable should be 

computed from at least 150 to 200 cases. Several approximations to the 
standard error formula for rt will be found in Peters and Van Voorhis. 

2. The phi coefficient (cp) 

When st;:ttistical data fall into genuine dichotomies,' they cannot be 
thought of as representing miderlying normal distributions. Test items, for 

.. Chesire, L., Saffir, M., and Thurstone, L. L., Computing Diagrams for the 
Tetrachoric Correlation· Coefficient (Chicago: Univ. of Chicago Bookstore, 1933). 

t Peters, C. C., and Van Voorhis, W. R., Statistical Procedures and Their Mathe
matical Bases (New York: McGraw-Hill, 1940), pp. 370-375. 
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instance, are often scored True or False or Passed or Failed, with no inter
mediate answers being allowed. When the classification is truly discrete 
and the variables can take only one of two values, the cf> coefficient is an 
appropriate measure of correlation. Phi may be used also with continuous 
variables which have been grouped into two categories, as for instance 
when two tests are split at the median. Phi bears the same relation to 
tetrachoric r as the point biserial bears to biserial r. The cf> coefficient, like 
point biserial r, is a product-mom~nt r and can be checked directly against 
r obtained from the same table. 

The formula for cf> is 

cf> = AD - BC (99) 
V(A + B) (C + D) (B + D) (A + C) 

(cf> coefficient of correlation) 

where A, B, C and D represent frequencies in the fourfold table (p. 385 
for diagram). Expressed as proportions 

<P = ad - be 
\lpq p'q' 

Phi is perhaps most useful in item analysis when we want to know the 
item-item correlations. The computation of cf> is shown in the following 
example. 

Example (1) Two items X and Yare part of a test of 100 items. 
Item X is passed by 100 and failed by 125 students in a group of 225. 
Item Y is passed by 135 and failed by 90 in the same sample. Find 
the correlation between X and Y. 

Item X 
Failed Passed 

Passed 55 80 
B A 

Item Y 
70 20 
D C Failed 

125 100 

Substituting for A,I B, C and D in formula (99) we have 

<P = 80 X 70 - 55 X 20 
y135 X 90 X 125 X 100 

= .36 

135 
A+B 

90 
C+D 

225 

This value of cf> may be compared with the product-moment r for the 
same data shown in Table 59. When we put P = 1 and 'F = 0, we can 

• 
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compute a product-moment r (see Table 59) which checks exactly with cpo 
The cp coefficient is not comparable to rt for the same data as the two 
coefficients are not expressed in terms of the same scale. The 1t for 
Table 59 is .57-about .20 higher than the cp of .36. Also, in Tables 57 
and 58 the r/ s are .52 and .45 (p. 387) whereas the cp's are .33 and .30. (> 

In general, cp is from .15 to .30 less than the rt from the same table. The _ 
gap between the two coefficients becomes greater as the split in either X 
or Y or in both departs from 50-50. 

3. Significance of cp 

The significance of cp may be determined through the relationship of cp 
to x2 • x2 is related to cp by the following equatio.n: 

x2 = N</l2 (100) 

(x2 as a function of </l) 

and this relationship enables us to test an obtained 4> against the null 
hypothesiS. First, we convert 4> to an equivalent ~, and then test x2

• In 
Table 59 where cp is .36 and N is 225, 

x2 = 225 X (.36)2 

= 29.2 

which for 1 df (fourfold table) is highly significant-beyond the .01 level. 
When N is large, there is another way to test cp against the null hypothe-

1 
sis. This is to compute a SE of a cp of .00 by the formula SE = y'N' In 

Table 59, SE1>=o = 1/\1225 or 1/15 = .07. Our obtained cp of .36 is more 
than 5 times its SE (.36/.07) and hence is highly significant. The null 
hypothesis is rejected, therefore, as before. 

4. Comparison or ft and 4> 

As cp and rt are both used to determine the relationship in a fourfold 
table, the student may be in doubt as to which coefficient is more suitable 
in a given case. The following summary indicates some of the advantages 
and disadvantages of each statistic. 

( a ) r t is the better measure of relationship wh~n N is large and when con
tinuity in the variables an~ normality of distribution are safe assump
tions. This would almost certainly be true when the variables are tests 

.. Recall that biserial r is also consistently lower than r 'bl. (p. 383). 
~ 
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split at the medians. 4> is the appropriate statistic when traits' are truly 
dichotomous. 4> is especially useful when item-item correlations are 
wanted. 

(b) r t ranges from + 1.00 to -1.00 regardless of the relative sizes of the 
marginal totals. 4> cannot equal 1.00 unless the cuts in X and Yare the 
same-i.e., unless p = p' imd q = q'. This restriction limits the upper 
range of r/>, but does not destroy its value when item-item correlations 
are to be compared for the same data. 

(c) The SE of r t is difficult to compute and is always greater than the SE 
bf the comparable r. To have the same stability as a product-moment 
r, rt should be based upon twice the N (roughly) used in computing ,. 
4> can easily be tested against the null hypothesis by means of its relation 
to X? 

(d) Under the assumption of (a), rt is a good estimate of r. 4> is a product
moment r and is equal to the r calculated from a fourfold table when 1 
is assigned to a correct and 0 to an incorrect response. 

IV. THE CONTINGENCY COEFFICIENT, C 

The coefficient of contingency, C, provides_~ measure of correlation 
when each of the two variables under study has: been classified into two 
or more categories. Table 60 shows the computation of C in a 4 X 4 fold 
classification. The table gives the joint 'distribution of 1000 fathers and 
sons with respect to eye color. The eye colors of the fathers are grouped 
into the 4 categories (~olumns) blue, gray, hazel and brown. The eye 
colors of the sons are classified into the same categories (rows). Each cell 
contains an observed value and an "independence" value in pareI!theses. 
The independence values give the number of matched eye colors to be 
expected on the hypothesis of chance. Each is computed as shown in sec
tion I of Table 60. To illustrate, from the top row we find that 335/1000 
pf all sons are listed as blue-eyed. This proportion should hold for the 
'sons of the 358 blue-eyed fathers, if there is no association between father 
and son,with respect to eye color. Since 335/1000 X 358 gives 120 as the 
number of blue-eyed fathers who can be expected to have blue-eyed sons 
by the operation of chance alone, this "independence" figure is to be com
pared with the 194 blue-eyed fathers who actually did have blue-eyed 
sons. In the same manner, expected or chance (independence) values arfl , 
determined for the remainder of the cells in the table. When all of the 
independence values have been tabulated, we square each' observed cell 
entry (see section II in the table) and divide by its chance value. The 
sum of these quotients yields S; and from Sand N we calculate C by the 
equation 
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TABLE 60 To illustrate the calculation of C, the coefficient of contingency 

Blue 
Il:i 
0 
...:I 
0 

Gray U 
r"I ;... 
~ 
.rJJ Hazel 
Z 
0 r:n 

Brown 

Totals 

335 X 358 
1000 

335 X 264 
1000 

335 X 180 
1000 

335 X.198 
1000 

284 X 358 
1000 

284 X 264 
1000 

284 X 180 
1000 

284 X 198 
1000 

FATHER'S EYE COLOR 

Blue Gray Hazel Brown 

(120) (88) (60) (66) 
194 70 41 30 

(102) (75) (51) (56) 
83 124 41 36 

(49) (36) (25) (27) 
25 34 55 23 

(87) (64) (44) (48) 
56 36 43 109 

358 ' 264 180 198 

L Independence Values 

- 137 ,X 358 
= 120 

1000 
=49 

88 
137 X 264 

=36 
1000 

60 
137 X 180 

=25 
1000 

66 
137 X 198 

=27 
1000 

= 102 
244 X 358 

=87 
1000 

75 
244 X 264 

=64 = 1000 

51 
244 X 180 

=44 
1000 

56 
244 X 198 

=48 = 1000 

Totals 

335 

284 

137 

244 

1000 

II. Calculation 
ofC 

(194)2 _ 313.6 
120-
(83)2 _ 

"""lO2 - 67.5 

(25)2 _ 
~- 12.8 

(56)2 ----sr- = 36.0 

(70)2' _ 
88- 55.7 

(124)2 _ 205.0 
75-
(34)2 _ 

----s6 - 32.1 

(36)2 _ 
~- 20.2 

(41)2 _ 
~- 28.0 

(41)2 
----sI 33.0 

(55)2 121.0 
25 
( 43)2 
44 
(30)2 
(3(3 

42.0 

13.6 

(36)2 
~= 23.1 

(23)2 
27 

19.6 

(109)2 _ 247.5 --;m--
s = 1270.7 
N= 1000 

S -N = 270.7 

C=~S~N = 
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C=~S~N (101) 

(C, the ~oefficient of contingency) 

in which S is the sum of the quotients and N is the size of the sample. In 
Table 60, the C is .46. 

The sign to be attached to C depends on an inspection of the diagram. 
In Table 60 we note in the diagonal cells that in the blue-blue, gray-gray, 
hazel-hazel and brown-brown eye-color comparisons of father and son, 
the observed frequencies are almost twice their independence values. In 
the other 12 cells the expected (independence) values are larger than the 
observed, indic~ting that the observed or actual entries (nonmatchings) 
are less than the number to be expected by chance. 

I. The relation of C to }(' 

Both C and }(' depend upon a comparison of observed and expected 
frequencies in the cells of a contingency table, and the one coefficient 
may be derived directly from the other. The size of C depends upon the 
extent to which the observed frequencies depart from their "chance" 
values. In formula (101), for example, when N = S, i.e., when the actual 
and expected entries are exactly the same, C = 0.00. C yields an index of 
correlation which under certain conditions is a good estimate of r. x2 , on 
the other hand, provides a measure of the probability of association-of 
the existence of relation-but gives no quantitative measure of its size. 
C bears the following relationship to x2 : 

C=~N~X2 (102) 

(C in terms of x2 ) 

The x2 corresponding to the C of .46 in Table 60 is 268, which for 9 df 
is highly significant-far beyond the .01 level (see Table E). Accordingly, 
C may be regarded as highly significant. In Table 33 the association 
between eyedness and handedness was expressed by a x2 of 4.02, which 
for 4 df is not significant. By formula (102), the C for Table 33 is 

~413~~.02 or .10 (to two decimals)-a very small value. The sta~dard 
error of C is complex and not very satisfactory and the significance of C is 
best tested by way of x2 • Since our x2 of 4.02 is not significant, our C of .10 
may be regarded as representing a negligible and not significant relation
ships between eyedness a~d handedness. 
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2. Relation of C and r 

C is a good estimate of r when (1) the grouping is relatively fine-
5 X 5 or finer; when (2) the sample is large; when (3) the two variables 
can legitimately be classified into categories; and when (4) we are justi
fied in assuming normality in the categorized variables. These conditions 
are often hard to realize, and if a measure of relationship equivalent to r 
is wanted, it is often advisable to consolidate classes into a 2 X 2 table 
and compute cf> or rt. C has certain advantages ov·er cf> and rt, however. In 
computing C no assumption need be made as to normality in the distribu
tions of the two variables; in fact, any type of distribution, skewed or rec
tangular, may be utilized. This follows from the fact that C-like x2-

depends upon the divergences of observed entries from those to be ob
served from those to be .expected by chance, not upon form of distrihutioI). 

C possesses the disadvantage that it does not remain constant for the 
same data when the number of categories varies. For example, the C com
puted from a ~ X 3 table will not be comparable to the C for the same 
data arranged in a 5 X 5 table. Moreover, the maximum value which C 
can take will depend upon the fineness of grouping. When k = the num
ber of categories in the table, the maximum C is found from the equation 

R . In a 3 X 3 table, the maximum C is .82, in a 5 X 5 table .89, 

and in a 10 X 10 table it is .95. A correction for grouping can be made by 
dividing the computed C by the maximum C for that classification. Thus, 
in Table 60, where C is .46, on dividing by .87 (maximum C for a 4 X 4 
table), we get .53 as the value of C corrected for fineness of grouping. 

Table 61 shows more clearly perhaps how C is an estimate of r when 
corrected for number of categories. The 100 cases in the sample have been 
prorated over the 5 diagonal cells, so that the correlation is as high as it 
can be for this classification. As shown in Table 61, however, C is only .89; 
but .when divided by the maximum C for II 5 X 5 table, namely, by .89, 
the conected C is 1.00. 

A good plan is to use as fine a classification as the data allow (5 X 5 or 
finer, if feasible) in order that the maximum value of C will be as close to 
unity as possible. At the same time we must avoid a too-fine classification, 
as C is not stable when the entries in the cells are small (less than 5, say). 
A correction for broad categories-the opposite of fine grouping-may be 
applied. But this correction is hardly worth while unless the grouping is" 
4 X 4 fold or broader-and is small in any case. 

C is not an entirely satisfactory statistic. Perhaps it is most useful to the 
clinical or social psx.chologist who wants a measure of correlation between 



396 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

TABLE 61 C in a table in which the correlation is perfect 

X Variable 

Totals' 
-

(4) 
20 20 

(4) 
20 20 

(4) 
20 20 

(4) 
20 20 

(4) 
20 20 

20 20 20 20 20 100 

I. Independence values II. Calculation of C 

20 X 20 . 
100 = 4 for each diagonal 

202 
T = 100 for each of 5 diagonal cells 

C = ~5005~0100 = y:so 

= .89 

two variables classified into more than two categories. The real difficulties 
in the interpretation of C have led many research workers to prefer x2 or 

/ else to convert C to~. 

V. CURVILINEAR OR NONLINEAR RELATIONSHIP 

The relationship between the paired values of two sets of measures, X 
and Y, may be described in a general way as "linear" or "nonlinear." When 
the means of the arrays of the successive columns and rows in a correla
tion table follow straight lines (at least approximately), the regression is 
said to be linear or straight-line (p. 153). When the drift or trend of the 
means of the arrays (columns or rows) cannot be well described by a 

. straight line, but can be represented by a curve of some kind, the regres
sion is said to be curvilinear or in general nonlinear. 



FURTHER METHODS OF CORRELATION • 397 

Our discussion in Chapt(;lr 6 was concerned entirely with linear rela
tionship, the extent or degree of which is measured by the product
moment coefficient of correlation, r. It sometimes happens in mental meas
urement, however, that the relationship between two variables is defi
nitely nonlinear; and when this is true, r is not an adequate measure of the 
degree of correspondence or correlation. When the regression is non
linear, a curve joining the means of successive arrays (in the columns, 
say) will fit these mean values more exactly than will a straight line. 

o Hence, should a truly curvilinear relationship be described by a straight 
line, the scatter or spread of the paired values about the regression line 
will be greater than the scatt~r about the better-fitting regression curve. 
The smaller the spread of the paired scores about the regression line ot 
the regression curve which relates the variables X and Y (or Y and X), the 
higher the relationship between the two variables. For this reason, an r 
calculated from a correlation table in which the regression is curvilinear 
will always be less than the true relationship. An example will make this 
situation clearer. The correlation between the following two short series, 
as' given by the product-moment formula, is r = .93 [formula (27), p. 
139]. The true correlation between the two series, however, is clearly 

Variable X 

1 
2 
3 
4 
5 

VariableY 

.25 

.50 
1.00 
2.00 
4.00 

perfect, since changes in Yare directly related to changes in X. As X 
increases by 1 (i.e., in arithmetic progression) Y doubles (i.e., increases 
in geometric progression). The reason why r is less than 1.00 becomes 
obvious as soon as we plot the paired X and Y values. As shown in Fig. 67, 
the relationship between X and Y is curvilinear, and is exactly described 
by a curve which passes through the succeSSively plotted points.' When 
linear relationship is forced upon these data, the plotted points do not fall 
along the straight line, and the product-moment coefficient, r, is less than 
1.00. However, the correlation ratio, or coefficient of nonlinear relation
ship 7J (read as eta) for the given data is 1.00. 

True nonlinear relationship is encountered in psychophysics and in 
experiments dealing with fatigue, practice, forgetting, and learning .. 
Whenever an experiment is carried on to the point of diminishing returns, 
relationship will necessarily be curvilinear. Most mental and educational 
tests, :however, when administered to large samples, exhibit linear or 

~ 
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approximately linear relationships. The coefficient of correlation, r, there
fore, has been employed in psychology and education to a far greater 
extent than has .,,; and for this reason the calculation of ." is not given 
here." If regression is significantly nonlin.ear, it makes considerable dif-

.50 

.25 

2 3 ~ 5 
X-vorio6le 

FIG. 67 To illustrate nonlinear relationship 

ference whether." dr r is the measure of relation. But if the correlation is 
low and the regression not significantly curvilinear, r will give as ade
quate a measure of relationship as .". 

The coefficient of correlation has the advantage over." in that knowing r 
we can write down at once the straight-line regression equation connect
ing X and Y or Y and X. This is not possible with the correlation ratio. 
In order to estimate one variable from another (say, Y from X) when 
regression is nonlinear, a curve must be fitted to the means of the Y col
umns. The equation of this curve then serves as a "regression equation" 
from wnich estimates can be made . 

.. See references, p. 473. 
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PROBLEMS 

1. Compute the correlatiQn between the following two series of test scores by 
the rank-difference method and test its significance. 

Individual 

J 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Intelligence Test Score 

185 
203 
188 
195 
176 
174 
158 
197 
176 
138 
126 
160 
151 
185 
185 

Cancellation Score 
(A Test + Number 

Group Check
ing Test) 

110 
98 

118 
104 
112 
124 
119 
95 
94 
97 

110 
94 

126 
120 
118 

[Note: The cancellation scores are in seconds; hence the two smallest scores 
numerically (i.e., 94) are highest and are ranked 1.5 each.) 

2. _ Check the product-moment correlatiens obtained in problems 7 and 8, 
page 150, Chap. 6 by the rank-difference method. 

3. The following data give the distributions of scores on the Thorndike In
telligence Examination made by entering college freshmen who presented 
12 or more recommended units, and entering freshmen who presented 
less than 12 recommended units. Compute biserial r and its SErbi .. 

12 or more Less than 12 
Thorndike Scores recommended recommended 

units units 

90-99 6 0 
80-89 19 3 
70-79 31 5 
60-69 58 17 
50-59 40 30 
40-49 18 14 
30-39 9 7 
20-29 5 4 

186 80 
~ 



400 • STATISTICS IN PSYCHOLOGY AND EDUCATION 

4. The table below shows the distributions of scores on an achievement test 
earned by those students who answered 50% or more and those who 
answered less than 50% of the items in an arithmetic test correctly. Com
pute rbl. and the .99 confidence interval for the true rbiB. 

Achievement Test 

185-194 
175-184 
165-174 
155-164 
145-154 
135-144 
125-134 
115-124 
105-114 

Subjects answering 
50% or more of the 
items on arithmetic 

test correctly 
7 

16 
10 
35 
24 
15 
10 
3 
o 

120 

Subjects answering 
less than 50% of the 
items on arithmetic 

test correctly 
o 
o 
6 

15 
40 
26 
13 
5 
5 

110 

5. Compute tetrachoric r for the following tables. Use the two methods 
described on pages 385-386. 
(1) Relatil'Jll of alcoholism and health in 811 fathers and sons. Entries are 

expressed as proportions. . 

SONS 
Unhealthy Healthy Totals 

Nonrucoholic I .343 .405 .748 

.102 .150 .252 Alcoholic 

Totals .445 .555 1.000 

(2) Correspondence of Yes and No answers to two items of a neurosis 
inventory. 

6. (a) 

(b) 

QUESTIONl 

C'l 
No Yes Totals 

Z 
Yes E 83 187 270 

~ No 102 93 195 
0' 

Totals 185 280 465 

Compute 4> coefficients for the two tables on page 244, example (11). 
Test the Significance of 4> by way of;x2. ~ 
Compute r/s for the same two tables. Which coefficient, r t or 4>, is the 
more appropriate? 
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(c) Compute 4> for the table in problem 5 (2). 
7. In the table below, compute 'Pbis and rbis' Which is the more appropriate 

coefficient for these data? 

Scores on 
Miller Analogies Test 

95-99 
90--94 
85-89 
80--84 
75-79 
70--74 
65-69 
60--64 
55-59 
50--54 
45--49 
40--44 
35--39 
30--34 

VA TRAINEES 

Failed in Program 
o 
1 
o 
2 
4 
6 
8 
3 
2 
6 
2 
3 
1 
1 

39 

Obtained Ph. D. 
1 
1 
6 

11 
6 
9 
3 
2 
1 

40 
8. Calculate the coefficient of contingency, C, for the two tables given below. 

r.. 
0 

~ Eo< 
... 0 
~~ z ~ o p 
I=C/) 
< 
Z 

(1) 

Graduate work 

College 

High School 

Grade School 

MARRIAGE ADJUSTMENT SCORE OF HUSBANDS 

Very Low Low High Very High Totals 

4 9 

20 31 

23 37 

11 10 

38 

55 

41 

11 

54 

99 

51 

19 

105 

205 

152 

Totals 58 87 145· 223 

51 

513 

(2) 

English 

French 

German 

Italian 

Spanish 

Totals 
~ 

KIND OF MUSIC PREFERRED 

English French German Italian Spanish Totals 

32 16 75 

10 67 42 

.12 23 107 

16 20 44 

8 53 30 

78 179 298 

47 
-

41 

36 

76 

43 

243 

30 

40 

22 

44 

66 

202 

200 

200 

200 

200 

200 

1000 
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9. In the example above, convert the C's to x2's and test for significance: 
to. Compute C from table in example 3, page 148, and compare with f. 
11. (a) In the following table, compute f by the product-moment method. 

(b) Plot the relationship between X and Y as shown in Figure 67, page 
398. Is the relation, linear? 

X Y 
1 1 

o 2 2 
3 4 
4 8 
5 16 
6 32 

ANSWERS 

1. p = .19; not significant. 
2. p's are .41 and .80. 
3; fbi. = .34 SErbia = .07 
4. fbi. = .47 .29 to .65 
5. (1) ft = -.09 (2) f t = .34 
6: (a) c/J = .25 in first table and c/J = .50 in second table. Both c/J's are 

Significant. . 
(b) ft =.42 and ft = .72; ft is more appropriate for (1), <I> for (2). 
(c) c/J = .22. 

7. fPbl8 = .56; fbi. = .70~ The first is ~ore appropriate. , 
8. (1) C = .24 (2) C = .40. 
9. (1) x2 = 31.35; (2) x2 = 190.48. Both are significant. 

10. C = .72. 
11. (a) f = .91. (b) Relationship iS,nonlinear and perfect. 



CHAPTER 15 

PARTIAL AND MULTIPLE 
CORRELATION 

I. THE MEANING OF PARTIAL AND MULTIPLE CORRELATION 

Partial and multiple correlation represent an important extension of the 
theory and techniques of simple or 2-variable linear correlation}o prob
lems which involve three or more'variables. The correlation between two 
variables is sometimes misleading and may be erroneous if there is little 
or no correlation between the variables other than that bro~ght about by 
their common dependence upon a third variable (or several variables). 
Many attributes increase regularly with age from about 6 to 18, such as 
height, weight, physical strength, mental test scores, vocabulary, reading 
skills' and gtmeral knowledge. Over a wide age range, the correlation be
tween any two of these traits will almost _certainly be positive and probably 
high, owing to the common maturity factor which is highly correlated with 
both variables. In fact, the correlation may drop to zero if the variability 
caused by age differences is eliminated. The factor of age can be con~ 
trolled in two ways: (1) experimentally, by selecting children all of whom 
are of the same age; and (2) statistically, by holding age variability con
stant through partial correlation. In order to get children of the same or 
of nearly the same age, we may have to reduce drastically the sizes of 
our samples. Partial correlation, therefore, since it utilizes all of the data, 
is often to be preferred to experimental control. 

If we let 1 = vocabulary score, 2 = height in inches, and 3 = age, fl2.3 

represents the partial correlation between 1 and 2 (vocabulary and 
height) whe~ 3 (age) l1as been held constant or "partialed out." The sub
scripts 12.3 mean that variable 3 is rendered constant, leaving the net 
correlation between 1 and 2. The subscripts in the partial correlation 
coefficient, f12.345 mean that 3 variables, namely, 3, 4, 5, are partialed out 
from the correlation between 1 and 2. The numbers to the right of the 

" . 403 
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decimal point represent variables whose influence is ruled out; those to 
the left represent the two correlated variables. Partial correlation is often 
useful in aI!alyses in which the effects of some variable or variables are 
to be eliminated. But its chief value lies in the fact that it enables us to 
set up a multiple regression equation of two or more. variables by means 
of which we can predict another variable or criterion. 

The correlation between a set of obtained scores and the same scores 
predicted from the multiple regression equation is called a coefficient of 
multiple correlation. It is designated by the letter R (called multiple R). 
If R1 (234) ::::: .72, this means that scores in variable (1) predicted from a 
multiple regression equation containing variables (2), (3) and (4) cor
relate .72 with scores obtained in variable (1). Expressed in another 
way, R1 (234) gives the correlation between a criterion (1) and a team of 
tests (2, 3, 4). The variables in parentheses ( ) are the independent vari
ables in the regression equation; whereas the variable outside of the 
parentheses, namely, (1), is' the criterion to be predicted or estimated. 
Multiple R is always taken as positive (see p. 416). 

The multiple regression equation is set up by way of partial correlation 
and its accuracy as a predicting instrument is given by the coefficient of 
multiple correlation, R. The meaning of partial and multiple correlation 
will be better understood when the student has worked through a prob
lem like that given in Table 62. 

TABLE 62 A 3-variable problem to illustrate partial and multiple correlation 

PRIMARY DATA: 

(1) Honor Points 

M 1 ::::: 18.5 
0"1::::: 11.2 
r12::::: .60 

(N::::: 450) 

(2) Gene~al Intelligence 

M2 ::::: 100.6 
0"2::::: 15.8 

TlS::::: .32 

Step I Equations for multiple regression are 

(3) Aver. number of 
hours spent in study 

per week 

Ms=24 
O"s= 6 

T2S= -.35 

Xi = b12.SX2 + b13.2XS (deviation form) (106) 

(107) 
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TABLE 62 (Continued) 

Step 2 

Step 3 

Computation of partial is .. 

.60 - .32( -.35) 80 
(12.3 == .947 X .937 = . 

_ .32 - .60(-.35) ~ 71 
(13.2 - .800 X .937 - . 

-.35 - .60 X .32 72 
(23.1 == .800 X .947 = -. 

Computation of partial u's 

U1.23 = 11.2 X .800 X .704 == 6.3 

U2.13 = 15.8 X .937 X .600 == 8.9 

0"3.12 == 6 X .937 X .704 = 4.0 

(103) 

(104) 

Step 4 Computation of partial regression coefficients and regression 
equations 

b12•3 = .80 X ::~ = .57 

b13.2 =.71 X ::~ = 1.12 

and the regression equations become: 

Step 5 

Step 6 

Xi == .57x2 + 1.12x3 (deviation form) 

Xl = .57X2 + 1.12X3 - 66 (score form) 

Standard error of estimate 

Multiple coefficient of correlation 

~ (6.3)2 
RI (23) = 1- (11.2)2 

= .83 

(105) 

(108) 

(109) 

.. In multiple correlation problems, the rounding of sITlall decimal fractions often 
leads to considerable loss in accuracy in subsequent calculations. A practical rule is 
that in extracting square roots we should retain as many decimal places as there are 
variables in the problem. Thus, in a 3-variable problem we retain 3 decimal places; 
in a 4-variable problem, 4 places, and so on. 
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II. AN ILLUSTRATIVE MULT!PLE CORRELATION PROBLEM INVOLVING THREE 
VARIABLES 

The most straightforward approach to the understanding of partial and 
multiple correlation, and of the somewhat involved techniques required, 
is through the detailed solution of a problem. The present section, there~ 
fore, will give a step-by-step application of the method to a 3-variable 
problem. 

Example (1) An investigator 0 wished to study the relationship 
of general intelligence and habits of study to academic success in a 
group of 450 college freshmen. Academic success was defined as the 
number of honor points earned by each student at the end of the first 
semester. A grade of A received 3 honor points, B 2, C 1, and D 
received O. General intelligence was measured by a combination of 
group tests, and application to study was defined by the number of 
hours spent in study during the week. Information as to study habits 
'was obtained from a questionnaire given to the students upon en
trance. This questionnaire covered a variety of possible student activ
ities, the topic of study not being unduly stressed. The reliability 
coefficient of the study reports (by retest after approximately 8 
weeks) was .86. 

How well can we predict academic success (i.e., honor points) 
from a knowledge of general intelligence and application to study? 
The primary data are as follows: 

( 1) Honor points 

M1 = 18.5 
0"1 = 11.2 

1'12 = .60 

N=450 

(2) General intelligence 

M2 = 100.6 
0"2 = 15.8 
r1a'= .32 

(3) Study hours per week 

Ma=24 
O"a = 6 
'23 = -.35 

I The solution of this problem is outlined in the following steps. A summary 
of the data and computations will be found in Table 62. 

Step I. Writing the regression equations 

First, we write down the multiple regression equation from which each 
student's honor points (1) will be predicted from his scores in general 
intelligence (2) and study hours (:3). For :3 variables, our equation is 

(106) 

.. May, Mark A., "Predicting academic success," Jour. Educ. Psychol., 1923, 14, 
429-440. 
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This equation is in deviation form; Xl stands for honor points (the cri
terion), X2 and X3 are general intelligence and study hours, respectively. 
Note the resemblance of this equation to the simple regression equation 
for 2 variables-y = b 12 • X (p. 154). Putting Xl for y and X2 for x, we may 
write the 2-variable equation as Xl = b12 . X2. Instead of using the letters 
x, y, z, etc., only x·is used with identifying subscripts. 

When written in score form, the multiple regression equation for 3 vari-
abIes becomes 

(Xl - Ml ) = b12.3 (X2 - M 2 ) + blS.2 (XS - Ms) (107) 

or transposing and collecting terms 

Xl =.b12.3X2 + b13.2X3 + 'K (a constant)" 

It is clear that in order to use this equation we must have the partial 
regression coefficients b12.3 and b 13.2• These are given by formulas 

b 0'1 23 d b 0'1.23 
l2.S = '12.3 -'- an 13.2 = '13.2--

0'2.13 0'3.12 
(105) 

To replace the partial regression c:oefficients by their numerical values, we 
must first compute '12.3 and r1S.2, the partial is; anjd then 0'1.2,1. 0'2.13 and 
0'3.12, the partial O"s. This is done in the following steps: 

Step 2. Computing the partial ,'s 

When (1) stands for honor points, (2) for intelligence and (3) for 
study hours, the partial r12.3 is given by the equation 

'12 - '13'23 (103) 
'12 3 = --;;;::::::::::;;;=-~;:::::=;;:== . VI - ,213 VI - ,223 

Substituting r12 = .60, r13 = .32 and r23 == -.35, we have that r12.3 = .80. 
This means that had all of our 450 freshmen studied the same number of 
hours per week, the correlation between honor points and general intelli
gence would have been .80 instead of .60. When students' study habits are 
alike, there is clearly a 'much closer relation between honor points earned 
and intelligence than there is when study habits vary. 

The partial correlation between honor points (1) imd study hours (3) 
when general intelligence (2) is a constant factor is given by the formula 

'13 - '12'23 
'132= (103) . VI - ,212 vI - T223 

Substituting for r13, r12 and r23 (Table 62) we get a partial r13.2 of .71 as 
against an r13 of .32. This result means that, had our group possessed the 

~ 
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same level of general intelligence,O there would have been a much closer 
correspondence between academic success and study hours than there is 
when the students possess varying amounts of general ability. This is cer
tainly the answer to be expected. 

We need only two partial rs for the regression equation in Step 1, 
namely, '12.3 and '13.2' We have, however, computed '23.1 for its analytic 
value and for illustration. The formula is 

'23 - '12'13 
'23 1 =: ,r=:::::;;:::-r,;==;;:= . vI - ,212 VI - f'213 

and substituting for '12, '13 and '23 we have that '23.1 = -.72. This highly 
interesting result means that in a group in which every student earns the 
same number of honor points, the correlation hetween g(lneral intelli
gence a~d st:udy hours would be much higher-negatively-than is the 
obtained, between general intelligence and study hours in a group of 
students in whom academic performance varies widely. The brighter the 
student the less he ne@ds to study in order to reach a given standard of 
academic performance. 

Step 3. Partial u's 

The partial u's, 0'1.23, 0'2.13 and 0'3.12 are given by the formulas 

0"2.13 = 0"2.31 = 0"2 vI - ,223 yll - f'212.3 

0"3.12 = 0"3.21 = O"a vI - ,223 V I - r13.2 

(104) 

In the last two formulas, note that the order in which the variables (13) 
,land (12) have been eliminated is changed to (31) and (21). It makes no 
difference in what order the variables to the right of the decimal are . 
removed; and the changed orders save the calculation of one partial" 
namely, '23.1' Substituting for the rs and u's, we find that 0'1.23 = 6.3; 
0'2.13 = 8.9;· and 0'3.12. = 4.0. The variability of honor points (1) and gen
eral intelligence (2) are reduced by approximately one-half when the 
other two variables are held ~onstant. The variability of study hours (3) 
is reduced by 1/3. This reduction in variability might have been predicted 
in view of the relatively high correlations among the three variables. 

o By "same general intelligence" is meant the same score on the given intelligence 
tests. 



PARTIAL AND MULTIPLE CORRELATION· 409 

Step 4. Computation of partial regression coefficients and of the multiple 
regression equation 

From the partial u's and the partial r's, the numerical values of the 
. I . ffi . b 001.23 d b 001.23 partia regressIon cae clents, 12.3 = r12.3 -- an lS.2 = r18.2 -- are 

002.13 003.12 

found to be .57 and 1.1~, respectively (·Table 62). We may now, therefore, 
write the regression equation as 

and in score form 

Xl = .57X2 + 1.12Xs - 66 

Given a student's general intelligence score (X2 ) and his study hours 
(Xs), we can estimate from this equation the 'most probable number of 
honor points (XI) he will receive at the end of the first semester. Sup
pose that student William Brown has an intelligence score of 120 and 
studies on the average 20 hours per week: 'how many honor 'points should 
he receive at the end of the term? Substituting X2 = 120 and Xs = 20 in 
the equation, we find that 

Xl = (.57 X 120) + (1.12 X 20) - 66 = 25 

and the most likely number of honor points William will receive-as pre
dicted from his general intelligence score and his study habits-is 25. 

Step 5. Standard error of estimate (U1.2s) 

Forecasts of honor points to be expected of entering freshmen must be 
made, of course, by way of a regression equation established upon groups 
from previous years. Each predicted score has an error of estimate 
(p. 160). For a multiple regression equation of 3 variables, the formula 
for U(e.t Xl) is equal to 001.23 without any new computation. 

The U(e.t Xl) in our problem is 6.3, so that William's predicted score of 
25 in honor points has 'an error of estimate of about 6 points. This means 
that the chances are 2 in 3 that William's predicted honor points will not 
miss the actual number he earns (or will earn) by more than +6. In gen
eral, about 2/3 of all predicted honor point scores should lie within -+-6 
points of their earned values. 
. ~ 
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Step 6. Multiple coefficient of correlation, R 

The final step in the solution of our 3-variable problem 'is the com
putation of the coefficient of multiple correlation. Multiple R is defined 
(p. 404) as the correlation between scores actually earned on the cri
terion (Xl) and scores predicted in the criterion from the multiple regres
sion equation. For the data of Table 62, R gives the correlation between 
X~ (honor points achieved) and Xl (honor points'forecast) from the two' 
variables (X2 ) general intelligence and (Xs) study habits, when these 
two have been combined into a team by means of the regression equation. 
The formula for R when we have 3 variables is 

,I u2123 ( ) 
RI (23) = '\J 1 - ~1 109 

In the present problem, RI (23) is .83. ThIs means that when the most prob
able number of honor points which each student in our group of 450 will 
receive has been predic~ed from the regression equation given on page 
405, the correlation between these 450 predicted scores and the 450 
earned scores will be .83. Multiple R tells ~s to what extent Xl is deter
mined by the combined action of X2 and X3• Or, in the present problem, 
to what extent honor points are related to intelligence and study hours. 

Summary 

The multiple regression equation is used mainly for two purposes: (1) 
analysis and (2) prediction. In analysis, the p'urpose is to determine the 
importance or "weigh( of each of a number of variables in contributing 
to some final result (e.g., a performa_nce, called a criterion); The methods 
outlined in this section are not practicable when there are more than 
/4 variables. For multiple correlation problems, therefore, which involve a 
larger number of tests, it is advisable to use systematic methods to lessen 
the considerable amount of calculation. 0 

When the problem is one of predicting a cnterion with a maximum 
degree of efficiency, the methods of Chapter 16 are recommended. In the , 
Wherry-Doolittle Test, Selection Method, the most efficient team of tests 
is selected one at a time from a larger number. Experience has shown that 
after the regression equation contains 4 or 5 variables, additional tests 
lead to negligible increases (if any) in multiple R. In fact, diminishing 

o Efficient and timesaving methods are described in Chaps. 7 and 16 and Appen
dix A, of R. L. Thorndike's Personnel Selection (New York: John Wiley and Son, 
1949). 
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returns (no increase or an actUal. decrease in,R) may occur even earlier 
(see p. 420). 

III. FORMULAS FOR USE IN PARTIAL AND MULTIPLE CORRELATION 

I. Partial r's 

The order of a partial l' is determined by the number of its secondary 
subscripts. Thus, 1'12, an entire or total 1', is a coefficient of zero order; 
1'12.3 is a .partial of the first order; 1'12.345- is a partial of the tnird order. The 
last l' has been freed of the influence of variables 3, 4 and 5. 

The general formula for a P!lrtial l' of any order is 

r - r12.34 ... ( .. -1) - rIn.34 .•. ("-1)1'2".34 ... ( .. -1) (103) 
12.34 ..... -1 1'21 2 V - 1".34 ••• (,,-1) V - r 2".34 ••. ( .. -1) 

(partial r in terms of the coefficients of lower order-n variables) 

From this formula, partial r's of any order may be found. In a 5-variable 
problem, for example, (n - 1) = 4 and n = 5, so th.at 1'12.345 becomes: 

_ 1'12.34 - rI5.34r 25.34 
r12 345 - r,;=::=::;;:=::-=-=~=::;;::= 

. vI - 1'215.34 vI - r225.34 

that is, in terms of partial r's of the second order. These second order 1"S 

must in turn be computed from r's of the first order; al!.d these from r's of 
zero order. 

2. Partial u's 

The partial standard deviation,' Ul.2345, denotes a partial u which has 
been freed of the influence exerted upon its variability by variables 2, 3, 
4 and 5. The general formula is 

0"1.234 . .• " = UIv1 - r212 v'l- r213.2 VI - r214.23 

(partial u for n variables) 

... VI - 1'21 ... 23 ... ( .. -1) 

(104) 

In a 5-variable probleJ)l, U1.2345 would be written as 

U1.2345 = O"Iv'I - r212 v'I - r
2

13.2 VI - r214.2;1 VI - r215.234 

The independent variables on the right of the decimal may be elimi
nated in more than one order without affecting the numerical result. Thus, 

~ 
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0"2.13 and 0"3.12 may be written'as 0"2.31 and 0"3.21' In this form, it is unneces
sary to compute r23. h which is not neede~d in a 3-variable multiple regres
sion equation (p. 404). 

3. Partial regression coefficients (b's) 

Partial regression coefficients may be found from the formula 

b - r 0"1.234 •.. " (105) 
12.34 ... ,,- 12.34 .•• " 

0"2.134 ... " 

(partial regression coeffiCients in terms of partial coeffiCients of correlation and 
standard errors-of estimate-n variables) 

In a 4-variaBle problem, the regression ooefficient is 

b - 0"1.234 
12.34 ~ r12.34--

0"2.134 

The b coefficients give the weights of the variables in the regression 
equation, i.e., the weights to be assigned to the scores in X2, X3, etc. 

4. Multiple regression equation 

The regression equation which expresses the relationship between a 
single variable, Xl, and any number of independent variables, X2, X3 , 

X4 • X" may be written in deviation form as follows: 

xi = b12.34 ..• "X2 + b13.24 ..• "X3 + ... + b 1".23 •.• (,,-l)X':' 

(regression equation if! deviation form for n variables) 

and in score form 

Xl = b lz .34 •.. "X2 + bl3.~4 ... "Xa + ... ,+ b1".23 .•• ("_l)X" + K 

(106) 

. (107) 

(regression equation in score form for n variables) 

The regression coefficients bl2.s4 ... n, b l3 .24 ... ", etc., give the weights 
to be attached to the scores in each of the independent variables when Xl 
is to be estimated from all of these in combination. Furthermore, these' 
regression coefficients give the weights which each variable exerts in 
determining Xl when the influence of the other variables is excluded. 
From the regression equation we can tell just what role each of the sev
eral variables plays in determining the score in Xl, the criterion. 
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. 
5. The Sf of estimate in the multiple regression equation 

All criterion scores (XI) forecast from the multiple regression equation 
have a SE of estimate which tells the error made in taking estimated 
scores instead of earned scores. The SE of estimate is given directly by 
U1.2345 ... n as follows: 

u(eBt Xl) == uI.2345 ... n (108) 

(standard error of estimate for n varia'hIes) 

In Table 62 the SE(est Xl) of an honor points prediction is 6.3. The chances 
are about 2 in 3, therefore, that the honor points forecast for any student 
will not be in error by more than about 6 points. 

The SE(est Xl) which equals U1.23 shows the restriction in variabil
'ity of honor points brought about by holding constant the influence of 
general intelligence (2) and study hours (3). The greater the reduction 
in the partial a, the greater the influence upon its variability exerted by 
factors (2) and (3). Ruling out the variability in honor points attributable 
to intelligence and study reduces al from 11.2 to 6.3, or by nearly one-half. 
This means that students alike in general intelligence test score and in 
habits of study vary in scholastic achievement about one-half as much as 
do students in general. 

From the multiple regression equation given in Table 62, Xl can be 
predicted with a smaller error of estimate than from any other linear equa
tion. Put differently, the SE(est Xl) is a minimum when the multiple· 
regression equation is used to forecast Xl scores. Predicted values of Xl 
are, therefore, the best estimates of earned Xl'S which can be made from 
a linear equation. . 

6. The coefficient of multiple correlation, R 

The correlation between a single variable or criterion Xl and (n - 1) 
independent variables combined by means of a multiple regression equa
tion is given by the formula 

R1 (23 ... n) = 11 _ a21.2; ... n (109) 
'\j U 1 

(multiple correlation coefficient in terms of the partial a's for n variables) 

When there are only 3 variables, (109) becomes 

RI (23) = 11 _ a21.23 

'\j U 21 
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If we replace (T1.234 ... n in formula (104) by it1> value in terms of entire 
ana partial 1'S [see (411)] we may write the general formula for 

, R1(234 ... n) as follows: 

R1 (234 ••• n) = \11 - [(1 - 12u) ( 1 - 1"213.2 ) ••• (1 - 121n.23 • .. (n-l»] 

(UO) 

(multiple R in terms of partial coefficients of correlation for n variables) 

The independent variables may be eliminated in more than one order. 
Thus, R1 (23) may be written R1 (32» the second form serving as a check on 
the first. 

Multiple R shows how accurately the scores from a given combination 
of variables represent the actual values of the criterion, when our inde
pendent variables are combined in the "best" linear equation. R is the 
maximum correlation obtainable from a linear equation connecting earned 
and predicted scores. 

IV. THE SIGNIFICANCE OF A PARTIAL T, PARTIAL REGRESSION 
COEFFICIENT, b, AND MULTIPLE R 

I. Significance of a partial, 

The significance of a partial 1 may be determined most readily, perhaps, 
, 1 

by way of the z transformation. The SEz = (p. 199), and the SE 
\IN-S 

" 1 
of the z corresponding to 112.3 is ~. One degree of freedom is sub-

tracted from N for each variable eliminated, in addition to the S already 
. 1 

lost (p. 194). So for '12.345 the SE of the corresponding z is ---;;::T==;;=~ 
_ yN-S-S 

1 
,or ~. For the problem of Table 62, 112.3 = .80 and the correspond-

. . 1 1 
mg Z IS 1.10 (Table C). The SEz = or or .05 (to 

~ \1450-4 
two ~ecimals). The .95 confidence interval for the population z is 
1.10 -1- 1.96.x .05 or from 1.00 to 1.20. Converting these z's back into 1'S, 

. we have a .95 confidence interval from .76 to .8S. Our obtained 112.3 of .80, 
therefore, is highly stable; and there is little likelihood that the popula
tion 1 'is zero. . 

Suppose that 112.3456 = .40 and N = 75. Is this partial 1 significant? The 
. 1 

z corresponding to a 1 of .40 is .42 and the SEz = ---: i.e., four df 
\IN-7 
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are subtracted from N - 3 to give N - 7. Substituting N = 75, we have 
1 . . 

that SEz = -_ or .12 (to two decimals). The .95 confidence interval for 
V68 

the population z is .42 ± 1.96 X .12 or from .18 to .66. When these z's are 
converted back into is, we have a .95. confidence interval of .18 to .58." 
The r12.3456 is significant in the sense that the population r is not likely to 
be zero. (the lower limit of the confidence range is .18). But the confi
depce interval is quite wide and the coefficient must be judged to be not 
very stable. 

2. Significance of a regression coefficient (b) 

The regression coefficient (b) has a SE as follows: 

in which 

_ _ U-"I~2::=-34:._;.c..:.._:..' =ffl. __ 
Ub = 

12.34 ... '" U \IN _ m 
2.34, •.. m 

(SE of a multiple regression coeffiCient, b) 

m = the number of variables correlated 
. N = size of sample 

(N _ m) = degrees of freedom 

In Table 62, the regression coefficient b12.3 was .57. The SEb12.
3 

is 

6.3· d I 
Ub12 3 = = .02 (to two ecima s) 

. 14.8 X (y'450 _ 3) 

(111) 

The term U2.34 ••• m in the denominator reduces to U2.3 or u2\11 - r23 
when there are only 3 yariables (p. 411). Substituting for <T2 = 15.8 and 
r23 = -.35, 1T2.3 = 15.8\11 - .352 or 14.8. From formula (Ill) the SEb12.3 
is .02. 

The .95 confidence interval for the b12.3 of .57 is .57 ± 1.96 X .02 or 
from .53 to .61. The regression coefficient, therefore, is quite stable, and is 
highly significant. 

The value of a SE of b lies in the fact that it tells us whetper the given 
variable (X2 in our exaJ;Ilple) is contributing anything to the prediction of 
the criterion by way of the multiple regression equation. If b12•3 is not 
significantly greater than zero, the term containing bI2.a-and variable X2-

can safely be dropped from the regression equation . 

.. See Table C. 
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3. Significance of multiple R 

(1) SER 

Multiple R is always positive, always less than 1.00, and always greater 
than the zero order correlation coefficients, r12, r13, etc. The SE of a multi· 
pIe R is given by the formula 

where 

1-R2 
SER =---

yN-m 
(standard error of a multiple R) 

m = number of variables being correlated 
N = size of sample 

(N - m) = degrees of freedom 

In Table 62, RI (23) is .83, N is 450 and m is 3. Hence, 

SER = 1 - .83
2 = .01 (to 'two decimals) 

V447 

(112) 

and the .95 confidence interval for the population R is .83 ± 1.96 X .01 
or from .81 to .85. Rl (23) is highly significant. 'When N is large and R high 
(as here), there is not much point in computing a SER • 

Suppose that Rl (2345) = .25 and that N = 41. Is this R significant? Sub
stituting in (112), we have 

1- ,252 

SER'= = .16 
y41-5 . 

and the .95 confidence interval for the population R is .25 ± 1.96 X .16 
. or from -.06 to .56. Multiple R is obviously not significant: the lower 
; limit of the .95 confidence interval is negative and the population R could 

well be zero. . 

(2) CORRECTING MULTIPLE R FOR INFLATION 

A multiple R computed from a sample always tends to be somewhat 
"inHated" with respect to the population R, owing to the accumulation of 
chance errors which tend to pile up since R is always taken as positiv~. 
The boosting of a multiple R is most pronounced when N is small and 
the number of variables in the problem quite large. An obtained R can 
be corrected or "shrunken" to give a better measure of the population R 
by use of the following formula; 
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R2 - 1 _ k2 (N - 1) 
e- (N-in) 

(shrinkage formula for correcting an inflated multiple R) 

where 

N = size of the sample 
m = number of variables in the problem 

(N - !.1t) = degrees of freedom 
k2 = (1- R2) 

(113) 

In the 3-variable problem in Table 62, R = .83, N = 450 and m = 3; 
k2 = (1 - ,832 ) or .31. Substituting in (113) we have 

-2 _ (449) 
R c -1- .31 (447) 

and 

"He = .83 

and the correction is negligible. 
The correction made by formula (113) may be considerable, however, 

when N is small, m is large and R is small. Let us consider the example 
given on page 416 in which R 1 (2345) = .25 and N = 41. ls this R inHated? 
Substituting in formula (113) for N = 41, m = 5 and k2 = .94, we have 
that 

and 

-2 _ (40) 
R c -1- .94(36) 

=-.04 

He = yI=JM or essentially zero 

The obtained R1 (234a) is not significantly greater than zero when cor
rected for inflation. Small multiple R's, small samples, and many variables 
always yield results to be interpreted with caution. 

V. SOME PROaLEMS IN PREDICTING FROM THE MULTIPLE 
REGRESSION EQUATION 

We nave seen (p. 154) that the regression coefficients (i.e., the b's) are 
found from the a'S of the tests, and that these, in turn, depend upon the 
units in which the test is scored. The b coefficients give the weights of 
the scores in the independent variables, X2, X3, etc., but not the contribu
tions of these variables without regard to the scoring system employed. 
The latter contrib{1tion is given by the "beta weights" described below. 
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I. The beta (,8) coefficients 

When expressed in terms of u scores, partial regression coefficients are 
usually called beta coefficients. The beta coefficients may be calculateq. 
directly from the b's as follows: 

- b U2 
fJ12.S4 ••• n - 12.S4 ... n -

U1 

(beta coefficients calculated from partial regression coefficients) 

(114) 

The multiple regression equation for n variables may be written in 
u scores as 

zi = fJ12.34 • .• nZ2 + fJ13.24 •.• nZS + ... + fJ1n.23 ... (n-1)Zn 

(multiple regression equation in 'terms of u scores) 

(115) 

Beta coefficients are called "beta weights" to distinguish them from the 
"score weights" (b' s) of the ordinary multiple regression equation. When 
all of our tests have been expressed in u scores (all means = .00 and all 
u's = 1.00), differences in test units as well as differences in variability are 
allowed for. We are then able to determine from the correlations alone 
the relative weight with which each independent variable "enters in" or 
contributes to the criterion, independently of the other factors. 

, 15.8 
To illustrate with the data in Table 62, we find that ,812.S = .57 X 11.2 

. 6.0 ( 
or .80 and that ,813.2 = 1.12 X 11.2 or .60. From 115) above we get 

ZJ. = .80z2 + .60z3 

This equation should be compared with the multiple regression equation. 
xi = .57x2 + 1.12xs in Table 62 which gives the weights to be attached to 

I the scores in X2 and Xs. The weights of .57 and 1.12 tell us the amount by 
which scores in X2 and Xs must be multiplied in order to give the "best" 
prediction of Xl' But these weights do not give us the relative importance 
of general intelligence and study habits in determining the number of 
honor points a freshman will receive. This information is given by the beta 
weights. It is of interest to note that, while the actual score weights ar~ 
as 1:2 (.57 to 1.12), the independent contributions of general intelligence 
(Z2) and study habits (zs) are in the ratio of .80 to .60 or as 4:3. When 
the variabilities (u's) of our tests are all equal and scoring units are com
parable, general intelligence has a proportionately greater influence than 
stugy habits in determining academic achievement. This is certainly the 
result to be expected. 
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2. Multiple R in terms of (3 coefficients 

R2 may be expressed in terms of the beta coefficients and the zero 
order r's: 

R21 (23 .•. ,,) = f312.34 . •. ' "r12 + f313.24 ••. "r13 + ... + f31n.23 ..• ("-1)r1,, 

(multiple R2 in terms of f3 coefficients an~ zero order r's) 

For three variables (116) becomes 

(116) 

From page 418 we find {312.3 = .80 and (313.2 = .60; and from Table 62 
that r12 = .60 and r13 = .32. Substituting in (116), we get 

R21 (23) = .80 X .60 + .60 X .32 
= .48 + .19 

R21 (23) = .67 
R1 (23) = .82 

R21 (23 ... n) gives the proportion of the variance of the criterion meas
ure (XI) attributable to the joint action of the variables X2, Xa ... XlI • 

As shown above, R21(23) = .67; and, accordingly, 67% of whatever makes 
freshmen differ in (1) school achievement can be aHributed to differ
ences in (2) general intelligence and (3) study habits. By means of 
formula (116) the total contribution of .67 can be broken down further 
into the independent contributions of general intelligence (X2 ) and study 
habits (Xa). Thus from the equation R21(2a) = .48 + .19, we know that 
48% is the contribution of general intelligence to the variance of honor 
points, and 19% is the contribution of study habits. The remaining 330/0 
of the variance of Xl must be attributed to factors not measured in our 
problem. 

3. Factors determining the selection of tests in a battery 

The effectiveness with which the composite score obtained from a bat
tery of tests measures the criterion depends (1) upon the intercorrela
tions of the tests in the' battery as well as (2) upon the correlations 
of these tests with the criterion-their validity coefficients. This appears 
clearly in Table 63 in which the criterion correlation of each test is .30, 
but the intecorrelations of the tests of the battery vary from .00 to .60. 
When the tests are uncorrelated (all criterion r's being .30), an increase 
in size of the batteIj from 1 to 9 tests raises multiple R . from .30 to .90. 
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TABLE 63 * Effect of intercorrelations on multiple correlation 

Multiple R's for different numbers of tests, when criterion correlations 
(validities) of all tests are .SO, and the inter correlations are the same and vary 
from .00 to .60. Example: In a battery of 4 tests, all with validities of .30 and 
intercorrela~ions of .30, multiple R is .44. 

Number of Tests Size of Intercorrelations 

.00 .10 .30 .60 

1 .30 .30 .30 .30 
2 .42 .40 .37 .34 
4 .60 .53 .44 .36 
9 .90 .67 .48 .37 

20 t .79 .52 .38 

However, when the intercorrelations of the tests are all .60 and the battery 
is increased in size from 1 to 9 tests, multiple R goes from .SO to .S7. Even 
when the number of tests in the battery is 20 multiple R is only .S8. 

A single test can add to the validity of a battery by "taking out" some 
of the as yet unmeasured part of the criterion. Such a test will show a 
high r with the criterion but relatively low is with the other tests in the 
battery. (See Table 63 and Fig. 68.) Usually it is difficult to find tests, 

FIG. 68 

after the first 4 or 5, which fulfill these requirements. In most group tests 
of general intelligence where the criterion is relatively homogeneous 
(ability to deal with abstract verbal relations, say) the subtests of a bat
tery may exhibit high intercorrelations. This is true to a lesser degree of 
educ;ational achievement tests and of many tests of aptitudes. When the 
criterion is a complex made up of a number of variables (job perform-

.. From R. L. Thorndike, Personnel Selection (New York: John Wiley and Sons, 
1949), p. 191. 

t It is mathematically impossible for 20 tests all to correlate 0.30 with some measure 
and still have zero intercorrelations. 
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ance, success in salesmanship, or professional competence) it is easier to 
find tests of acceptable validitY which will show low relationships with 
the other tests of the battery. But even here the maximum multiple R is 
often reached rather quickly (see p. 437). 

A test may also add to the validity of a battery by acting as a "suppres
sor" variable. Suppose that Test A correlates .50 with a criterion-has 
good validity-while Test B correlates only .10 with the criterion but .60 
with Test A. The R1 (23) = .56 despite the low validity of Test B. This is 
because Test B acts as a suppressor-takes out some of Test A's "non
valid" variance, thus raising the criterion correlation of the battery (see 
Fig. 69). The weights of these two tests in the regression equation con-

FIG. 69 

necting the criterion with A and Bare .69 and - .31. The negative weight 
of Test B serves to suppress that part of Test A not related to the criterion 
and thus gives a better (more valid) measure of the ~iterion than can be 
obtained with Test A, alone. 

VI. LIMITATIONS TO THE USE OF PARTIAL AND MULTIPLE CORRELATION 

Certain cautions in the use of partial and multiple correlation may be 
indicated in concluding this chapter. 

(1) In order that partial coefficients of correlation be valid measures 
of relationship, it is necessary that all zero order coefficients be computed 
from data in which the regression is linear. 

(2) The number of cases in a multiple correlation problem should be
large, especially if there are a number of variables; otherwise the coeffi
cients calculated from the data will have little significance. Coefficients 
which are misleadingly high or low may be obtained when studies which 
involve many variables are based on relativeJy few cases. The question 
of accuracy of computation is also involved. A general rule advocated by 
many workers is that results should be carried to as many decimals as 
there are variables in the problem. How strictly this rule is to be followed 
must depend upon the accuracy of the original measures. 
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(3) A serious limitation to a clear-cut interpretation of a partial r arises 
from the fact that most of the tests employed by psychologists probably 
depend upon a large number of "determiners." When we "partial out" the 
influence of clear-cut and relatively objeCtive factors such as age, height, 
school grade, etc., we have a reasonably clear notion of what the "partials" 
mean. But when we attempt to render variability due to "logical memory" 
constant by partialing out memory test scores from the correlation be
tween general intelligence test scores and educational achievement, the 
result is by no means so unequivocal. The abilities determining the scores 
in general intelligence and in school achievement undoubtedly overlap 
the memory test in other respects than in the "memory" involved. Partial
ing out a memory test score from the correlation between general intelli
gence and educational achievement, therefore, will render constant the 
influence of many factors not strictly "memory," i.e., partial out too much. 

To illustrate this point again it would be fallacious to interpret the 
partial correlation between reading comprehension and arithmetic, say, 
with the influence of "general intelligence" partialed out, as giving the net 
relationship between these two variables for a constant degree of intelli
gence. Both reading and arithmetic enter with heavy, but unknown, 
weight into most general intelligence tests; hence the partial correlation 
between these two, for general intelligence constant, cannot be inter
preted in a clear-cut and meaningful way. 

Partial r's obtained from psychological and educational tests, though 
often difficult to interpret, may be used in multiple regression equations 
when the purpose is to determine the relatiye weight to be assigned the 
various tests of a battery. But we should be cautious in attempting to give 
psychological meaning to such residual, i.e., partial, r's. Several writers 
have discussed this problem, and should be referred to by the investigator 
who plans to use partial and multiple correlation extensively. 

( 4) Perhaps the chief limitation to R, the coefficient of multiple cor
relation, is the fact that, since it is always positive, variable errors of 

I sampling tend to accumulate and thus make the cot;lfficierit too large. A 
correction to be applied to R, when the sample is small and the number 
of variables large, has been given on page 416. This correction gives the 
value which R would most probably take in the population from which 
our sample was drawn. 

PROBLEMS 

1. The correlation between a general intelligence test and school achieve
ment in a group of children from 8 to 14 years old is .80. The correlation 
between the general intelligence test and age in the same group is .70; and 
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the correlation between schQol achievement anu age is .60. What is the 
correlation between general intelligence and school achievement in chil
dren of the same age? Comment upon your result. 

2. In a group of 100 college freshmen, the corre~ation between (1) intelli
gence and (2) the A cancellation test is .20. The correlation between (1) 
intelligence and (3) a battery of controlled association tests in the same 
group is .70. If the correlation between (2) cancellation and (3) controlled 
association is .45, what is the "net" correlation between intelligence and 
cancellation in this group? Between intelligence and controlled association? 
Interpret your results. 

3 .. Explain why some variables are of such a nature that it is difficult to hold 
them "constant," and hence to employ them in problems involving partial 
correlation. 

4. Given the following data for 56 children: 

Ml = 101.71 
Ul = 13.65. 
r 12 = .41 

Xl = Stanford-Binet I.Q. 
X2 = Memory for Objects 
X3 = Cube Imitation 

M2 = 10.06 
U2 = 3.06 
r13 = .50 

Ma = 3.35 
U3 = 2.02 
r23 = :16 

(a) Work out the,regression equation of X2 and X3 upon Xl, using the 
method of section II. 

(b) Compute Rl (23) and u(eBiXl )' 

(c) If a child's score is 12 in Test X2 and 4 in Test X3 , what is his most 
probable score in Xl (I.Q.)? 

5. Given the following data for 75 cases: 

Xl = criterion: average grades in freshman year in co!!ege 
X2 = average grade over 4 years of high school ' 
X3 = score. on group intelligence test 

Ml = 78.00 
Ul = 10.21 
r12 = .67 

M2 = 87.20 
U2 = 6.02 
r13 = .75 

M3 = 32.80 
U3 = 10.35 
'23 == .63 

(a) Work out the regression equation of X2 and X3 on Xl' 
(b) Compute R l (23) and u(eBtXl)' 

(c) If the minimum entrance requirements are a grade of 80 in high 
school and a score of 40 on the intelligence test, what grade in fresh
man class would you expect of a candidate who earned these scores? 

6. Using the data in (5) above 
(a) Find the .95 confidence interval for rI8.2::::: .57 
(b) Find the .95 confidence interval for b13,2:::: .54 
(c) Is Rl (23) Significant at .01 level? 
(d) Correct Rl (23) for inflation. 

-0 
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7. Work out the regression equation of (5) above in terms of beta coefficients. 
What are the relative contributions of high-school grades and intelligence 
test scores to predicted peiformance in freshman class in college? 

8. Let Xl be a criterion and X 2 and X3 be two other tests. Correlations and 
tT'S are as follows: 

'12 = .60 
'13 = .50 
'23 = .20 

tTl = 5.00 
tT2 = 10.00 
tT3 = 8.00 

How much more accurately can Xl be predicted from X 2 and X3 than from 
either alone? 

9. Given a team of two tests, each of which correlates .50 with a criterion. 
If the two tests correlate .20 
(a) how much would the addition of another test which correlates .50 

with the criterion and .20 with each of the other tests improve the 
predictive value of the team? 

(b) how much would the addition of two such tests improve the predictive 
value of the team? 

10. Test A correlates .60 with a criterion and .50 with Test B, which correlates 
only .10 with the criterion. What is the multiple R of A and B with the 
criterion? Why is it higher than the correlation of A with the criterion? 

II. Two absolutely independent tests, Band C, completely determine the 
criterion A. If B correlates .50 with A, what is the correlation of C and A? 
What is the multiple correlation of A with Band C? 

12. Comment upon the following statements: 
(a) It is good practice to correlate E.Q.'s achieved upon two educational 

achievement tests, no matter how wide the age range. 
(b) The positive correlation between average AGCT scores by states and 

the average elevation of the states above sea level proves the close 
relationship of intelligence and geography. . 

( c ) The correlation between memory test scores and tapping rate in a 
group of 200 eight-year-old .children is .20; and the correlation be
tween memory test scores and tapping rate in a group of 100 college 
freshmen is .10. When the two groups are combined the correlation 
between these two tests becomes .40. This shows that we must have 
large groups in order to get high correlations. 

ANSWERS 

I. Partial" = .67 
2. , (intelligence and cancellation) = -.18; , (intelligence and controlled 

association) = .70 
4. (a) Xl = I.53X2 + 3.02X3 + 76 (to nearest whole number) 

(b) Rl (23) = .60; tT(edIl) = 10.93 
(c) 107 
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5. (a) x;_ = .55X2 + .54Xa + 12 (to nearest whole number) 
(b) R1(2a) = .79; <T(eBt Xl) = 6.23 
(c) 78 

6. (a) .39 to .71 
(b) .36to.72 
(c) Yes. RI (2a) = .79 ± .04 
(d) .78 

7. zi = .32z2 + .55za. Intelligence contributes almost twice as much as high
school grades (1. 7 :: 1) 

8. From X2 alone <T(e8t Xl) = 4.0 
From Xs alone <Tlest X ) = 4.3 
From X 2 and Xa togetber, <T(eBtX

I
) = 3.5 

9. (a) R increases from .64 to .72 (b) R increases from .64 to .76 
10. RCr(AB) = .65 
11. rAC = .87; and RA(BCI) = 1.00 

1-_1' - ._~. - : 
... ...., -



CHAPTER 16 

MULTIPLE CORRELATION 
IN TEST SELECTION 

I. THE WHERRY-DOOLITTLE TEST SELECTION METHOD * 

The method of solving multiple correlation problems outlined in Table 
62 of Chapter 15 is adequate when there are only three (or not more than 
four) variables. In problems involving more than four variables, however, 
the mechanics of calculation become almost prohibitive unless some sys
tematic scheme of solution is adopted (p. 4~O). The Wherry-Doolittle 
Test Selection Method, to be presented in this seGtion, provides a method 
of solving certain types of multiple correlation problems with a minimum 
of statistical labor. This method selects the tests of the battery analytically 
and adds them one at a time until a maximum R is obtained. To illustrate, 
suppose we wish to predict aptitude for a certain technical job in a fac
tory. Criterion ratings for job proficiency hav,e been obtai~ed and eight 
tests tried out as possible indicators 'of job aptitude. By use of the Wherry
Doolittle method we can (1) select those tests (e.g., three or four) which 
y,ield a maximum R with the criterion and discard the rest; (2) calculate 
'the multiple R after the addition of each test, stopping the process when R 
no longer increases; (3) compute a multiple regression equation from 
wh~ch the criterion can be predicted with the highest precision of which 
the given list of tests is capable. 

The application of the Wherry-Doolittle test selection method to an 
actual problem is shown in example (1) below. Steps in computation are 
outlined in order and are illustrated by reference to the data of exam
ple (1), so that the student may follow the process in detail. 

o Stead, W. H., Shartle, C. L" et at, Occupational Counseling Techniques (New 
York: American Book (:0., 1940), Appendix 5. 

426 
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I. Solution of a multiple correl,ation problem by the Wherry-Doolittle Test 
Selection Method 

Example (1) In Table 64 are presented the intercorrelations of 
ten tests administered in the Minnesota study of Mechanical Ability. 
The criterion-called the "quality" criterion-was a measure of the ex
cellence of mechanical work done by 100 junior high-school boys. The 
tests in Table 64 are fairly representative of the wide range of meas
ures used in the Minnesota study. Our immediate problem is to choose 
from among these variables the most valid battery of tests, i.e., those 
tests which will predict the criterion most efficiently. Selection of tests 
is made by the Wherry-Doolittle method. 

TABLE 64 Intercorrelations of ten tests and a criterion 

(Data from the Minnesota Study of Mechanical Ability 0) 

C 
1 
2 
3 
4 
5 
6, 
7 
8 
9 

I 

List of Tests (N = 100) 

C = Quality criterion 
1 = Packing blocks 
2 = Card sorting 
3 = Minnesota spatial relations boards, A, B, C, D 
4 = Paper form boards, A and B 
5 = Stenquist Picture I 
6 = Stenquist Picture II 
7 = Minnesota assembly boxes, A, B, C 
8 = Mechanical operations questionnaire 
9 == Interest analysis blank 

10 = Otis intelligence test 

2 3 4 5 6 7 8 

.26 .19 .53 .52 .24 .31 .55 .30 
.52 .34 .14 .18 .21 .30 .00 

.23 .14 .10 .24 .13 -.12 
.63 042 .39 .56 .22 

.37 .30 049 .24 
.54 .46 .24 

AD .19 
040 

9 

.55 

.34 

.23 

.55 

.61 

.23 

.13 
Al 
.25 

Steps in the solution of example (1) may be outlined in order. 

10 

.26 

.00 

.08 

.~3 

.56 

.11 

.21 

.13 
.18 
.38 

o Paterson, D. G., Elliott, R. M., et al., Minnesota Mechanical Ability Tests (Minne
apolis: The University of Minnesota Press, 1930), Appendix 4. 
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Step I 

Draw up work sheets like those of Tables 65 and 66. The correlation 
coefficients between tests and criterion are entered in Table 64. 

Step 2 

Enter these coefficients with signs reversed in the VI row of Table 65. 0 

The numbers heading the columns refer to the tests. 

TABLE 65 

Tests 
. 1 2 3 4 5 6 7 8 9 10 

VI -.260 -.190 -.530 -.520 -.240 -.310 -.550 -.300 -.550 -.260 
V 2 -.095 -.118 -.222 -.250 .013 -.090 -.080 -.324 -.188 
Va -;010 -.049 -.097 -.091 .029 -.103 -.047 

I 
-.061 

V 4 .005 -.034 I -.057 .054 -.072 -.053 -.056 
V5 -.012 -.039 I .062 -.065 -.051 -.018 

V I 2 = (-.550)2 = 3025. V 22 = (-.324)2 = 1261. Vl' = (-.097)2 = 0167. 
ZI 1.000 . , Z2 .832 . , Za .563 . , 

Step 3 

V 42 = (-.057)2 = 0066. 
Z4 .489 . , 

V52 = (-.065)2 =.0054 
Z5 .775 

Enter the numbers 1.000 in each column of the row ZI in Table 66. 

TABLE 66 

Tests 

1 2 3 4 .5 6 7 8 9 10 

ZI 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.DOO 
Z2 .910 .983 .686 .760 .788 .840 .840 .832 .983 

!Za .853 .945 .563 .559 .786 .839 .831 

I 
.854 

Z4 .839 .931 I .489 .748 .782 .829 .852 
Z5 .796 .927 I .737 .775 .829 .637 

1 
.832 = 1.202 

1 
-=1.776 
.563 

1 
.489 = 2.045 

• Correlation coefficients are assumed to be accurate to three or to four decimals in 
subsequent calculations to avoid the loss of precision which results when decimals are 
rounded to two places (see p. 405). 
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Step 4 

Select that test having the highest ~:2 quotient as the first test of the 

battery. From Tables 65 and 66 we find that Tests 7 and 9 both have cor
relations of .550 with the criterion, and that these are the largest Is in the 
table. Either Test 7 or Test 9 could be selected as the first test of our 
battery. We have chosen Test 7 because it is the more objective measure 
of performance. 

Step 5 

Apply the Wherry shrinkage formula 

R2 = 1 _ K2 ( N - 1) 
N-m 

(117) 

in which R is the "shrunken" multiple correlation coefficient, the coeffi
cient from which chance error has been removed. o This corrected R may 
be calculated in a systematic way as follows: 

( 1) Prepare a work sheet similar to that shown in Table 67. 

TABLE 67 

a b c d e f g 

V 2 N-l 1(2 R2 R Test 
m m K2 

Zm N-m # 

0 1.0000 (N = 100) 
1 .3025 .6975 1.000 .6975 .3025 .5500 7 
2 .1261 .5714 1.010 .5771 .4229 .6503 9 
3 .0167 .5547 1.021 .56~3 .4337 .6586 3 
4 .0066 .5481 1.031 .5651 .4349 .6595 4 

5 .0054 .5427 1.042 .5655 .4345 .6591 6 

(1) Enter 1.0000 in column c, row 0, under K2. Enter N = 100 in column d. 

(3) 
. V1

2 • V12 (-.550)2 
Enter the quotient ~ In column b, row 1. ~ = 1.000 = .3025 t 

(4) Subtract .3025 from 1.000 to give .6975 as the entry in column c 
under K2. ' 

"Wherry, R. J., '{t. New Formu:la for Predicting the Shrinkage of the Coefficient of 
Multiple Correlation," Annals of Mathematical Statistics, 1931, Vol. 2. 440-451. 

t Quotient is taken to four decimals (p. 405). 
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(5) F · d th . (N - 1) d d" 1 d 
ill e quotient (N _ m) an recor It ill co umn . 

(N - 1) = 99; and since m (number of tests selected) is 1, (N - m) 
(N -1) 

also eq!lals 99 and (N _ m) = 1.000. 

(6) Write the product of columns c and d in column e: .6975 X ,1.000 
= .6975. 

(7) Subtract the column e entry from 1.000 to obtain R2 (the shrunken 
multiple correlation coefficient) in column f. In Table 67 the Jr2 entry, 
of course, is .3025. 

(8) Find the square root of the column f entry and enter the result in 
column g under R. Our entry is .5500, the correlation of Test 7 with 
the criterion. No correction for chance eHors is necessary for one test. 

Step 6 

To aid in the selection of a second test to be added to our battery of 
one, a work sheet similar to that shown in Table 68 should be prepared. 
Calculations in Table 68 are as follows: 

/ 

(I) Leave a l row blank. 
(2) Enter in row hI the correlations of Test 7 (first selected test) with each 

of the other tests in Table 64. These r's are .300, .130, .560, etc., and 
are entered in the columns numbered to correspond to the tests. Enter 
1.000 in the column for Test 7. In column -C enter the correlation of 
Test 7 with the criterion with sign reversed, i.e., as -.550. 

(3) Write the algebraic sum of the hI entries in the "Checl<; Sum" column. 
This sum is 3.730. _ 

(4) Multiply each hI entry by the negative r.eciprocal of the hI entry for 
Test 7, the first selected test. Enter these products in the CI row. Since 
the negative reciprocal of Test _7's hI entry is -1.()OO, we need simply 
write the hI entries in the ci row with signs reversed. 

Step 7 

Draw a vertical line under Test 7 in Table 65 to show that it has been 
selected. To select a second test proceed as follows: 

(1) To each VI entry in Table 65, add algebraically the product of .the hI 
entry in the criterion (-C) column of Table 68 by the CI entry for each 
of the other tests. Enter results in the V 2 row. The formula for V 2 is 
V 2 = VI + hI (criterion) X c1 (each test). To illustrate, from Table 68 
and Table 65 we have 

For Test 1: V 2 = -.260 + (-.550) X (-.300) = 
-.260 + .165 = -.095 
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For Test 4: "2 == -.520 + (-.550) X (-A90) == 
-.520 + .270 d:....250 

For Test 9: V 2 == -.550 + (-.550) X (-.410) = 
-.550 + .226 = -.324 

(2) To each ZI in Table 66 add algebraically the product of the bi and CI 
entries ·for each test got from Table 68. Enter these results in the ~ 
row. The formula is Z2 = ZI + bi (a given test) X CI (same test). To 
illustrate, from Tables 65 and 68: 

Step 8 

For Test 1: Z2 == 1.000 + (.300) X (-.300) == 1.000 - .090 = .910 
For Test 4: Z2 == 1.000 + (A90) X (-0490) = 1.000 - .240 = .760 
For Test 9: Z2 == 1.000 + (0410) X (-0410) = 1.000 - .168 = .832 

V 2 

Now select the test having the largest i quotient, as the second test 

V 2 

for our battery. The quantity i is a measure of the amount which the 

second test contributes to the squared multiple correlation coefficient, H2. 
V22 

From Tables 65 and 66 we find that Test 9 has the largest z; quotient: 

(-.324)2 == 1261 
.832 . . 

Step 9 

To calculate the new multiple correlation coefficient when Test 9 is 
added to Test 7, proceed as follows: 

(1) The quantity .1261 (i2) is entered,in column b, row 2 of Table 67. 

V2 -
(2) Subtract the ratio z: from the J(2 entry in column c, row 1, and 

enter the result in column c, row 2; e.g., for the entry in column c, row ~, 
we have .6975 - .1261, or .5714. 

(3) Find the quotient «: ~ !~. Since N == 100 and m (number of tests 

(N -1) 99 
chosen) == 2, we have (N _ m) or 98 = 1.010, as the column d, row 

2 entry. 
(4) Record the product of the c and d columns in column e: .5714 X 1.010 

= .5771. 
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( 5) Subtract .5771 (column e) from 1.000 to give 04229 as the entry in 
column f, row 2. 

(6) Take the square root of 04229 and enter the result, .6503, in column g. 
This is the multiple coefficient Ii corrected for chance errors. It is clear 
that by adding Test 9 to Test 7 we increase Ii: from .5500 to .6503, a 
substantial gain. 

Step 10 

Since If for Tests 7 and 9-is larger than the correlation for Test 7 alone, 
we proceed to add a third test in the hope of further increasing the multi
ple If. The procedure is shown in Step 11. 

Step II 

Return to Table 68 and 

( 1) Record in the a2 row the correlation coefficient of the second selected 
test (i.e., Test 9) with each of the other tests and with the criterion. 
(Read r's from Table 64.) The correlation of Test 9 with the criterion 
is entered with sign reversed (i.e., as -.550). 

(2) Enter the algebraic sum of the a2 entries (i.e., 3.580) in the Check 
Sum column. 

(3) Draw a vertical line down. through the b2 and 02 rows for Test 7, the 
first selected test. This indicates that Test 7 has already been chosen. 

(4) Compute the b2 entry for each test by adding to the ~ entry the product 
of the b1 entry of the given test by the Cl entry of the second selected 
test \ i.e., Test ~). The f~rmu\a is b2 = ~ + b l {giveu test} X CI (sec
ond selected test). To illustrate: 

For Test 2: b2 == .230 + (.130) (-.410) = .230 - .053 = .177 

For Test 6: b2 := .130 + (.400) (-.410) = .130 - .164 := -.034 

For Test 10: b2 := .380 + (.130) (-.410) = .380 - .053 = .327 

Compute b2 entries for criterion and Check Sum column in the same 
way. For the criterion column we have -.550 + (-.550) (-0410) or 
-.324. For the Cneck Sum column we have 3.580 + (3.730) (-.410) 
or 2.051. 

(5) There are three checks for the b2 row. (a) The entry for the second 
selected test (Tesl:' 9) should equal the Z2 entry for the same test in 
Table 66. Note that both entries are .832. (b) The entry in the criterion 
column should equal the V 2 entry of the s~cond selected test (Test 9) in 
Table 65; both entries are -.324. (c) The entry in the Check Sum 
column should equal the sum of all of the entries in the b2 rows. Adding 
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.217, .177, .320, etc., we get 2.051, checking our calculations to the 
third decimal. 

(6) Multiply each b2 entry by the negative reciprocal of the b2 entry for the 
second selected test (Test 9), and record results in the C2 row. The 
negative reciprocal of .832 is -1.202. The C2 entry for Test 1 is .217 
X -1.202 or -.261; for Test 2, -.177 X -1.202 or -.213; and so on 
for the other tests. For the criterion column the C2 entry is (-.324) X 
-1.202 or .389; and for the Check Sum the C2 entry is 2.051 X -1.202 
or -2.465. 

(7) There are three checks for the C2 entries. (a) The C2 row entry of the 
second selected test (Test 9) should be -1.000. (b) The C2 entry in 
the Check Sum column should equal the sum of all C2 entries. Adding 
the C2 t;lntries in Table 68, we nnd the sum to be -2.465, the Check 
Sum entry. (c) The product of the b2 and C2 entries in the criterion 

column should equal the quotient ~:.2 in column b, row 2, of Table 67 

in absolute value. Note that the product (-.324 X .389) = -.1261, thus 
checking our entry (disregard signs). 

Step 12 

Draw a vertical line under Test 9 in Table 65, to indicate that it 
has been selected as our second test. Then proceed as in Step 7 to com
pute V 8 and Zs in order to select a third test. The formula for V s is 
V 3 = V 2 + b2 ( criterion) X C2 ( each test). The formula for Zs is 
Zs = Z2 + b2 (a given test) X C2 (same test). The third selected testis that 

V2 
one which has the largest ;a quotient in Table 65. This is Test 3, for 

which Va = -.222+ (-.324)(-.385) or -.097; and Za = .686+(.320) 
V32 • -" 

(-.385) = .563. The quotient Za = .0167. 

Step 13 

Entering .0167 (';32) in column b, row 3, of Table 67, follow the pro-

d 
- (N -1) '. 

ce ures of Step 9 to get R = .6586. Note that (N _ m) = 99/97 or 1.021; 

and that the new R is larger than the .6500 found for the two tests, 7 
and 9. We include Test 3 in our battery, therefore, and proceed to calcu
late as, bs, and Cs (Table 68), follpwing Step 11, in order to ~elect a 
fourth test. 
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Step 14 

The as entries in Table 68 are the correlations of Test 3 with each of 
the other tests including the criterion. The <:riterion correlation is entered 
in the -C column with a negative sign (i.e., as -.530). 

( 1) The formula for h3 is bs = as + b i (given test), X C1 (third selected 
test) + b2 (given test) X C2 (third selected test). To illustrate, 

For Test 1: bs = .340 + (.300) (-.560) + (.217)( -.385) = .088 

For Test 4: ha = .630 + (A90) (-.560) + (0409)(-.385) = .199 

Check the b3 entries by Step 11 (5). (a) Note that the b3 entry for the 
third selected test (Test 3) equals the Z3 entry for Test 3 in Table 66, 
namely, .563. (b) The entry in the criterion column equals the V3 
entry of the third selected test (Test 3) in Table 65, i.e., -.097. (c) 
The Check Sum entry (1.161) equals the sum of the entries in the h3 
row. 

(2) The formula for Ca is ba X the negative reciprocal of the b3 entry for 
the third selected test (Test 3). The negative reciprocal of .563 is 
-1.776. To illustrate the calculation for Test 5, C3 = .146 X -1.776 
= -.259. Check the C3 entries by Step 11 (7). (a) The Ca row entry 

of the third selected test (Test 3) equals -1.000. (b) The ea entry in 
the Check Sum column, namely, -2.062, equals the sum of the Ca row. 
( c ) The product of the ba and C3 entries in the criterion. column 

(namely, -.097 X .172) equals the quotient (';:) (i.e., .0167) in 

absolute value. 

Step 15 

Repeat Step 12 to lind V 4 and Z4' The formula for V 4 is V" = Va + ba 
( criterion) X Ca (each test). Also, the formula for Z4 is Z3 + b3 (a given 
test) X C3 (same test). For Test 4, V" = -.091 + (-.097)( -.353) or 

, V2 
-.057; and Z4 = .559 + (.199) (-.353) 'or .489. The quotient, Z: ' equals 

( -.057)2 
.489 or .0066. While none of the V4 entries is large, Test 4 has the 

V 2 

largest z: quotient, aild hence is selected as our fourth test. Enter 

.0066 (~:2) in column b, row 4, of Table 67. Follow the procedure of 

- (N -1) 
Slep 9 to get R = .f595. Note that (N _ m) is 99/96 or 1.031; and that 
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the new If is but slightly larger than the R of .6586 found for the three 
tests, 7, 9, and 3. When R decreases or fails to increase, there is no point in 
adding new tests to the battery. The increase in R is so small as a result 
of adding Test 4 that it is hardly profitable to enlarge our battery by a 
fifth test. We shall add a fifth test, however, in order to illustrate a further 
step in the selection process. 

Step 16 

To choose a fifth test, calculate a4, b4, and C4, following Step 11, and 
enter the results in Table 68. The a4 entries are the correlations of the 
fourth selected test (Test 4) with each of the other tests inCluding the 
criterion (with sign reversed). 

(1) The formula for b4 may readily be written by analogy to the formulas 
for ba and b2 as follows: b4 = a4 + b 1 (given test) X C1 (fourth se
lected test) + b2 (given test) X C2 (fourth selected test) + ba (given 
test) X Cs (fourth selected test). To illustrate 

For Test 6: b4 =.300+ (.400)(-.490) + (-.034)(-.492) 
+ (.179)(-.353) = .058 

For Test 10: b4 =.560+ (.130)(-.490)'+ (.327)(-.492) 
+ (.031) (-.353) = .324 

Check the b4 entries by Step 11 (5). (a) The b4 entry for the fourth 
selected test (Test 4) equals the Z4 entry for Test 4 in Table 66, 
namely, .489. (b) The entry in the criterion column equals the V 4 

entry of the fourth selected test (Test 4), i.e., -.057. (c) The Check 
Sum (.715) equals the sum of the entries in the b4 row. 

(2) To find the entries C4' multiply each b4 by the negative reciprocal of the 
b4 entry for the fourth selected test (Test 4). The negative reciprocal 
of .489 is -2.045. To illustrate 

For Test 1: C4 = -.145 X -2.045 = .297. 

Check the C4 entries by Step 11 (7). (a) The C4 row entry of the fourth 
selected test (Test 4) equals -1.000. (b) The C4 entry in the Check 
Sum column, namely, -1.462, equals the sum of the C4 row. (c) The 
product of the b4 and C4 entries in the criterion column (namely, 

-.057 X .117) equals the quotient ~42 (i.e., .0066) in absolute value. 
. 4 

Step 17 

Repeat Step 12 to find V 5 and Z5' V 5 = V 4 + b4 (criterion) X C4 (each 
test); and Z5 = Z4 + b4 (a given test) X C4 (same test). Test 6 has the 



MULTIPLE CORRELATION IN TEST SELECTION • 437 

largest (~:~) quotient (i.e., .0054) and its number is entered in col

umn b, row 5, of Table 67. Following Step 9, we get II = .6591. This 
multiple correlation coefficient is smaller than the preceding 'it We need 
go no further, therefore, as we have reached the point of diminishing 
returns and the addition of a sixth test will not increase the multiple R. It 
may be noted that four (really three) tests constitute a battery which has 
the highest validity of any combination of tests chosen from our list of 
ten. The multiple R between the criterion and all ten tests would be some- . 
what lower-when corrected for chance error-than the R we have found 
for our battery of four tests. The Wherry-Doolittle method not only 
selects the most economical battery but saves a large amount of statis
tical work. 

2. Calculation of the multiple regression equation for tests selected by the 
Wherry-Doolittle method 

Steps involved in setting up a multiple regression equation for the tests 
selected in Table 68 may be set down as follows: 

TABLE 69 

7 9 3 4 -c 
°1 -1.000 -.410 -.560 -.490 .550 

°2 -1.000 -.385 -.492 .389 
cll -1.000 -.353 .172 
C4 -1.000 .117 

Step I 

Draw up a work sheetlike that shown in Table 69. Enter the c entries 
for the four selected tests (namely, 7, 9, 3, and 4) and for the criterion, 
following the order in which the tests were selected for the battery. When 
equated to zero, each row in Table 69 is an equation defining the beta 
weights. 

For our four tests, the equations are 

-1.000,87 - .410,89 - .560,83 - .490,84 + .550 = 0 
-1.000,89 - .385,83 - .492,84 +. .389 = 0 

-1.000,83 - .353,84 + .172 =.0 
-1.000,84 + .117 = 0 
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Step 2 

Solve the fourth equation to find {14 = .117.' 

Step 3 

Substitute for {14 = .117 in the third equation to get {13 = .131. 

Step 4 

Substitute for f33 and {1dn the second equation to get f39 = .281. Finally, 
substitute for f33, f34' and {19 in the first equation to get f31 = .305~ 

Step 5 

The regression equation for predicting the criterion from the four 
selected tests (7, 9, 3, and 4) may be written in u-score form by means of 
formula (115) as follows: 

Zc = f37Z7 + f39 Z9 + f33 za + f34Z4 

in which f37 = f3c7.934; f39 = f3c9.734; f33 = f3c3.974; 

f34 = f3c4.97a. 

Substituting for the f3's we have 

z;, = .305z7 + .281.zg + .13l"za + .1l7z4 

To predict the criterion score of any subject in our group, substitute his 
I scores in tests 7, 9, 3, and 4 (expressed as u scores) in this equation. 

Step 6 

To write the regression equation in score form the (1's mus~ be trans
formed into b's by means of formula (114) as follows: 

The u's are the SD's of the test scores: U7 of Test 7, U9 of Test 9, U c of the 
u 

criterion, etc. In general, bp = _!!_ f311' 
Up 
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Step 7 

The regression equation in score form may now be written 

Xc = b7X7 + boXo + baXs + b4X4 + K • (107) 

and the 

(37) 

3. Checking the f3 weights and multiple R 

Step I 

The f3 weights may be checked by formula (116), in which R is 
expressed in terms of beta coefficients. In the present example, we have 

R2c (7934) = f37Tc7 + f39Tc9 + f3gTc3 + f34TC4 

in which c equals the criterion and the is are the correlations between 
the criterion (c) and the Tests, 7, 9, 3, and 4. Substituting for the r's and 
f3's (computed in the last section) we have 

R2c(7934) = .305 X .550 + .281 X .550 + .131 X .530 + .117 X .520 
= .1678 + .1546 + .0694 + .0608 = .4526 

Rc (7034) = .6728 

From R2C (7934) we know that our battery accounts for 45% of the vari
ance of the criterion. Also (p. 419) our four tests (7, 9, 3 and 4) con

I tribute 17%, 15%, 7% and 6%, respectively, to the variance of the 
criterion. 

Step 2 

The R2 of .4526 calculated above should equal (1 --,- K2) when K2 is 
taken from column c, row 4, in Table 67. From Table 67 we find that 
1 - K2 = 1 - .5481 or .4519 which checks the R2 found above-and hence 
the f3 weights-very dqsely. 

Step 3 

It will be noted thai: the multiple correlation coefficient of .6728 found 
above is somewhat larger than the shrunken R of .6595 found between the 

• This equation is not written for our four tests because. means and SD's are not 
given in Table 64. 

4 
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criterion and our battery of four tests in Table 67. The multiple correla
tion coefficient obtained from a sample always tends-through the oper
ation of chance errors-to be larger than the correlation in the population 
from which the sample was drawn, especially when N is small or the num
ber of test variables large. For this reason, the calculated R must be 
"adjusted" in order to give us a better estimate of the correlation in the 
population. The relationship of the R, corrected for chance errors, to 
the R as usually calculated, is given by the following equation: 

R2 == (N - 1)R2 - (m - 1) 
• (N - m) 

o (U8) 

(relation of R to If corrected for chance errors) 

Substituting .4526 for R2, 99 for (N - 1), 96 for (N - m) and 3 for 
(m-l), we have from (118) that 

and 

R2 = 99 X .4526 - 3 = .4355 
96 

R = .6599 (see Table 67) 

The R of .6599 is the corrected multiple correlation between our criterion 
and test battery, or the multiple correlation coefficient estimated for the 
population from which our sample was drawn. In the present problem, 
shrinkage in multiple R is quite small (.6728 - .6599 == .0129) as the sam
ple is fairly large and there are only four tests in the multiple regression 
equation. 

4. Cautions in the use of the Wherry-Doolittle method 

The Wherry-Doolittle method IS most efficient when a few variables are 
" to be selected from a much larger number. These selected tests may have 

higher correlations with the criterion than they normally would owing to 
sampling fluctuations and/or chance errors operating in our sample. When 
this is true, the resulting multiple R will be too high, and this will appear 
when correlations are computed from a second sample presumably simi
lar to the first sample. Cross validation of this sort (p. 368) is especially 
necyssary when the number of selected variables is small relative to the 
total number of variables. Multiple R, as we have seen, is inflated by the 
presence of chance errors and hence may appear to be much higher than 
it really is. 

o See also formula <.113). 
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II. SPURIOUS CORRELATION 

The correlation between two sets of test scores is said to be spurious 
when it is due in some part to factors others than those which determine 
performance in the tests themselves. In general, spurious correlation arises 
from a failure properly to control conditions; and the most usual effect of 
this lack of control is a ''boosting'' or inflation of the correlation coefficient. 
Some of the common situations which may lead to spurious correlation 
are outlined in this section. 

I. Spurious correlation arising from heterogeneity 

We have shown elsewhere (p. 403) how a lack of uniformity in age 
level may lead to correlations which are misleadingly high. Failure to 
~ake account of heterogeneity introduced by the factor of age is a prolific 
source of error in correlational work. Within a group of boys 10 to 18 years 
old, for example. a substantial correlation will appear between strength of 
grip and memory span, quite apart from any intrinsic relationship, due 
solely to the fact that both variables increase with age. In stating the cor
relation between two tests, or the reliability coefficient of a test, one 
should always be careful to specify the range of ages, grades included, 
and other data bearing upon physical, mental and cultural differences, in 
order to show the degree of heterogeneity in the group. Without this 
information, the r may be of little value. 

Heterogeneity is introduced by other factors than age. When alco
holism, degeneracy and bad heredity are all pOSitively related, the r 
between alcoholism and degeneracy will be too high (because of the 
effect of heredity upon both factors) unless heredity can be "held con
stant." Again, assume that we have measured two distinctly different 
groups, 500 college s~niors and 500 day laborers, upon a cancellation test 
and upon a general intelligence test. The mean ability in both tests will 
be definitely higher in the college group. Now, even if the correlation 
between the two tests is zero within each group taken separately, if the 
two groups are combined a positive correlation will appear because of the 
heterogeneity of the group with respect to age, intelligence and educa
tional background. Such a correlation is, of course, spurious. 

To be a valid measure of relationship, a correlation coefficient should 
be freed of the extraneous influences which affect the relationship be
tween the two variables concerned. This is not always an easy task, as it 
is sometimes difficult to determine just what is extraneous. The correla
tion of a test with a battery of tests of which it is a part is theoretically 

i) 
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spurious-higher than it would be were the test omitted from the battery. 
However, if we want to know which test best represents the entire bat
tery such spurious correlations are quite useful. 

2. Spurious index correlation 

Even when three variables. Xl> X2, and Xa, are uncorrelated, a correla
tion between the indices Zl and Z2 (where Zl = Xt/Xa and Z2 = X2/Xa) 
may appear which is as large as .50. To illustrate, if two individuals 
observe a series of magnitudes (e.g., Galton bar settings) independently, 
the absolute errors of observation (Xl and X2 ) may be uncorrelated, and 
still an appreciable correlation may appear between the errors made by 
the two observers, when these are expressed as percents of the observed 
magnitudes (Xa). The spurious element here, of course, is the common 
factor Xa in the denominator of the ratios. 

One of the commonest examples of a spurious index relationship in 
psychology is found in the correlation of lQ.'s or E.Q.'s obtained from 
intelligence and achievement tests. If the I.Q.'s of 500 children ranging in 
age from 3 to 14 years are calculated from two tests, Xl and X2, the corre-

1 · . b M.A.l M.A.2 f ( h f ation is etween C.A. and C.A .. I C.A. were a constant t e same or 

all children) it would have no effect on the correlation and we would 
simply be correlating M.A.'s. But when C.A. varies from child to child 
there is usually a correlation between C.A. and M.A. which tends to 
increase the r between I.Q.'s-sometimes considerably. 

3. Spurious correlation beiwee'n averages 

Spurious correlation usually results when the averages scores made by 
a number of different groups on a given test are correlated against the 

, averages scores made by the same groups 'on a second test. An example 
is furnished by the correlations reported between mean intelligence test 
scores, by states, and such "educational" factors as number of schools, 
books sold, magazines circulated in the states, etc. Most of these correla
tions are high-many above .90. If average correlations by states are com
pared with the correlations between intelligence scores and number of 
years spentin school within the separate states, these latter Is are usually 
much lower. Correlations between averages become "inHated" because a 
large number of factors which ordinarily reduce the correlation within a 
single group cancel out when averages are taken from group to group. 
Average intelligence test scores, for instances, increase regularly as we go 
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Up the occupational scale from day laborer to the professions; but the 
correlation between intelligence and status (training, salary, etc.) at a 
given occupational level is far from perfect. 

PROBLEMS 

1. The following data were assembled for twelve large cities (of around 
500,000 inhabitants) in a study of factors making for variation in crime. 

2. 

Xc (criterion) = crime rate: number known offenses per 1000 inhabitants 
Xl = percentage of male inhabitants 
X2 = percentage of male native whites of native parentage 
Xa = percentage of foreign-born males 
X4 = number children under five per 1000 married women 15 to 

44 years old 
Xs = number Negroes per 100 of population 
X6 = number male children of foreign-born parents per 100 of 

population 
X7 = number males and females 10 years and over, in manufac

turing, per 100 of population 

Me = 19.9 MI = 49.2 M2 = 22.8 Ma = 10.2 M4 = 481.4 Ms = 4.7 
fTc = 7.9 fTl = 1.3 fT2 = 7.2 fTa = 4.6 fT4 = 74.4 fT5 = 4.0 . 

C 
1 
2 
3 
4 
5 
6 

(a) 

(b) 
(c) 

(d) 
(a) 

(b) 

1 2 
.44 .44 

.01 

M6 = 13.1 M7 = 21.7 
fT6 = 4.2 fT7 = 4.3 

Intercorrelations 

3 4 5 
-.34 -.31 .51 

.25 -.19 -.15 
-.92 -.54 .55 

.44 -.68 
-.06 

6 7 
-.54 -.20 

.01 .22 
-.93 -.30 

.82 040 

.52 .74 
-.67 -.14 

.21 

By means of th~ Wherry-Doolittle method select those variables which 
give a maximum correlation with the criterion. 
Work out the regression equation in score form (p. 159) and <T(e81 X ). 

. c 
Determine the ,independent contribution of each of the selected factors 
to crime rate (to R2). . 

Cqmpare Rand R. Why is the adjustment fairly large? (See p. 440.) 
What is the probable crime rate (from problem 1) for a city in which 
X6 = 15.0, Xl = 50%? X5 = 6.0? 
For a city~ in which X6 = 13, Xl = 48%, and XI) = 5.0? 
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(0) By how much does the use of multiple R reduce <TCest Xc)? 

3. In problem 4, page 423: 
(a) Work out the regression equation using the Wherry-Doolittle method. 
(b) How much shrinkage is there when Rl (23) is corrected for chance 

errors (p. 429)? 

ANSWERS 

1. (a) The H's are, for Variable 6, .540; for Variables 6 and I, .662; for 
Variables 6, 1 and 5, .692. 1{ drops to .688 when Variable 7 is added. 

(b) Xc = -.52X6 + 3.05X1 + .79X5 ~ 127; <T(est X) = 5.7 
(c) RC(615) = .15 + .22 + .20. Variables 6, 1, and 5 contribute approxi

mately 15%, 22% and 20%, respectively. 
(d) R = .76; R = .69 

2. (a) 22.4 per 1000 inhabitants 
(b) 16.5 per 1000 inhabitants 
(0) From 7.9 to 5.7 or about 28%. 

3. (b) From .60 to .59 



CHAPTER 17 

DERIVATIONS OF KEY FORMULAS 

AND SOME ADDITIONAL TECHNIQUES 

.................... : .................... ~ 

This chapter includes (1) the mathematical derivation of certain key 
formulas which appear in the text, and (2) several statistical techniques 
often useful in a specific case but not general enough in application to be 
put in the text. Students often want to know more about the formulas they 
use: where they come from, and what they do. And many times a specific 
procedure, not found in tqe text, fits a given problem. 

I. The sum of the deviations of scores taken from the mean is always zero. 
(Chapter ~3) 

Let Xl, X2, Xa, ..... . X" represent N scores. The mean is M; and Xl 

X2, Xa,. , , , , ,x,. are deviations of the X's from M. Then 

XI-M =X1 

X2 -M=X2 
Xa - M = Xa · . . · . . · . . 
X,,- M =X" 

lX - NM =:sx 

Since, by definition, M = lX/N, NM = lX, and the left side of the 
summation in the fina~ equation above is zero. lx, of course, is also zero. 
Hence the sum of the squares of deviations from the mean is always a 
minimum-is always smaller than the sum of squared deviations taken 
from any other point. In a mechanical sense, the M is the center of gravity 
in the distribution. 

oil 

445 
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2. Formula for the SO when deviations are taken from an arbitrary or assumed 
mean. (Chapter 3) 

A. When scores are ungrouped: 
By definition (formula 12): 

U=~ 
_ J~(X - M)2 

u-'J N 

where X = any score and M is the mean of the distribution. 

. I~X2 2M~X 
Expanding, U = 'IN -~ + NM2 

But M = ~ and substituting, 

or Formula (15), p. 53 

When scores are taken as deviations from an assumed mean o( zero, the 
mean becomes the correction. 

B. When scores are grouped into a frequency distribution: 

Let X = any score 

M = the mean 

x=X-M 

AM = assumed mean 

x'=X-AM 

i = interval 

Then, X = AM + x"i and 

Hence, 

Squaring 

M = AM + ~fx"i 
N 

(See Table 9, p. 51) 

x = x"i - ~fx'i , since x = (X - M) 
N 

2 - J? '2 2 x' i
2 ~/x' (Ix') 

2 
'2 x - x -, - N + N 'J 
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D · ·d· b N ~ 1 ~f ( _,. lfx' .i) 2 d. /lfx2 
IVI 109 Y ,U = N ~ "" -~ an smce u = 'IN 

u= ~,~ [~_ (~)2 ] 
or . J~fx'2 

u = , "J~- c2 

when ~ = correction (c) 

3. The normal probability distribution. (Chapter 5) 

(14) 

The meaning of the normal probability distribution may be clarified 
through two approaches: (1) by way of the binomial distribution, and 
(2) by deriving an equation to fit the known properties of the curve. 

(1) We have seen (pp. 89-94) that the binomial expression (p + q)n 
approaches the normal form shown in Figure 21, when p = q = * and n be
comes infinitely large. The tendency for the distributions of many human traits 
to take the bell-shaped form suggests-but does not prove-that the occurrence 
of physical and mental traits in the general population may be determined by 
the operation of a very large number of genetic factors which combine by 
chance. The student of biology will see here the relationship to Mendel's theory. 

(2) The equation" of the normal probability curve (Figure 21) as given 
on p. 96 is -

N -
y=--e 2u2 
u~ 

in which x = deviation of an X score from M., 

y= " "a y" " Mil 
N = number of cases 

a = the standard deviation 

(22) 

7r = 3.1416 a constant, the ratio of the circumference of a circle to its 
diameter 

e = 2.7183, base of the Napierian system of logarithms 

Examination of the above equation shows that 
-x' 

(a) when x = 0 (x i~ at the center of the curve), the term e 2u2 equals 1.00, 

and Yo = u:;27r . Thus Yo is the maximum ordinate, and stands at the center 

.. Students unfamiliar with the calculus may not follow all of the details of this 
derivation, but they should understand its rationale. 

4 
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of the curve. When y = 0, the equation becomes __ 1_ = 0, and x approaches 
x2 

e 2<T2 

00 as y approaches zero. Hence it is clear that equation (22) has a maximum at 
the mean and that the curve (x-values) stretch to infinity in the + and - direc
tions from the mean. 

(b) since x in the formula is squared, either + or - values have the same 
effect, and the curve is bilaterally symmetrical. 

T. L. Kelley'" has proposed a differential equation, ~~ = C xy as a good 

starting point in our derivation. This equation has an origin at 0, and the 
slope of the curve is 0 both when x = 0 and y = O. These are important 
characteristics of the normal probability curve. 

or 

or 

We can integrate the expression cz = C xy in the following steps: t 

1 
dy'-= -Cx 

Y 
-Cx2 

logy=--+k 
2 

-Cx2 

y= ke 2 

To evaluate the constant k, we must go to the moments * of the distribu
tion: 

The zero moment is N or k /27T 
. ~ c 

1st " II 0 

2nd " 
k~27T IIN'~or- -
c c 

/ Solving for c and k in the first and third .equations of the moments, we 

find that c = 1/ ~ and k = N / (}' Y27T. This gives finally by substitution 
in the third integral equation: 

N -
y=--e 2~,. 

CT~. 
(22) 

OKelley, T. L., Statistical Method (New York: Macmillan Co., 1923), p. 94. 
t All of the integrals used in this derivation were taken from Peirce, B. 0., A S/wrt 

Table of Integrals (Boston: Ginn and Co., 1910), pp. 62-$3 especially. 
f For meaning of moments, see Treloar, A. E., Elements of Statistical Reasoning 

(New York: John Wiley, 1939), Chapter 5. 
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Certain properties of the normal curve are important: 

(a) the points of inflection in tbe curve are ± 1 SD from the mean. These 
are the points at which the curve changes its direction from concave to convex. 

(b) The Q or PE = .6745 SD. One PE laid off in the + and - directions 
from the M includes the middle 50% of the cases (p. 99). 

4. The product-moment (Pearson) coefficient of correlation. 

Chapters 6 and 7 have given several formulas for the coefficient of 
correlation (r), and have illustrated many of their uses. The present 
section will outline a mathematical derivation for r. 

A straightforward way of deriving r is to compute it from the re
gression equations. On page 157, we gave the equation of the straight 
line which passes through the origin as 

y=mx 

wherein m is the slope of the line, i.e., the tangent of the angle a which 
the line makes with the X-axis. (See Figure 41). 

In Figure 70, a correlation diagram has been laid out in u-units. These 
z-scores (p. 312) provide a scale in which the units are equal. Our goal 
is to set up a line y = mx which will "best fit" the means of the columns 

... !I ... =mx 
... ... .. .. .. Z.,.. ... ., ., ... cC .. ... 

Zx ... ... ... .. ... ... ... ... ... ... 
" 

FIG. 70 
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( or rows). 0 The slope of the line y = mx in Figure 70 is zvl z'" which is 
also the tangent, of the angle a. The degree of the relationship between 
y and x is measured by the tangent of the angle which the best fitting line 
makes with the X-axis. As the relation changes (see p. 131) the tangent 
of a also changes. It is 0 when the relation line coincides with the horizon
tal axis and 1.00 when it coincides with vertical axis. Hence, the tangent 
or r may be thought of as a measure of the correlation between x and y. 

Wheny=mx 
(y - mx) = e, is a residual, i.e., measures the amount by which the y 

predicted from x (mx) misses the actual value of y. 

Squaring and summing: l(y - mx)2 = le2 for the whole group. 
In order to make le2 a minimum (i.e., reduce the errors of measurement 

as much as possible), we must differentiate l (y - mx) 2 with respect to m 
and set the result equal to zero. t 

a(ly2 - 2mlxy + lx2m2 ) " 
am = -2lxy + 2mlx- = 0 

Putting this last expression equal to zero and solving for m, we have 
that 

lxy 
m= lX2 

and this is the value of m for which the sum of the squared residuals is a 
minimum.t 

From Figure 70, we know that the tangent of the angle a made by the 
relation line with the X-axis is r = zlIlz:r; and hence ZII = r z"'. Since, by 
definition, z'" = xlO'", and ZII = Y I 0'11' we have that 

y = r 0'1/ 'x 
- 0'", 

. lxy 
/ The slope here (m) is r 0'1110'", which by the formula above is lX2 . Hence 

r = ---"'; and since 0'", = -- and lX2 = u",2·N we have finally that lXy'u ~lX2 
lx2 'O'Il N 

lxy'u", 
r = -;-;--,;;--=

N ~fI)'UII 

orr= lxy 
N O'",'UII 

This 'is the standard formula for r. 

o Only the means of the columns are considered here. 
t Granville, W. A., Differential and Integral Calculus (New York: Ginn and Co., 

1911), especially Chapter 3 on Maxima and Minima. 
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5. An interpretation of r in terms of displacement. 

Another interpretation of ~ (see p. 175) which is often useful is pro
vided by Table 70. Knowing the correlation between two sets of scores, 
we can read the probability that a student's score in the second test will 
miss his score in the first test, and by how much. Suppose, for example, 
that the correlation between an Aptitude Test and grades In high school is 
.60. Going down the first column in Table 70 to .60, we read that the 
chances are 29 in 100 that a student's graae will be in the same "tenth" 
of the distribution as his Aptitude score. The chances are 73 in 100 that 
the grade will not be "displaced" with reference to aptitude by more than 
one tenth of the grade distribution; and we may be virtually certain 
(chances are 99.2 in 100) that the grade will not be displaced with ref
erence to aptitude by more than three tenths. 

(J1 ...c. VI l'-> 3: 3: 3 tv toN ~ c..n 
s: ~ s: :ii: 9 !'I) 

p ~ 3: ;s: s: 
P !=I P P 0. 

P P p P 
FIG. 71 Illustrating the division of the base of a normal surface of frequency 

into "tenths." M.D. = PE 

Figure 71 shows the meaning of "tenths" of score. In the diagram, the 
baseline of a normal probability curve has been divided into 10 equal 
parts-5 on each side of the mean. The unit of measurement is the prob
able error (PE = .6745 CT, p. 99). Just 25% of the cases in the distribution 
fall within that part of the curve + and - 1 PE from the mean; 16.13% fall 
in the next two divisibns on each side of the mean, and so on. The top 
and bottom tenths contain just .31 of 1%. All of these proportions can be 
verified from Table A. [M.D. (mean deviation) = PEl 

Another illustration will serve to clarify this interpretation in terms of 
displacement. SUJ'pose that the WISe has been administered to 100 
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second grade children, and 6 months later is repeated. The correlation, 
say, is .80. For the WISe, the u is 15 and the PE is approximately 10. 
Hence both distributions can be marked off into 10 equal IQ widths (see 
Figure 71). From Table 70 we know that 41 of the 100 children should
on the second test-have IQs in the same tenth as in the first test. There 
are 89 children who should not be displaced by more than one tenth, 
i.e., 10 IQ points in the second test, and virtuaIIy all vary by less than two 
tenths, i.e., 20 IQ points. 

TABLE 70 

Showing, for various amounts of correlation, the chances in 100 that 
the second measure of an individual will be in the same "tenth" of a 
distribution, not displaced more than I "tenth," 2 "tenths," etc. The 
sixth line is read as follows: In the case of a .50 correlation the chances 
are only 26 in 100 that an individual's second score will be in the same 
"tenth" of the distribution as his first score; the chances are 69 in 100 
that his second score will not be displaced by more than 1 "tenth"; etc. 

COEF- NUMBER OF "TENTHS" DISPLACEMENT 
FICIENT 

OF 

CORRE-
0 1 2 

LATION 
3 4 5 6 7 

--------------------
.00 19 53 77 91 97 99.2 99.8 99.9+ 
.10 '20 55 79 92 98 99.4 99.9 
.20 21 58. 82 94 98 99.6 99.9 + 
.30 22 61 85 95 99.0 99.8 99.9+ 
.40 24 64 88 97 99.5 99.9 + 
.50 26 69 91 98 99.7 99.9+ 
.60 29 73 94 99.2 99.9+ 
.70 34 81 97 99.8 99.9+ 
.80 41 89 99.2 99.9+ 
.90 55 98 99.9+ 
.95 71 99.9 
.98 91 

1.00 100 

6. Semi-partial correlation. 

We have seen (p. 407) that '12.3 denotes the correlation between vari
ables 1 and 2 with 3 constant: or more exactly with the variability intro
duced by 3 "partialled out" or eliminated from the correlation '12. If 
variable 1 = height, variable 2 == weight, and ~iable 3 = age, then '12.3 

is the correlation between height and weight for children of the same age. 
Another variety of controlled correlation, called semi-partial correlation, 

eliminates the influence of the third variable from only one of the two 
correlated variables. The formula for the correlation between Test #1 
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and that part of Test #2 which is independent of Test #3 may be 
written: 

(119) 

(Coefficient of semi-partial correlation: variable 3 partialled .out from 
variable 2) 

To illustrate, suppose we have the following data from 150 high school 
students: 

'12 = .70 

I = mathematics test 
2 = grades in mathematics 
3 = a verbal ability test 

1\3 = .10 123 = .50 

What is '1(2.3); that is, what is the semi-partial correlation 'between the 
mathematics test and t~achers' grades in mathematics when verbal ability 
is eliminated from the teacher's grades? Substituting in (119) above, we 
have 

_ .70 - .10 X .50 _ 75 
Tl (2.3) - .87 - . 

which means that by removing the variability in the teacher's grades 
induced by verbal ability scores, we raise the correlation between our 
mathematics test and grades by .05. Apparently when marking the 
students for mathematics, teachers were influenced somewhat by the 
verbal expression of the students. But the influence Was not great. 

For comparison, we may compute the partial correlation between 
mathematics test and grades with verbal ability scores constant. 

, _ .70 - .10 X .50 _ 75 
'12.3 - .995 X .87 - . 

The result is the same as, when verbal ability was partia)led out of grades . 
only. The obvious reason is the negligible correlation between the mathe
matics test and verbal ability; the only influence of the latter is on grades. 

Semi-partial correlation can be extended to provide for the elimination 
of two or more variables from one of the two correlated tests, e.g., '1(2.345)1 

where variables 3, 4, and 5 are controlled with respect to variable 2.0 

I) For additional fOIW,ulas, see Dunlap, J., and Cureton, E., On the Analysis of 
Causation, Jour. Educ. Psychol., 1930, 21, 657. 
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7. Homogeneity of variance; tests of significance. 

Sometimes an investigator wants to test the null hypothesis with refer
ence to the means obtained from two samples differing sharply in vari
ability. We pointed out on page 286 that t and F are valid tests of the r 

null hypothesis for means when samples have been drawn at random from 
a normally distributed population. The means mayor may not differ 
significantly and thus cause us to reject or accept the null hypothesis. But 
the variances in the samples are assumed in our tests of significance to be 
equal except for fluctuations of sampling. When variances differ signifi
cantly, the t and F tests are not valid, and a change in method is de
manded. Two situations arise: when Nl = N2 and when Nl does not 
equal N2 • 

Case 1: When Nl = N 2• 

Consider the <;lata in the table below: 0 

Sample 

1 
2 

N 

10 
10 

dt 

9 
9 

18 

SD = /1041.6 + 174.0 = 8.22 
'\J 18 

Means 

35.8 
28.0 

7.8 

1041.6 
174.0 

1215.6 

SE = 8.22 (20 t = 7.8/3.67 
D '\J1OO t = 2.12 

=3.67 

The first sample of 10 cases was drawn from a normal population with 
M = 30 and u = 10; and the s~cond sample from a normal population 
with M = 30 and u = 5. Hence the null hypothesis obviously should hold 
for the means of our two samples. But the assumption of equal variance 
is certainly not tenable. 

Following the method outlined on page 224 and formulas (57) and 
(58), we get an SED of 3.67 from the pooled sums of squares used in 
computing the common SD. Since Ml - M2 = 7.8, t is 7.8/3.67 or 2.12. 
When dt = 18, p.or; = 2.10, and we would reject the null hypothesis, 
though just barely. When the correct number of dt is taken, namely, 
9 or ~ total dt, however, we have a P,05 = 2.26, and we can now clearly 
accept the null hypothesis, as we should. 

The correct procedure when variances differ markedly and Nl = N2 is 
to take Jf of the dt when reading p.05 from Table D. 

o Adapted with slight changes from Snedecor, C. W., Statistical Methods (Ames, 
Iowa: Iowa State College Press, 1956), pp. 97-98. 
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Case 2: When Nl does not equal N2 • 

When N 1 does not equal N 2, a modification of the method given above 
is required. In the table below, the sample of 13 has been drawn (as in 
the example above) from a normal population with M = 30 and u == 10. 
And the second sample of 5 has been drawn from a normal population 
with M = 30 and u = 5. Again it is clear that the null hypothesis for the 
means should be accepted. 

Sample N dt P.05 Means SD2 SE2 (means) 

1 13 12 2.18 37.23 88.53 6.81 
2 5 4 2.78 30.00 46.50 9.30 

7.23 16.11 

SED = Y6.81 + 9.30 = 4.01 t' = 7.23/4.01 = 1.80 

The SED is obtained from the two SE's taken separately, not pooled as 
before. The .05 level for testing t' is given approximately by the weighted 
mean of the two t's taken from Table D, for 12 and 4 degrees of freedom; 
and the two weights are the SE2's of the means. Calculations are as 
follows: 

For sample 1, the dt are 12 and the t.05 = 2.18 

" " 2""" 4 and the t,or. = 2.78 

5tY I 1ft'· 6.81 X 2.18 + 9.30 X 2.78 = 2 52 
10 eve or IS 16.11 . 

The t' of 1.80 clearly falls below the .05 level of 2.52 and the null hy
pothesis is accepted. 

This test is approximate and is subject to Type I errors (p. 219). The. 
null hypothesis may be rejected when true. Perhaps the best plan is to 
repeat the test with increased samples. 

Case 3: When there are more than two samples. 
To test for homogeneity of variance when there are several samples, 

Bartlett's t~st is custpmarily used. It is given in detail in the reference 
below.o 

o Snedecor, op. cit., PI? 285-289. 
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'f.A8tE A Fractional parts of the total area {taken as IO,OOO} under the 
normal probability curve, corresponding to distances on the base-
line between the mean and successive points laid off from the 
mean in units of standard deviation 

Example: between the mean and a. point 1.380' (~ = 1.38) are found-

41.62% of the entire area under the curve. 
! .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 
tT 

0.0 0000 0040 0080 0120 0160 0199 0239 0279 0319 0359 
0.1 0398 0438 0478 0517 0557 0596 0636 0675 0714 0753 
0.2 0793 0832 0871 0910 0948 0987 1026 1064 1103 1141 
0.3 1179 1217 1255 1293 1331 1368 1406 1443 1480 1517 
0.4 1554 1591 1628 1664 1700 1736 1772 1808 1844 1879 
0.5 1915 1950 1985 2019 2054 2088 2123 2157 2190 2224 
0.6 2257 2291 2324 2357 2389 2422 2454 2486 2517 2549 
0.7 2580 2611 2642 2673 2704 2734 2764 2794 2823 2852 
0.8 2881 2910 2939 2967 2995 3023 3051 3078 3106 3133 
0.9 3159 3186 3212 3238 3264 3290 3315 3340 3365 3389 
1.0 3413 3438 3461 3485 3508 3531 3554 3577 3599 3621 
1.1 3643 3665 3686 3708 3729 3749 3770 3790 3810 3830 
1.2 3849 3869 3888 3907 3925 3944 3962 3980 3997 4015 
1.3 4032 4049 4066 4082 4099 4115 4131 4147 4162 4177 
1.4 4192 4207 4222 4236 4251 4265 4279 4292 4306 4319 

1.5 4332 4345 4357 4370 4383 4394 4406 4418 4429 4441 
1.6 4452 4463 4474 4484 4495 4505 4515 4525 4535 4545 
1.7 4554 4564 4573 4582 4591 4599 4608 4616 4625 4633 
1.8 4641 4649 4656 4664 4671 4678 4686 - 4693 4699 4706 
1.9 4713 4719 4726 4732 4738' 4744 4750 4756 4761 4767 

2.0 4772 4778 4783 4788 4793 4798 4803 4808 4812 4817 
2.1 4821 4826 4830 4834 4838 4842 4846 4850 4854 4857 
2.2 4861 4864 4868 4871 4875 4878 4881 4884 4887 4890 
2.3 4893 4896 4898 4901 4904 4906 4909 4911 4913 4916 
2.4 4918 4920 4922 4925 4927 4929 4931 4932 4934 4936 

2.5 4938 4940 4941 4943 4945 4946 4948 4949 4951 4952 
2.6 4953 4955 4956 4957 4959 4960 4961 4962 4963 4964 
2.7 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 
2.8 4974 4975 4976 4977 4977 4978 4979 4979 4980 4981 
2.9 4981 4982 4982 4983 4984 4984 4985 4985 4986 4986 

3.0 4986.5 4986.94987.4 4987.8 4988.2 4988.6 4988.9 4989.3 4989.7 4990.0 
3.1 4990.3 4990.64991.04991.3 4991.6 4991.8 4992.1 4992.4 4992.6 4992.9 
3.2 4993.129 -
3.3 4995.166 
3.4 4996.631 
3.5 4997.674 
3.6 4998.409 
3.7 4998.922 
3.8 4999.277 
3.9 4999.519 
4.0 4999.683 
4.5 4999.966 
5.0 4999.997133 
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TABLE B Ordinates of the normal probability clJrve expressed as fractional 
parts of the mean ordinate, Yo 

The height of the ordinate erected at the mean can be computed from 
N 1 

Yo = _ m= where ~ = 2.51 and --= .3989. The height of any other ordi-
"y2". ..J2; 

nate, in terms of yo, can be read from the table when one knows the distance 
which the ordinate is from the mean. For example: the ·height of an ordinate 
a distance of -2.37 (j from the mean is .06029 yo. Decimals have been omitted 
in the body of the table. 

x 
0 1 2 -3 4 5 6 7 B 9 -

(j - -_-------------------0.0 100000 99995 99980 99955 99920 99875 99820 99755 99685 99596 
0.1 99501 99396 99283 99158 99025 98881 98728 98565 98393 98211 
0.2 98020 97819 97609 97390 97161 96923 96676 96420 96156 95882 
0.3 95600 95309 95010 94702 94387 94055 93723 93382 93024 92677 
0.4 92312 91399 91558 91169 90774 90371 89961 89543 89119 88688 

0.5 88250 87805 87353 86896 86432 85962 85488 85006 84519 84060 
·0.6 83527 83023 82514 820l{} 81481 80957 8{)429 79896 79359 78817 

0.7 78270 77721 77167 76610 76048 75484 74916 74342 73769 73193 
0.8 72615 72033 71448 70861 70272 69681 69087 68493 67896 67298 
0.9 66689 66097 65494 64891 64287 63683 63077 62472 61865 61259 

1.0 60653 60047 59440 58834 58228 57623 57017 56414 55810 55209 
1.1 54607 54007 53409 52812 52214 51620 51027 50437 49848 49260 
1.2 48675 48092 47511 46933 46357 45783 45212 44644 44078 43516 
1.3 42956 42399 41845 41294 40747 40202 39661 39123 38569 38058 
1.4 37531 37007 36487 35971 ~5459 34950 34445 33944 33447 32954 

1.5 32465 31980 31500 31023 30550 30082 29618 29158 28702 28251 
1.6 27804 27361 26923 26489 26059 25634 25213 24797 24385 23978 
1.7 23575 23176 22782 22392 22008 21627 21251 20879 20511 20148 
1.8 19790 19436 19086 18741 18400 18064 17732 17404 17081 16762 
1.9 16448 16137 15831 15530 15232 14939 14650 14364 14083 13806 

2.0 13534 13265 13000 12740 12483 12230 11981 11737 11496 11259 
2;1 11025 10795 10570 10347 10129 09914 09702 09495 09290 09090 
2.2 08892 08698 08507 08320 08136 07956 07778 07604 07433 07265 
2.3 07100 06939 06780 06624 06471 06321 06174 06029 05888 05750 
2.4 05614 05481 05350 05222 05096 04973 04852 04734 04618 04505 

2.5 04394 04285 04179 04074 03972 03873 03775 03680 03586 03494 
2.6 03405 03317 03232 03148 03066 02986 02908 02831 02757 02684 
2.7 02612 02542 02474 02408 02343 02280 02218 02157 02098 02040 
2.8 01984 01929 01876 01823 01772 01723 01674 01627 01581 01536 
2.9 01492 01449 01408 01367 01328 01288 01252 01215 01179 01145 

3.0 01111 00819 00598 00432 00309 00219 00153 00106 00073 00050 
4.0 00034 00022 00015 00010 00006 00004 00003 00002 00001 00001 
5.0 00000 
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TABLE C Conversion of a Pearson r into a corresponding Fisher's z 
coefficient * 

r z T % T Z T % T <: r Il 

.25 .26 .40 .42 .55 .62 .70 137 135 1.26 .950 1.83 

.26 .27 .41 .44 .56 .63 .71 139 .86 1.29 .955 1.89 
27 .28 .42 .45 1)7 .65 .72 .91 .87 1.33 .960 1.95 
.28 .29 .43 .46 .58 .66 .73 .93 138 1.38 .965 2.01 
.29 .30 .44 .47 1)9 .68 '.74 .95 .89 1.42 .970 2.09 

.30 .31 .45 .48 .60 .69 .75 .97 .90 1.47 .975 2.18 

.31 .32 .46 .50 .61 .71 .76 1.00 .905 1.50 ,,980 2.30 
.32 .33 .47 1)1 .62 .73 .77 1.02 .910 1.53 .985 2.44 
.33 .34 .48 1)2 .63 .74 .78 1.05 .915 1.56 .990 2.65 
.34 .35 .49 M .64 .76 .79 1.07 .920 1.59 .995 2.99 

.35 .37 .50 .55 .65 .78 130 1.10 .925 1.62 

.36 .38 .51 .56 .66 .79 131 1.13 .930 1.66 

.37 .39 .52 .58 .67 .81 .82 1.16 .935 1.70 

.38 .40 .53 .59 .68 .83 .83 1.19 .940 1.74 

.39 .41 M .60 .69 .85 134 1.22 .945 1.78 

.r's under .25 may be·taken as equivalent to %'s. 
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TABLE 0 T able of " for use in determining the significance of statistics 

Example: When the df are 35 and t = 2.03, the .05 in column 3 means that 5 
times in 100 trials a divergence as large as that obtained may be expected in 
the positive and negative directions under the null hypothesis. 

Degrees of Probability (P) 
Freedom 0.10 0.05. 0.02 0.01 

1 t == 6.34 t = 12.71 t = 31.82 t = 63.66 
2 2.92 4.30 6.96 9.92 
3 2.35 3.18 4.54 5.84 
4 2.13 2.78 3.75 4.60 
5 2.02 2.57 3.36 4.03 
6 1.94 2.45 3.14 3.71 
7 1.90 2.36 3.00 3.50 
8 1.86 2.31 2.90 3.36 
9 1.83 2.26 2.82 3.25 

10 1.81 2.23 2.76 3.17 

11 1.80 2.20 2.72 3.11 
12 1.78 2.18 2.68 3.06 
13 1.77 2.16 2.65 3.01 
14 1.76 2.14 2.62 2.98 
15 1.75 2.13 2.60 2.95 
16 1.75 2.12 2.58 2.92 
17 1.74 2.11 2.57 2.90 
18 1.73 2.10 2.55 2.88 
19 1.73 2.09 2.54 2.86 
20 1.72 2.09 2.53 2.84 

21 1.72 2.08 2.52 2.83 
22 1.72 2.07 2.51 2.82 
23 1.71 2.07 2.50 2.81 
24 1.71 2.06 2.49 2.80 
25 1.71 2.06 2.48 2.79 
]6 1.71 '2.06 2.48 2.78 
27 1.70 2.05 2.47 2.77 
28 1.70 2.05 2.47 2.76 
29 1.70 2.04 2.46 2.76 
30 1.70 2.04 2.46 2.75 

35 1.69 2.03 2.44 2.72 
40 1.68 2.02 2.42 2.71 
45 1.68 2.02 2.41 2.69 

·50 1.68 W 2.40 2M 

. ~~ 1.67 2.00 2.39 2.66 
1.67 2.00 2.38 2.65 

80 1.66 1.99 2.38 2.64 
90 1.66 1.99 2.37 2.63 

100 1.66 1.98 2.36 2.63 
125 1.66 1.98 2.36 2.62 
150 1.66 1.98 2.35 2.61 
200 1.65 1.97 2,35 2.60 
300 1.65 1.97 2,34 2.59 
400 1.65 1.97 2.34 2,59 
500 1.65 1.96 2.33 2.59 

1000 1.65 1.96 2.33 2.58 

00 1.65 1.96 2.33 2.58 
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TABLE G To facilitate the calculation of T scores 

The percents refer to the percentage of the total frequency below a 
given score + 1/2 of the frequency on that score. T scores are 

read directly from the given percentages.* 

Percent 
.0032 
.0048 
.007 
.Oll 
.016 
.023 
.034 
.048 
.069 
.097 
.13 
;19 
.26 
.35 
.47 
.62 
.82 

1.07 
1.39 
1.79 
2.28 
2.87 
3.59 
4.46 
5.48 
6.68 
8.08 
9.68 

11.51 
13.57 
15.87 
18.41 
21.19 
24.20 
27.43 
30.85 
34.46 
38.21 
42.07 
46.02 
50.00 

T score 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 

Percent 
53.98 
57.93 
61.79 
65.54 
69.15 
72.57 
75.80 
78.81 
81.59 
84.13 
86.43 
88.49 
90.32 
91.92 
93.32 
94.52 
95.54 
96.41 
97.13 
97.72 
98.21 
98.61 
98.93 
99.18 
99,38 
99.53 
99.65 
99.74 
99.81 
99.865 
99.903 
99.931 
99.952 
99.966 
99.977 
99.984 
99.9890 
99.9928 
99.9952 
99.9968 

T score 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 

* T scores under 10 or above 90 differ so slightly that they cannot be read 
as different two-place numbers. 
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0 1 I I , I ~ 7 8 t 10 11 12 13 14 15 18 17 18 19 10 J1 12 lIS 
1 270218196 181170160 151 144 131131 125 120 115 110 106 102 97 94 90 86 82 79 76 72 
I 244 2071811175165 1M 148 141 134 128 122 118 112 108 104 !XI 95 92 88 84 81 77 74 71 
a 228 198182 170 160 152 144 137 131 125 120 115 110 106 102 97 94 90 86 82 711 76 72 69 
, 216'191 177 165156148 HI 134 128 123 118 113 lOS 104 100 96 92 SS 84 81 77 74 7! 67 
• 210185172161152145 138 131 126120 f15 111 106 102 98 \)~ 90 86 82 79 7t1 72 69 66 
• 109 179167 157149141135 129 123 118 113 108 104100 96 92 SS 84 81 77 a 71 68 64 
'I 192174163153 145138 132 126 121116 HI 106 102 98 94 90 86 83 79 76 72 69 66 63 
8 186 170 159 150 142 135 128 124 118 1I3 109 104 100 96 112 SS 84 81 77 74 71 68 64 61 
, 181165 165 147 139 133 126 121 116 HI 106 102 98' 94 90 86 83 79 76 73 69 M 63 60 

10 176161151 143 lSI! 1\10 l'U 119 11<l 109 104 100 Q6 92 SS 85 81 78 74 71 68 65 62 59 
11 l'11158148'140 1341117 122 116 III 107102 98 94 90 87 83 79 76 73 69 66 63 60 57 
11 i67 154 145 138 131125 119 114 109 105 100 96 92 89 85 81 78 74 71 68 65 62 59 56 
11 163 151142 135128122117 112107 103 119 114 91 87 83 80 76 73 70 66 63 60 57 54 
u 159 147 139 132 126 120 115 110 105 101 97 93 89 85 81 78 75 71 68 65 62 59 56 '53 
11 156144136129 123 118 113 108 103 99 95 91 87 83 80 76 73 70 66 63 60 57 54 51 
18 1521411,'14 127121116 111106 101 97 93 89 85 82 78 75 71 68 65 62 59 56 53 50 
17 149139131125119113 109 10' 99 95 91 87 S4 80 77 73 70 67 MOO 57 54 52 49 
16 146 lSI! 129122 117 111 106 102 98 93 89 86 82 78 75 72 68 65 62 59 56 53 50 47 
19 143 133 126 120 114 109 105 100 96 92 SS 84 80 77 73 70 67 04 61 58 55 52 49 46 
10 140 131124 IIR 112 101103 98 94 90 86 82 19 15 72 69 65 62 59 56 53 50 47 45 
11 137128121116110105 101 96' 92 88 84 81 77 74 70 67 64 1\0 58 55 52 49 46 43 
12 135 126 119 113 108103 99 95 90 87 83 79 76 72 60 66 62 59 56 53 50 48 45 42 
IS 132124117111106101 97 92 89 85 81 78 74 71 67 64 61 58 55 52 49 46 43 41 
J4 130121115109104100 95 91 87 83 80 76 73 69 66 63 60 57 54 51 48 45 42 39 
25 127119 113 107102 98 93 89 85 82 78 74 71 68 64 61 58 55 52 49 46 43 41 38 
Ie 125117111105101 96 92 88 84 80 76 73 70 66 63 60 57 54 51 48 45 42 39 37 
17 123 115 109 104 99 94 90 86 82 78 75 71 68 65 62 58 55 52 49 46 44 41 38 35 
28 120113 107 102 97 92 88 84 80 77 73 70 67 63 60 57 54 51 48 45 42 39 37 
29 118 111105 100 95 91 87 83 79 75 n 68 65 62 59 56 53 50 47 44 41 38 
30 116109 103 98 93 89 85 81 77 74 70 67 64 60 57 54 51 48 45 42 40 
S1 114107101 96 92 87 83 79 16 72 69 65 62 59 56 53 50 47 44 41 
J2 112 105 99 94 90 86 82 78 74 71 67 64 61 58 M 51 48 46 43 
13 110103 98 93 88 84 80 76 73 69 66 63 59 56 53 50 

, 
47 44 

U 108101 96 III 86 82 79 75 71 68 64 61 58 55 52 49 46 
35 106 99 94 89 85 81 77 73 70 66 63 60 56 53 50 47 
36 104 97 92 88 83 80 75 72 68 65 61 58 55 52 49 
37 102 96 91 86 82 78 74 70 67 63 60 57 54 51 
3S 100 94 89 84 80 76 72 69 65 62 59 55 52 
311 98 92 87 83 79 75 71 67 64 61 57 54 
40 97 91 86 81 77 73 69 66 62 59 56 
U 95 89 84 80 75 72 68 64 61 58 
U 93 87 82 78 74 70 66 63 60 
U 91 85 81 76 72 69 65 62 

" 90 84 79 75 71 67 64 

" 88 82 78 73 69 f>6 

" 86 81 76 72 68 

" 85 79 75 70 
48 83 78 73 
&9 81 76 
110 80 
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HUHnU"Hnft""HH"""~U~U"""U"" 
1 69 66 63 60 57 54 51 48 45 43 40 37 3S 32 29 27 24 21 19 16 14 11 09 06 04 01 
tMM~~M~OOOMn~~~M~U~~~~~WM~m 
'MM6OM54"43~43~nMnW27UnWM1411~06~ 
'M~~M~OOOMn~~~M~U~~~UUWM~ 
I '63 60 57 54 51 48 45 43 ~ 37 36 32 29 27 M 21 19 16 14 11 ~ 06 
• 61 ~ 55 53 60 47 M 41 39 36 33 31 28 U 23 ~ 18 15 13 10 08 
T 60 57 54 51 48 45 43 40 37 35 S2 20 27 M 21 10 16 14 11 09 
8~M~60DMn~~33M~U~~~~UW 
.M54"43~43~2736n2927MnWM1411 
~~~600Mn"36~n~~~~~MU 
11 54 51 48 46 43 ~ 37 36 n 29 27 24 112 19 16 I4 
11 53 60 47 M U 39 36 33 31 ~ 25 23 20 18 15 
11 51 43 46 43 40 37 35 32 29 27 U 22 19 16 
u 60 41 44 42 39 36 33 31 ~ 2S 23 ~ 18 
11 49 46 43 40 37 35 32 29 27 U 22 19 
1. 47 44 42 39 36 33 31 28 26 23 ~ 
IT 46 43 40 37 35 32 29 27 24 22 
18 M 42 39 36 33 31 28 26 23 
19 43 40 38 35 32 30 27 24 
to 42 39 36 34 31 28 26 
11 40 38 35 32 30 27 
II 39 36 34 31 28 
13 38 35 32 30 
.. 36 34 31 
tl 35 32 
1184 

TABLE H Mean u-distances from the mean of various percents of a 
normal distribution 

Average distance from the mean, in terms of (I, of each single percentage of a 
normal distribution (decimals omitted). Figures along the top of the table represent 
percentages of area from either extreme. Figures down the side of the table represent 
percentages measured from given points in the distribution. 

Examples: The average distance from the mean of the highest 10% of a normally 
distributed group is 1.76(1 (entry opposite 10 in first column). The average distance 
from the mean of the next 20% is .86(1 (entry opposite 20 in column headed 10). 
The average distance from the mean of the next 30% is 

.26 X .20 + (-.13 X .10) 
.30 

or .13(1 (20% lie to the right of mean and 10% to left). 
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TABLE I A table to infer the value of ~ from a given value of r 

vT=Ti r v'f"=Ti r -v'f""=Ti 
.0000 1.0000 .3400 .9404 .6800 .7332 
.01 .9999 .35 .9367 .69 .7238 
.02 .9998 .36 .9330 .70 .7141 
.03 .9995 .37 .9290 .71 .7042 
.04 .9992 .38 .9250 .72 .6940 
.05 .9987 .39 .9208 .73 .6834 
.06 .9982 .40 .9165 .74 .6726 
.07 .9975 .41 .9121 .75 .6614 
.08 .9968 .42 . 9075 .76 . .6499 
.09 .9959 .43 .9028 .77 .6380 
.10 .9950 .44 .8980 .78 .6258 
.11 .9939 .45 .8930 .79 .6131 
.12 .9928 .46 .8879 .80 .6000 
.13 .9915 .47 .8827 .81 .5864 
.14 .9902 .48 .8773 .82 .5724 
.15 .9887 .49 .8717 .83 .5578 
.16 .9871 .50 .8660 .84 .5426 
.17 .9854 .51 .8617 .85 .5268 
.18 .9837 .52 .8542 .86 .5103 
.19 .9818 .53 .8480 .87 .4931 
.20 .9798 .54 .8417 .88 .4750 
.21 .9777 .55 .8352 .89 .4560 
.22 .9755 .56 .8285 .90 .4359 
.23 .9732 .57 .8216 .91 .4146 
.24 .9708 .58 .8146 .92 .3919 
.25 .9682 .59 .8074 .93 .3676 
.26 .9656 .60 .8000 .94 .3412 
.27 .9629 .61 .7924 .95 .3122 
.28 .9600 .62 .7846 .96 .2800 
.29 .9570 .63 .7766 .97 .2431 
.30 .9539 .64 .7684 .98 .1990 
.31 .9507 .65 .7599 .99 .1411 
.32 .9474 .66 .7513 1.00 .0000 
.33 .9440 .67 .7424 
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TABLE J Values of 't taken as the cosine of an angle 

Example: Suppose that r, = cos 45·. Then cos 45· = .707, and r, =.71 (to 
two decimals) 

Angle Cosine Angle Cosine Angle Cosine 

O· 1.000 41· .755 73· .292 
42 .743 74 276 

5 .996 43 .731 75 .259 
44 .719 .76 .242 

10 .985 45 .707 77 .225 
46 .695 78 .208 
47 .682 79 .191 

15 .966 48 .669 80 .174 
16 .961 49 .656 
17 .956 50 .643 81 .156 
18 .951 82 .139 
19 .946 51 .629 83 .122 
20 .940 52 .616 84 .105 

53 .602 85 .087 
21 .934 54 .588 
22 .927 55 .574 
23 .921 56 .559 90 .000 
24 .914 57 .545 
25 .906 58 .530 
26 .899 59 .515 
27 .891 60 .500 
28 .883 
29 .875 61 .485 
30 .866 62 .469 

63 .454 
31 .857 64 .438 
32 .848 65 .423 
33 .839 66 .407 
34 .829 67 .391 
35 .8.19 68 .375 
36 .809 69 .358 
37 .799 70 .342 
38 .788 
39 .777 71 .326 
40 .766 72 .309 
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TABLE K Estimated values of rf corresponding to values ef the ratio, 
AD/BC * 

Example: If AD/BC = 3.28, the corresponding T, is .44. Interpolation be-
tween AD/BC entries is not advised, as accuracy of the f, values does not 
extend beyond the second decimal. If Be is larger than AD, find the ratio 
Be/AD and attach a negative sign to the f,. 

AD/Be T, AD/Be r, AD/Be T, 

0-1.00 .00 2.23--2.28 .31 5.81-6.03 .61 
1.01-1.03 .01 2.29-2.34 .32 6.04-6.28 .62 
1.04-1.06 .02 2.35-2.41 .33 6.29-6.54 .63 
1.07-1.08 .03 2.42-2.48 .34 6.55-6.81 .64 
1.09-1.11 .04 2.49-2.55 .35 6.82-7.10 .65 
1.12-1.14 .05 2.56-2.63 .36 7.11-7.42 .66 
1.15-1.17 .06 2.64-2.71 .37 7.43-7.75 .67 
1.18-1.20 .07 2.72-2.79 .38 7.76-8.11 .68 
1.21-1.23 .08 2.8~2.87 .39 8.12-8.49 .69 
1.24-1.27 .09 2.88-2.96 .40 8.5~.90 .70 
1.28-1.30 .l0 

2.97-3.05 .41 8.91-9.35 .71 
1.31-1.33 .11 3.06-3.14 .42 9.36-9.82 .72 
1.34-1.37 .12 3.15-3.24 .43 9.83-10.33 .73 
1.38-1.40 .13 3.25-3.34 .44 10.34-10.90 .74 
1.41-1.44 .14 3.35-3.45 .45 10.91-11.51 .75 
1.45-1.48 .15 3.46-3.56 .46 11.52-12.16 .76 
1.49-1.52 .16 3.57-3.68 .47 12.17-12.89 .77 
1.53-1.56 .17 3.69-3.80 .48 12.9~13.70 .78 
1.57-1.60 .18 3.81-3.92 .49 13.71-14.58 .79 
1.61-1.64 .19 3.93-4.06 .50 14.59-15.57 .80 
1.65-1.69 .20 

4.07--4.20 .51 15.58-16.65 .81 
1.7~1.73 .21 4.21--4.34 .52 1().66-17.88 .82' 
1.74-1.78 .22 4.35--4.49 .53 17.89-19.28 .83 
1.79-1.83 .23 4.50--4.66 .54 19.29-20.85 .84 
1.84-1.88 .24 4.67--4.82 .55 20.86-22.()8 .85 
1.89-1.93 .25 4.83-4.99 .56 22.69-24.76 .86 
1.94-1.98 .26 5.0~5.18 .57 24.77-27.22 .87 
1.99-2.04 .27 5.19-5.38 .58 27.23-30.09 .88 
2.05-2.10 .28 5.39-5.59 .59 30.1~33.60 .89 
2.11-2.15 .29 5.6~.80 - .60 33.61-37.79 .90 
?.16-2.22 .30 

37.80--43.06 .91 
43.07--49.83 .92 

* From Davidoff, M. D., and Goheen, H. W., 49.84-58.79 .93 
Psychometrika, 1953, 18, 115-121, by permission. 58.8~70.95 .94 

70.96-89.01 .95 
89.02-117.54 .96 

117:55-169.67 .97 
1()~.68-293.12 .98 
293.13--923.97 .99 
923.98- 1.00 



TABLE OF SQUARES AND SQUARE ROOTS 

OF THE NUMBERS FROM I to 1000 
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TABLE OF SQUARES AND SQUARE ROOTS OF THE NUMBERS FROM 1 TO 1000 
Number Square Square Root Number Square Square Root 

1 1 1.000 51 2601 7.141 
2 4 1.414 52 2704 7.211 
3 9 1.732 53 2809 7.280 
4 16 2.000 54 2916 7.348 
5 25, 2.236 55 3025 7.416 

6 36 2.449 56 3136 7.483 
'l 49 2.646 57 3249 7.550 
8 64 2.828 58 3364 7.616 
9 81 3.000 59 3481 7.681 

10 100 3.162 60 3600 7.746 

11 121 3.31.7 61 3721 7.810 
12 144 3.464 62 3844 7.874 
13 169 3.606 63 3969 7.937 
14 196 3.742 64 4096 8.000 
Il5 225 3.873 65 4225 8.062 

16 256 4.000 66 4356 8.124 
17 289 4.123 67 4489 8.185 
18 324 4.243 68 4624 8.246 
19 361 4.359 69 4761 8.307 
20 400 4.472 70 4900 8.367 

21 441 4.583 11 5041 8.426 
22 484 '.690 72 5184 8.485 
23 629 4.796 73 5329 8.544 
24 676 4.899 74 5476 8.602 
25 625 5.000 75 6625 8.660 

26 676 5.099 76 5776 8.718 
27 729 5.196 77 5929 8.775 
28 784 5.292 78 6084 8.832 
29 841 5.385 79 6241 8.888 
30 900 5.477 80 6400 8.944 

31 961 5.568 81 6561 9.000 
32 1024 5.657 82 6724 9.055 
3.1 1089 5.745 83 6889 9.110 
34 1156 5.831 84 7056 9.165 
35 1225 5.916 85 7225 9.220 

36 
.. 

1296 6.000 86 7396 9.274 
37 - 1369 6.083 87 7569 9.327 
38 1444 6.164 88 7744 9.381 
39 1521 6.245 .89 7921 9.434 
40 1600 6.325 90 8100 9.487 

41 1681 6.403 111 8281 9.539 
42 1764 6.481 92 8464 9.592 
43 1849 6.567 93 8649 9.644 
44 1936 6.633 94 8836 9.695 
45 2025 6.708 95 9025 9.747 

46 2116 6.782 96 9216 9.798 
47 2209 6.856 97 9409 9.849 
48 2304 6.928 98 9604 9.899 
49 2401 7.000 99 9801 9.950 
50 2600 7.071 100 10000 10.000 
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TABLE OF SQUARES AND SQUARE R00T8-Continued 
Number Square Square Root Number Square Square Root 101 10201 10.050 151 22801 12.288 102 104·04 10.100 152 23104 12.329 103 10609 10.149 153 23409 12.369 104 10816 10.198 154 23716 12.410 105 11025 10.2~7 155 24025 12.450 
106 11236 10.296 156 24336 12.490 107 11449 10.344 157 24649 12.530 108 11664 10.392 158 24964 12.570 109 11881 10.440 159 25281 12.610 110 12100 10.488 160 25600 12.649 
IH 12321 10.536 161 25921 12.689 112 12544 10.583 162 26244 12.728 113 127,69 10.630 163 26569 12.767 114 12996 10.677 164 26896 12.806 115 13225 10.724 165 27225 12.845 
116 13456 10.770 166 27556 12.884 117 13689 10.817 167 27889 12.923 118 13924 10.863 168 28224 12.961 119 14161 10.909 169 28561 13.000 120 144 00 10.954 170 28900 13.038 
121 14641 11.000 171 29241 13.077 122 14884 11. 045 172 29584 13.115 123 15129 11. 091 173 29929 13.153 124 15376 11.136 174 30276 13.191 125 15625 11.180 175 30625 13.229 
126 15876 11.225 176 a 0976 13.266 127 16129 11. 269 177 31329 13.304 128 16384 11.314 178 31684 13.342 129 16641 11.358 179 32041 13.379 130 16900 11.402 180 32400 13.416 
131 171 61 11.446 181 32761 13.454 132 17424 11.489 182 33124 13.491 133 17689 11.533 183 33489 13.528 134 17956 11.576 184 33856 13.565 135 18225 11.619 ~85 34225 13.601 
136 18496 11.662 186 34596 13.638 137 18769 11.705 187 34969 13.675 138 19044 11. 747 188 35344 13.711 139 19321 11. 790 189 35721 13.748 140 19600 11.832 190 36100 13.784 
141 19881 11.874 191 36481 13.820 142 20164 11. 916 192 36864 13.856 143 20449 11.958 193 37249 13.892 144 20736 12.000 194 37636 13.928 145 21025 12.042 195 38025 13.964 
146 21316 12.083 196 38416 14.000 147 21609 12.124 197 38809 14.036 148 21904 12.166 198 39204 14.071 149 22201 12.207 199 39601 14.107 150 22500 12.247 200 40000 14.142 
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TABLE 01' SQUARES AND SQUARE RoO'1'!3--Continued 
Number Square Square Root Number Square Square Root 

201 40401 14.177 251 63001 15.843 
202 40804 14.213 252 63504 15.876 
203 41209 14.248 253 64009 16.906 
204 41616 14.283 254 64516 16.937 
205 42025 14.318 255 65025 15.969 

206 42436 14.353 256 65536 16.000 
2fJ1 42849 14.387 257 66049 16.031 
208 43264 14.422 258 66564 16.062 
209 43681 14.457 259 67081 16.093 
210 44100 14.491 260 67600 16.125 

211 445 21 14.526 261 68121 16.155 
212 44944 14.560 262 68644 16.186 
213 453 69 14.595 263 69169 16.217 
214 45796 14.629 264 69696 16.248 
215 46225 14.663 265 70225 16.279 

216 46656 14.697 266 707 56 16.310 
217 47089 14.731 267 71289 16.340 
218 47524 14.765 268 71824 16.371 
219 47961 14.799 269 72361 16.401 
220 48400 14.832 270 72900 16.432 

221 48841 14.86.6 271 73441 16.462 
222 49284 14.900 272 73984 16.492 
223 49729 14.933 273 74529 16.523 
224 50176 14.967 274 75076 16.553 
225 50625 16.000 275 75625 16.683 

226 51076 15.033 276 76176 16.613 
227 61529 15.067 277 76729 16.643 
228 51984 15.100 278 77284 16.673 
229 52441 15.133 279 77841 16.703. 
230 52900 15.166 280 78400 16.733 

231 53361 15.199 281 78961 16.763 
232 53824 15.232 282 79524 16.793 
233 54289 15.264 283 80089 16.823 
234 54756 15.297 284 80656 16.852 
235 55225 15.330 285 81225 16.882 

236 55696 15.362 286 81796 16.912 
237 56169 15.395 287 82369 16.941 
238 56644 15.427 288 82944 16.971 
239 57121 15.460 289 83521 17.000 
240 57600 15.492 290 84100 17.029 

241 58081 15.524 291 84681 17.059 
242 58564 15.556 292 85264 17.088 
243 59049 15.588 293' 86849 17 117 
244 59536 15.620 294 86436 17.146 
245 60025 15.652 295 87025 17.176 

246 60516 15.684 296 87616 17.205 
247 61009 15.716 297 88209 17.234 
248 61504 15.748 298 88804 17.263 
249 62001 15.780 299 89401 17.292 
250 62500 15.811 300 90600 17.321 
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TABLE or SQUARES .AND SQUARE RoOTS-Conlinued 
Number Square Squate Root Number Square Square Roo& 
301 90601 17.349 . 351 123201 18.735 

·302 91204 17:378 352 123904 18.762 
303 91809 17.407 353 124609 18.788 
304 92416 17.436 354 125316 18.815 
305 93025 17.464 355 126025 18.84f 

306 93636 17.493 356 126736 18.868 
3D7 94249 17.521 357 127449 18894 
308 94864 17.550 358 128164 18.921 
309 96481 17.578 359 128881 18.947 
310 96100 17.607 360 129600 18.974 

311 96721 17.635 , 361 1303 2t 19.000 
312 97344 17.664 362 131044 19.026 
313 97969 17.692 363 13 1769 19.053 
314 98596 17.720 364 132496 19.079 
3Ui 99225 17.748 365 133225 19.105 

316 99856 17.776 366 133956 19.131 
-317 1004 89 17.804 367 134689 19.157 
318 101124 17833 368 13M24 19.183 
319 101761 17.861 369 136161 19.209 
320 102400 17.889 370 136900 19.235 

321 103041 17.916 371 137641 19.261 
322 103684 17.944 372 138384 19.287 
323 104329 17.972 373 139129 19.313 
324 104976 18.000 374 139876 19.339 
325 105625 18.028 375 140625 19.363 

326 106276 18/055 376 14 \376 \9.391 
327 106929 18.083 377 142129 19.416 
328 107584 18.111 378 142884 19.442 
329 108241 18.138 379 .143641 Ut.468 
330 108900 18.166 380 144400 19.494 

331 109.561 18.193 381 145161 19.519 
332 11 02 24 18.221 382 145924- 19.645 
333 11 0889 18.248 383 146689 19.570 
334 111556 18.276 384 147456 19.596 
330 112225 . 18.303 380 148225 19.621 

336 112896 18.330 386 148996 19.647 
337 113569 18.358 387 149769 19.672 
338 114244 18.385 388 150544 19.698 
339 11 4921 18.412 389 151321 19.723 
340 115600 18.439 390 152100 19.748 

341 11 6281 18.466 391 152881 19.774 
342 116964 18.493 392 153664 19.799 
343 11 7649 18.520 393 154449 19.824 
344 1183 36 18.647 394 155236 19.849 
345 119025 18.574 395 156025 19.875 

346 1197 16 18.601 396 156816 19.900 
347 120409 18.628 397 157609 19.925 
348 121104 18.655 398 158404 19.950 
349 121801 18.682 399 159201 19.975 
360 122500 18.708 400 160000 30.000 
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TAlILIl OF SQUARES AND SQUAllIl RooTa-Continued 
Hambv Squan Square Root Numbv Square Square Root 

401 160801 20.025 451 203401 21.237 

402 161604 20.060 452 204304 21.260 

403 162409 20.075 453 205209 , 21.284 

404 163216 20.100 454 20 6116 21.307 

405 164025 20.125 4M 207025 21.831 
\ 

406 164836 20.149 456 207936 21.354 

407 165649 20.174 457 2088'49 21.378 

408 1664.64. 20.199 458 209764. 21.401 

409 167281 20.224 459 210681 21.424 

.410 168100 '20.248 460 211600 21.448 

411 168921 20.273 461 212521 21.471 

412 169744 20.298 462 213444 21.494 

413 170569 20.322 463 2143 69 21.517 

414 171396 20.347 4M 215296 21.541 

415 172225 20.372 465 2\ 62 25 21.564. 

416 173056 20.396 466 217156 21.587 

417 173889 20.421 467 21 SO 89 21.610 

418 174724 20.445 468 210024 21.633 

419 175561 20.469 469 2199 61 21.&56. 

420 1764.00 20.494 470 220900 21.679 

421 177241 20.518 471 221841 21.703 

422 17 SO 84 20.543 472 222784 21.726 

423 1789,29 20.567 473 223729 21.749 

424 17 97 76 20.591 474 224676 21.772 

425 180625 20.616 475 225625 21.794 

426 181476 20.64() 476 226576 21.811 

427 1823 29 20.6M 477 227529 21.840 

428 183184 20.688 478 228484 21.863 

429 184041 20.712 479 229441 21.886 

430 184900 20.736 480 230400 21.909 

431 185761 20.761 481 231361 21.932 

432 186624 20.785 482 232324 21.954 

433 187489 20.809 483 23 32 89 21.977 

434 1883 66 20.833 484 23 42 66 22.000 

435 189225 20.857 485 23 52 25 22.023 

436 190096 20.881 486 23 6196 22.045 

.437 1909 69 20.905 487 237169 '22.068 

438 Iii J8 44 20.928 488 23 8144 22.091 

439 192721 20.952 489 ~~}~ 22.113 

440 193600 20.976 400 22.136 

441 19'" 81 21.000 491 241081 22.159 
, 442 195364 21.024 492 242064 22.181 

443 196249 21.048 493 243049 22.204 

444 197136 21.071 494 24 40 36 22.226 

445 198025 21.095 495 246025 22.249 

446 198916 21.119 496 246016 22.271 

447 199809 21.142 497 247009 22.293 

448 200704 21.166 498 248004 22.316 

449 20 1601 21.100 499 249001 22.338 

450 202500 21.213 600 250000 22.361 
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TABLE OJ' SQUARES AND SoUARE RoO'I'S-Continued 
Number Sqaare Square Root Number Squue Square Root 

601 251001 22.383 551 303601 23.473 
502 252004 22.405 552 304704 23.495 
503 253009 22.428 653 305809 23.516 
504 254016 22.450 554 306916 23.537 
505 255025 22.472 505 30 SO 25 23.558 

506 256036 22.494 656 309136 23.580 
507 25 70 49 22.517 557 310249 23.601 
508 258064 22.539 558 311364 23.622 
509 259081 22.561 559 312481 23.643 
510 260100 22.583 560 313600 23.664 

:i1l 261121 22.605 561 314721 23.685 
512 262144 22.627 562 315844 23.707 
513 263169 22.650 563 316969 23.728 
514 264196 . 22.672 564 31 SO 96 23.749 
515 265225 22.694 565 319225 23.770 

516 266256 22.716 566 320356 23.791 
517 267289 22.738 567 321489 23.812 
518 268324 22.760 568 322624 23.833 
519 269361 22.782 569 323761 23.854 
520 270400 22.804 570 324900 23.'875 

521 271441 22.825 571 326041 23.896 
522 272484 22.847 572 327184 23.917 
523 273529 22.869 573 328329 23.937 
524 274576 22.891 574 329476 23.958 
525 275625 22.913 575 330625 23.979 

526 276676 22.935 576 331776 24.000 527 277729 22.956 577 332929 24.021 528 2787,84 22.978 578 334084 24.042 
629 279841 23.000 579 335241 24.062 
530 2809 00 23.022 680 3364 00 24.083 

531 281961 23.043 581 33 75 61 24.104 
532 283024 ~.065 582 33 87 24 24.125 533 284089 23.087 583 33 98 89 24.l45 534 28 5156 23.108 584 341056 24.166 
535 28 62 25 23.130 585 342225 24.187 

536 287296 23.11;2 586 34 33 96 24.207 537 2883 69 23.173 587 344569 24.228 538 289444 23.195 588 345744 24.249 539 29 05 21 23.216 589 346921 24.269 
640 291600 23.238 590 348100 24.290 

641 29 26 81 23.259 591 349281 24.310 542 29 37 64 23.281 592 350464 24.331 543 29 4849 23.302 593 351649 24.352 
544 295936 23.324 594 352836 24.372 
545 297025 23.345 595 354025 24.393 

546 29 8116 23.367 596 355216 24..413 '647 299209 23.388 597 356409 24.434 548 300304 23.409 5<18 357604 24.454 549 301401 23.431 599 358801 24.474 
~ 30 25 00 23.45:,1 600 360000 24.495 
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T.ABLJI O'l8QlJ.AU8 A!fJ) 8QlJ4BII RooT&-Conlinued 
Kamber Square Square Boo& NWIlbe Square Square ROot 
,601 361201 24.515 651 423801 25.515 
602 362404 24.636 652 42 5104 25.634 
603 363609 24.556 653 426409 25.554 
eM 364816 24.576 6M 427716 25.573 
605 366025 24.597 665 429025 25.693 

606 367236 24.617 666 4303 36 25.612 
607 368449 24.637 657 431649 25.632 
608 369664 24.658 658 432964 25.652 
609 370881 24.678 659 4342 81 25.611 
810 312100 24.898 660 436600 25.890 

811 3133 21 24.718 661 43 6921 25.710 
812 374544 24.739 662 43 82 44 25.729 
813 316769 24.769 663 43 95 69 25.749 
814 378998 24.779 864 440898 25.168 
816 318225 24.799 865 442226 25.788 

618 379456 24.819 866 443556 25.807 
617 380689 24.839 667 4448 89 25.826 
618 381924 24.860 668 446224 25.846 
619 383161 24.880 669 447561 25.865 
620 384400 24.900 670 448900 25.884 

621 385641 24.920 671· 450241 25.904 
622 386884 24.940 612 451684 25.923 
623 388129 24.960 673 452929 25.942 
624 3893 76 24.980 674 4542 76 25.962 
625 390625 25.000 676 455625 25.981 

626 391876 25.020 678 456978 26.000 
627 393129 25.040 877 458829 26.019 
628 394384 25.060 678 459684 26.038 
629 395641 25.080 679 461041 26.058 
630 396900 25.100 680 462400 26.077 

631 398161 25.120 681 463761 26.098 
632 3994 24 25.140 682 465124 26.115 
633 40 06 89 25.159 683 4664 89 26.134 
634 401956 25.179 684 467856 26.153 
635 403225 25.199 685 469225 26.173 

636 404496 25.219 886 470598 26.192 
637 405769 25.239 687 471969 26.211 
638 407044 25.259 688 473344 26.230 
639 40 83 21 25.278 689 .474721 26.249 
640 409600 25.298 690 476100 26.268 

&41 410881 25.318 691 477481 26.287 
642 412164 25.338 692 478864 26.306 
643 413449 25.351 693 4802 49 26.325 

~ 414736 25.377 694 481636 26.344 
4160 25 25.397 695 483025 26.363 

646 417316 25.417 696 484416 26.382 
647 418609 25.436 697 485809 26.401 
648 419904 25.456 698 487204 26.420 
MIl 421201 25.475 699 488601 26.439 
650 422500 25~490 700 490000 26.4M 
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TABU OF SQu.uucs.AlQ) SQUtlRE ROoTs-c07ltinued 
Number Square Square~ Number Square Square Boot 

101 491401 26.476 751 564001 27.404 
702 492804 26.495 752 565504 27.423 
703 4942 09 26.614 763 567009 27.441 
704 495616 26.533 '7154 568516 27.459 
706 497025 26.652 765 570025 27.477 

706 498436 26.571 756 571536 27.495 
707 499849 26.589 157 573049 21.514 
108 60 12.640 26.608 158 574564 27.632 
109 SO l681 26.627 159 576081 27,6SO 
110' SO 100 26.646 100 571600 27.568 

711 SO 65 21 26.665 761 579121 27.586 
112 SO 6944 26.683 162 58 0644 27.604 
713 SO 83 69 26.702 763 582169 27.622 
714 509796 26.721 164 583696 27.641 
715 611225 26.139 766 58 52 25 27 •. 669 

716 512656 26.768 ,766 68 6756 27.677 
717 514089 26.777 767 588289 27.695 
718 516524 26.796 768 589824 27.713 
719 5169 61 26.814 769 591361 27.731 
720 5184 00 26.833 770 592900 27.749 

721 519841 26.851 771 594441 27.167 
722 521284 26.870 772 595984 27.785 
7~ 522729 26.889 773 697529 21.803 
124 524176 26.907 774 599076 27.821 
725 525625 26.926 175 000625 27.839 

126 521076 26.944 776 ' 60 2176 27.&7 
127 528529 26.963 777 603729 27.'875 
128 529984 26.981 778 605284 27 .893 
129 531441 27.000 779 60 6841 27.911 
730 63 29 00 27.019 780 008400 27.928 

731 63 43'61 21.037 781 6099 61 27.946 
182 63 58 24 27.055 782 61.1524 27.964 
733 63 72 89 27.074 783 613089 27.982 
734 53 87 56 27.092 784 614656 28.000 
735 1540225 27.111 785 616225 28.018 

736 1541696 27.129 186 617796 28.036 
737 64 3169 27.148 781 619369 28.064 
738 64 46 44 27.166 788 620944 28.071 
739 64 6121 27.185 789 622521 28.089 
740 64 76 00 27.203 790 624100 28.107 

741 54 90 81 27.221 791 625681 28.125 
742 550564 27.240 792 62'264 28.142 
743 552049 27.258 793 628849 28.160 
744 553536 27.276 794 63 0436 :18.178 
745 555025 27.295 795 63 2025 28.196 

746 55 6516 27.313 796 63 3616 28.213 
747 55 8009 27.331 797 63 52 09 28.231 
748 559504 27.350 798 6368M 28.249 
749 5610 01 27.368 799 63 84 01 128.267 
750 562500 27.386 800 640000 28. 2M 
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TABLE OF SQUARES AND SQUARE ROoTS-Continued 
Nambu Square Square Root Number Square Square Root 

801 641601 28.302 851 724201 29.172 
802 643204 28.320 852 725904 29.189 
803 644809 28.337 853 727609 29.206 
804 646416 28.355 854 729316 29.223 
805 648025 28.373 855 731025 29 .. 240 

806 649636 28.390 856 732736 29.257 
807 651249 28.408 857 734449 29.275 
808 652864 28.~ 858 . 736164 29.292 
809 65 4481 28.443 859 737881 29.309 
810 65 61 00 28.460 860 7396,00 29.326 

811 657721 28.478 861 741321 29.343 
812 659344 28.496 862 743044 29.360 
813 6609 69 28.513 863 744769 29.377 
814- 662596 28.531 864 746496 29.394 
815 664225 28.548 865 748225 29.411 

816 666856 28.566 866 749956 29.428 
817 66 7489 28.683 867 751689 29.445 
818 669124- 28.601 868 753424 29.462 
819 670761 28.618 869 755161 29.479 
820 672400 28.636 870 756900 29.496 

821 674041 28.653 871 758641 29.513 
822 675684 28.671 872 760384 29.530 
823 677329 28.688 873 762129 29~547 
824 678976 28.705 874 763876 29.563 
825 680625 28.723 875 765625 29.580 

826 682276 28.740 876 767376 29.597 
827 683929 28.758 877 769129 29.614 
828 68 5584 28.775 878 770884 29.631 
829 68 7241 28.792 879 772641 29.648 
830 688900 28.810 880 774400 29.665 

831 590561 28.827 881 776161 29.682 
832 692224' 28.844 882 77 79 24 29.698 
833 693889 28.862 883 779689 29.715 
834 69555.6 28.870 884 781456 29.732 
835 697225 28.896 885 783225 29.749 

836 698896 28.914 886 784996 29.766 
837 700569 28.931 887 786769 29.783 
838 702244 28.948 ·888 788544 29.799 
839 703921 28.965 889 790321 29.816 
840 705600 28.983 890 792100 29.833 

841 707281 29.000 891 '79 38 81 29.850 
842 708964 29.017 892 795664 29.866 
843 710649 29.034 893 797449 29.883 
844 712336 29.052 894 799236 29.900 
845 714025 29.069 895 801025 29.916 

846 715716 29.086 896 802816 29.933 
847 717409 29.103 897 804609 29.950 
1348 71 91 04 29.120 898 80 G4 04 29.967 
849 720801 29.138 899 808201 29.91'13 

.850 722:i 00 29.155 900 810000 30.000 
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TABLE OJ' SQUARES AND'SQUARE ROOTS-Continued 
Number Square Square Roo' Number Square Square Roo' 

901 81 1801 30.017 951 904401 30.838 
902 813604 30.033 952 906304 30.854 
903 815409 30.,050 953 908209 30.871 
904 817216 30.067 954 910116 30.887 
905 819025 30.083 955 912025 30.903 

906 820836 30.100 956 913936 30.919 
907 822649 30.116 957 915849 30.935 
90S S244M SO.l33 958 9177M 30.952 
909 826281 30. ISO 959 919681 30.968 
910 828100 30.166 960 921600 30.984 

911 829921 30.183 961 923521 31.000 
912 83 1744 30.199 962 925444 31.016 
913 83 35 69 30.216 963 927369 31.032 
914 83 63 96 30.233 964 929296 31.048 
915 83 72 25 30.249 9M 931225 31.OM 

916 83 9056 30.265 966 933156 81.081 
917 84 0889 80.282 967 935089 31.097 
918 84 27 24 30.299 968 937024 31.113 
919 84 45 61 30.315 969 938961 31.129 
920 846400 80.332 970 940900 31.145 

921 B4 82 41 30.348 911 942841 31.161 
922 850084 30.364 972 944784 31.177 
923 85 1929 30.381 973 946729 31.193 
924 85 37 76 30.397 974 948676 31.209 
925 85 56 25 30.414 975 950625 31.225 

926 857476 30.430 976 952576 31.241 
927 85 93 29 30.447 977 954529 31.257 
928 861184 30.463 978 956484 31.273 
929 863041 30.480 979 958441 31.289 
930 864900 30.496 980 960400 31.305 

931 866761 30.512 981 962361 31.321 
932 868624 30.529 982 964324 31.337 
933 870489 30.545 ,983 966289 31.353 
934 872356 30.561 984 968256 31 ~369 
935 874225 30.578 985 970225 31.385 

936 876096 30.594 986 972196 31.401 
937 877969 30.610 987 974169 31.417 
938 879844 30.627 988 976144 31.432 
939 881721 30.643 989 978121 31.448 
940 883600 30.659 990 1)80100 31.464 

941 88 54 81 30.676 991 982081 31 480 
942 8873M 30.692 992 ' 984064 31.49& 
943 889249 30.708 993 986049 31.512 
944 891136 30.725 994 988036 31.528 
945 893025 30.741 995 990025 31.544 

946 894916 30.757 996 992016 31.559 
947 896809 30.773 997 994009 31.575 
948 898704 30.790 998 996004 31.591 
949 900601 30.806 999 998001' 31.607 
950 90 25 00 30.822 1000 l00QO 00 31.623 
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INDEX 

accuracy, standards of, in computation, 
20-23 

actuarial prediction, in correlation, 165-
168 

analysis of variance: principles of, 276-
277; how variances are analyzed, 277-
279; use of, in determining significance 
of differences, between independ.ent 
means, '279-291, between correlated 
means, 291-295; in covariance, 295-
303 

array, in a correlation table, 130 
attenuation: correction of correlation co

efficients for, 358-360; assumptions 
underlying, 360 _ 

average: definition of, 27; of correlation 
coefficients, 172-173. See also mean, 
median, mode. 

average deviation (AD): computation of, 
from ungrouped scores, 48; from 
grouped data, 48-49; when to use, 60 

bar diagram, 80-82 
beta coefficients: in partial and multiple 

correlation, 418-419; as "weights," 418; 
calculation of, in Wherry-Doolittle 
method,437-439 

bias in sampling. See sampling. 
binomial expansion: use in probability, 

89-93; graphic representation of, 93 
biserial correlation (r ... ): use of in item 

analysis, 365-368; definition of, 375; 
calculation of, 376-378; standard error 
of, 378-379; alternate formula for, 
379-380; point biserial coefficient, 380- ' 
382; comparison of biserial r and point 
biserial T, 383-384 

central tendency, mea~cs of, 27. See 
also mean, median, mode. 

«hi-square test, 253-254; as a measure of 
divergence from null hypothesis, 254-
257; from the normal distribution, 257-
258; correction (Yates) when table 
entries are small, 258-261; when entries 
are percentages, 262; in contingency 
tables, 262-265; additive property of, 
266; relatipn to phi coeffi~ient, 391 

classification of measures, into a frequency 
distribution; 4-9 ' 

class interval: definition of, 4-6; methods 
of expressing, 6; midpoint of, 7-8; 
limits of, 7-9 

coefficient: of variation (V), 57-59; of 
alienation, 177-178; of determination 
in correlation, 178-180 

coefficient of correlation (r): meaning of, 
122-125; as a ratio, 125-128; graphic 
representation of, l31; computation of, 
134-142; computation of, mean at 
zero, 142-144; by difference formula, 
145-146; effects of variability upon, 
171-172; averaging of, 172-174; inter
pretations of, 175-177, 451-452; sig
nificance of, 198-202; derivation of 
fOmiula for, 449-450 

column diagram. See histogram. 
computation.., rules of, 21-23 
confidence intervals, for population mean, 

188-191 
contingency, coefficient of (C), 392-394; 

relation to chi square, 394; comparison 
with T, 395-396 

continuous series, meaning of, 2-3 
correlation: linear, 122-124; as a ratio, 

125-127; table of, 128-130; graphic 
representation of, 131; product-moment 
method in, 134-139; from ungrouped 
data, 139-147; difference formula in, 
145-147; effects of errors of qbserva-
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. tion upon, 358-360; rank-diHerence 
method in, 371-375; spurious, 441-443. 
See also multiple "correlation and partial . 
correlation. 

correlation ratio (eta), in nonlinear rela
tionship, 396--S98 

covariance, analysis of, 295-303 
criterion: in test validity, 354-360; pre

diction of, by regression equation, 
409-410,412 

critical ratio: defined, 215. See also t test. 
cumulative frequencies, how to compute, 

62-64 
cumulative frequency graph: construction 

of, 63-65; smoothing of, 75-77 
curvilinear relationship, 396-398 

data, continuous and discrete, 2-4 
deciles. See percentiles. 

; 

degrees of freedom: meaning of, 194-
195; in analysis of variance, 283-284 

deviations. See average .deviation, quartile 
deviation, standard deviation; sum of, 
around mean, 445 

differences, signi,ficance of: between 
means, 211-215; in small samples, 225.-
227: between correlated means, 226-
232; between medians, 232; between 
O"s, 233-235; between percentages, 
235-238; between ls, 241-243. See 
also standard error. 

discrete series, 2 
distribution, frequency. See frequency 

distribution. 

equivalent grol.!PS, method of treating, 
228-230 

error, curve of, 87-89. See also normal 
,Probabjlity curve. 

errors: of sampling, 184-188; constant, 
209; types of, in inference, 219-223. 
See also standard error. " 

experimental hypotheses: testing of, 247-
253; null hypothesis, 247-248 

fiduciary limits (Fisher), in inference, 
191 

frequency distribution: construction of, 
4-9; graphic representation of, 9-15; 
normalizing of; 314-319; rectangular 
and normal, 322-323 

frequency polygon, 10-13; smoothing ,of, 
13-15; comparison with histogram, 16-

17; comparison of two, 9n same' axes, 
17-19 

F test: in analysis of variance, 284-285; 
in comparing two O"s, 303 

graphic representation: principles of, 9-
10;' of correlation cOefficients; 131. See 
also frequency polygon, histogram, 
cumulative frequency graph, ogive, 
line graphs, bar diagram, pie diagram. 

grouping: in tabulating frequencies, 4-9; 
assumptions,in,6-9 

heterogeneity, effect of upon correlation, 
171-172; upon reliability coefficients, 
351-354 . 

histogram, definition ,of, 15-17; com
parison of, with frequency polygon, 17 

homogeneity, effect of, upon correlation 
coefficients, 171-172; of variance tests 
of,454-455 

inference, types of error in, 219-223 
interaction, in analysis of variance, 293-

294 
interval. See class interval. 
item analysis: in selection, 361-362; in 

item difficulty, 362-364; and correction 
of, 365-366; in item validity, 365-368; 
in cross validation, 368-369 

kurtosis: meaning of, 101-102; graphic 
representation of, 101 

levels of sigpificance, 190 
line graphs, 78-80 . 

matched groups, method of treating, 230-
232 

mean, arithmetic: for ungrouped scores, 
27; from a frequency distribution, 28-
30; from pooled groups, 30; by assumed 
mean method, 35-38; when to use, 38; 
significance of, 185-193; limits of ac~ 
curacy in, 185-193 

mean deviation (MD). See average devi
ation. 

median: with ungrouped scores, 30-31; 
, from frequency distribution, 31-33; in 

special cases, 33-35; when to use, 38; 
significance of, 195' 

m~thod, "experimental: single group, 226-
228; equivalent groups, 228-230; 
matched groups, 230-232 



midpoint, of interval, 6-8 
mode, 34-35; crude mode, 35; when to 

use, 39 
moving average, in smoothing a curve, 
1~15 . 

multiple correlation: meaning of, 403-
404; coefficient (R), 404; in 3-variable 
problem, 405-410; formulas for, 413-
414; significance of, 416-417; shrink
age in, 416-417; beta coefficients in, 
419-420; effects of intercorrelations 
upon, 420-422; limitations to the use 
of, 422; semi-partial, 452-453 

multiple regression equation, for 3-vari
ables, 405; for n variables, 412; partial 
regression coefficients in, 412; beta co
efficients in, 418-419 

nonlinear relationship, 396-398 
nonparametric methods, 266-272; the sign 
. test, 267; the median test, 268; the 

sum-of-ranks test, 271-272; value of, 
272 

normal probability curve, 87-89; il
lustrations of, 87-88; from binomial 
expansion, .89-93; in psychological 
measurement, 94-96; equation of, 96; 
properties of,' 96-98; comparisons of 
distributions with, 102-105; use of, 
in various problems, 105-114; in scal
ing test scores, 314-318; in scaling 
judgments, 323-332; derivations of, 
447-448 

normality: divergences of frequency dis
tribution from, 114-119; normalizing 
a frequency distribution, 314-317; T
scores and, 315-318 

null hypothesis,· 212, 247; in determining 
the significance of r, 200-202; in test
ing differences, 212, 246-247; advan
tages of, 212; testing against probable 
outcomes, 248-250; testing against nor
mal curve, 251-253 

numbers, rounded, 20; exact and approxi
mate, 21 

ogive, 69-72; percentiles an:d percentile 
ranks from, 71-74; smoothirig of, 76; 
uses of, 76-78 

order of merit, ranks, 328; changing into 
numerical values, 329 

overlapping, defined, 108-110; in meas
urement of groups, 1C9-110 
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parallel forms of test, in reliability, 338-
339 

parameter, defined, 184 
partial correlation: meaning of, 403-404; 

in analysis, 404; illustrated in 3-variable 
problem, 404-408; notation in, 407-
408; formulas for partial r's, 411; 
significance of partial r's, 414-419; 
limitations to the use of, 421-422 

percentages, standard error of, 197; com
pared with reference values, 234-235; 
difference between, 235-238; N needed 
for given significance level, 239-241 

percentile ranks (PR), 65-69; from orders 
of merit, 6~9; curve of, 69-73; 
graphic method of finding, 71; uses of, 
73-75; norms, 75-77; from the normal 
curve, 323 

percentile scaling, 321-323; disadvantages 
of,322-323 

percentiles, 65-69; graphic determination 
of, 71-73; direct calculation of, 321-322 

phi coefficient, 388-391; relation to x2, 

391; comparison with r" 391-392 
pie diagram, 82 
prediction: from regression equation, 

164-i65; actuarial, 165-168; regression 
effect in, 174-175; from multiple re
gression equations, 409, 411-413, 438 

probability, principles of, 89-94 
probable error, relation to Q, 99; relation 

to cr, 99 
product-moment correlational method, 

134-139 

quartile' deviation (Q ), 43-48; when to 
use, 60; stability of, 196 

quartiles, Ql and Q3'- 'computation of, 
43-47 . 

range, as measure of variability, 42-4;3; 
when to use, 59; influence upon coeffi
cient of correlation, 171-172 

rank-difference method, of correlation, 
371-374; significance of, 375; when 
to use, 375 

ranks, converted into units of amount, 
328-330 . 

rational equivalence, method of, in test 
reliability, 340-342 _ 

re.ctangular distribution and normal, 322 
regression coefficient, 154-156; in partial 

and multiple correlation, 412 
regreSSion effect, 174-175 
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regression equations, 153-156; in devia
tion fonn, 153; in correlation table, 
156-158; in score fonn, 158-159; in 
prediction. 159-162; limitations to use 
of, 162-165; fonnulas for, in multiple 
correlation, 412 

relative variability, coefficient of, 57-59; 
limitations to, 58-59 

reliability, of test scores, 36; methods of 
determining, 337-341 

sampling, random, 202-206; stratified, 
206-207; incidental, 207; purposive, 
207; and size of N, 207-208; and errors 
of measurement, 208-209; bias and 
constant errors in, 209; and size of N 
needed for given level of significance, 
239-241 

scale, defined, 1....,2 
scaling, of test items, 309-311; of scores, 

311-314; of judgments, 323-325; of 
questionnaire items, 325-327; of rat
ings, 328-332. See also percentile scal
ing, T -scale. 

scatter diagram, 128-129 
score, defined, 3-4; in continuous and 

discrete series, 3-4; true, 347-348 
selection, of tests in a battery, 419-421 
semi-interquartile range, 47. See also 

quartile deviation. 
semi-partial correlation, meaning of, 452-

453 
sigma scores, 312-314; and standard 

scores, 312-314 
significance, meaning of, 184-185; of 

mean, 185-186; levels of, 190.216-217; 
in small samples, 191-192; of the 
median, 195; of the tT, 195-196; of Q, 
196; of percentages, 197-198; of f', 

f 201; sampling and, 203-204; one and 
two-tailed tests of, 217-219 

Significant figures, 20-21 
skewness, 99-101; causes of, 114-118 
Speannan-Brown prophecy fonnula, in 

test reliability, 339-340, 342-345 
split-half technique, in test reliability, 

339-340 
spurious correlation, 441-443; from het

erogeneity, 441-442; of indices, 442; 
of averages, 442-443 

standard deviation (tT), 49-50; computa
tion of, 50-56; in pooled distributions, 
56-57; when to use, 60; in small sam
ples, 186; significance of, 195-196; 

difference between, 233-235, and in 
small samples, 303; estimation of true 
value of, 346; fonnulas for, in partial 
correlation, 411-412; derivation of for
mulas for, 446 

standard error: of mean, in large samples, 
185; in small samples, 191; of a me
dian, 195; of tT, 196; of Q, 196; of a 
percentage, 197; of f', 198; of the dif
ference between means, 211-214; of 
the difference between medians, 232; 
of the difference between tT'S, 233-235; 
of the difference between percentages, 
235-238; of the difference between ,'s, 
241-242 

standard error, of an obtained score, 
350-351 

standard error of estimate, 160-162; in 
interpretation of f', 177-178; of a true 
score, 347; in multiple correlation, 409 

standard srores, 312-314; and T-scores, 
317-318 

stanine, scale, 318; relation to T-scale, 
318-319 

statistic, defined, 184 
student's distribution, 192 

tabulation, of frequency distribution, 4-7; 
in correlation table, 128-129 

test items, factors affecting reliability of, 
338;, analysis of, 361-368; relative diffi
culty of, 363-365; validity of, 365-368 

test-retest, reliability of test scores in, 
338 

tetrachoric correlation, 384; methods in, 
384-388;' value of, 391-392; compar
ison with <p, 391-392 

.transmutation, of judgments, 323-327; in 
orders of merit, 327-332 

T-scale, 314; advantages of, 318; com
pared with standard scores, 319-321 

t-test: meaning of, 191-192; compared 
with CR, 223; in analysis of variance, 
287,294,302 

true score: standard error of, 347; esti
mate of, 347-348, 350-351 

validity, 354-355; how to detennine, 355-
360; relation to reliability, 358-361' 

variability, meaning, 42-43; measures of, 
43; relative, 57-59; Significance of 
measures of, 195-196 

variance (tT2), analysis of, 277-279; com
ponents of, 286-287 



Wherry-Doolittle test selection method, 
426-427; illustrated, 427-440; regres
sion equations in, 437-439; beta 
weights and multiple R, 439-440; 
shrinkage formufa in, 440; cautions in 
the use of, 440 
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z-function (Fisher), in averaging r's, 172-
174; in determining the significance of 
r, 199-200; in determining the signifi
cance of the difference between r's, 
241-243 

z-scores, and standard scores, 312-314 








