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Foreword

ARIJIT CHAUDHURI and HORST STENGER are well known in
sampling theory. The present book further confirms their rep-
utation. Here the authors have undertaken the large task of
surveying the sampling literature of the past few decades to
provide a reference book for researchers in the area. They have
done an excellent job. Starting with the unified theory the au-
thors very clearly explain subsequent developments. In fact,
even the most modern innovations of survey sampling, both
methodological and theoretical, have found a place in this con-
cise volume. In this connection I may specially mention the
authors’ presentation of estimating functions. With its own
distinctiveness, this book is indeed a very welcome addition to
the already existing rich literature on survey sampling.

V. P. GODAMBE

University of Waterloo
Waterloo, Ontario, Canada

xiii
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Preface to the Second Edition

It is gratifying that our Publishers engaged us to prepare this
second edition. Since our first edition appeared in 1992,
Survey Sampling acquired a remarkable growth to which we,
too, have made a modest contribution. So, some addition seems
due. Meanwhile, we have received feedback from our readers
that prompts us to incorporate some modifications.

Several significant books of relevance have emerged af-
ter our write-up for the first edition went to press that we may
now draw upon, by the following authors or editors: SÄRNDAL,
SWENSSON and WRETMAN (1992), BOLFARINE and ZACKS
(1992), S. K. THOMPSON (1992), GHOSH and MEEDEN (1986),
THOMPSON and SEBER (1996), M. E. THOMPSON, (1997)
GODAMBE (1991), COX (1991) and VALLIANT, DORFMAN and
ROY ALL (2000), among others.

Numerous path-breaking research articles have also
appeared in journals keeping pace with this phenomenal
progress. So, we are blessed with an opportunity to enlighten
ourselves with plenty of new ideas. Yet we curb our impulse to
cover the salient aspects of even a sizeable section of this cur-
rent literature. This is because we are not inclined to reshape

xv
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xvi Preface to the Second Edition

the essential structure of our original volume and we are aware
of the limitations that prevent us from such a venture.

As in our earlier presentation, herein we also avoid be-
ing dogmatic—more precisely, we eschew taking sides. Survey
Sampling is at the periphery of mainstream statistics. The
speciality here is that we have a tangible collection of objects
with certain features, and there is an intention to pry into
them by getting hold of some of these objects and attempt-
ing an inference about those left untouched. This inference
is traditionally based on a theory of probability that is used
to exploit a possible link of the observed with the unobserved.
This probability is not conceived as in statistics, covering other
fields, to characterize the interrelation of the individual val-
ues of the variables of our interest. But this is created by a
survey sampling investigator through arbitrary specification
of an artifice to select the samples from the populations of
objects with preassigned probabilities. This is motivated by
a desire to draw a representative sample, which is a concept
yet to be precisely defined. Purposive selection (earlier pur-
ported to achieve representativeness) is discarded in favor of
this sampling design-based approach, which is theoretically
admitted as a means of yielding a legitimate inference about
an aggregate from a sampled segment and also valued for its
objectivity, being free of personal bias of a sampler. NEY MAN’s
(1934) pioneering masterpiece, followed by survey sampling
texts by YATES (1953), HANSEN, HURWITZ and MADOW (1953),
DEMING (1954) and SUKHATME (1954), backed up by exqui-
sitely executed survey findings by MAHALANOBIS (1946) in
India as well as by others in England and the U.S., ensured
an unstinted support of probability sampling for about
35 years.

But ROY ALL (1970) and BREWER (1963) installed a rival
theory dislodging the role of the selection probability as an
inferential tool in survey sampling. This theory takes off pos-
tulating a probability model characterizing the possible links
among the observed and the unobserved variate values asso-
ciated with the survey population units. The parameter of the
surveyor’s inferential concern is now a random variable rather
than a constant. Hence it can be predicted, not estimated.

© 2005 by Taylor & Francis Group, LLC
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Preface to the Second Edition xvii

The basis of inference here is this probability structure as
modeled.

Fortunately, the virtues of some of the sampling design-
supported techniques like stratification, ratio method of
estimation, etc., continue to be upheld by this model-based
prediction theory as well. But procedures for assessing and
measuring the errors in estimation and prediction and setting
up confidence intervals do not match.

The design-based approach fails to yield a best estima-
tor for a total free of design-bias. By contrast, a model-specific
best predictor is readily produced if the model is simple, cor-
rect, and plausible. If the model is in doubt one has to strike
a balance over bias versus accuracy. A procedure that works
well even with a wrong model and is thus robust is in demand
with this approach. That requires a sample that is adequately
balanced in terms of sample and population values of one or
more variables related to one of the primary inferential inter-
est. For the design-based classical approach, currently recog-
nized performers are the estimators motivated by appropri-
ate prediction models that are design-biased, but the biases
are negligible when the sample sizes are large. So, a mod-
ern compromise survey approach called model assisted survey
sampling is now popular. Thanks to the pioneering efforts by
SÄRNDAL (1982) and his colleagues the generalized regression
(GREG) estimators of this category are found to be very effec-
tive in practice.

Regression modeling motivated their arrival. But an al-
ternative calibration approach cultivated since the early
nineties by ZIESCHANG (1990), DEVILLE and SÄRNDAL (1992),
and others renders them purely design-based as well with an
assured robustness or riddance from model-dependence
altogether.

A predictor for a survey population total is a sum of
the sampled values plus the sum of the predictors for the
unsampled ones. A design-based estimator for a population
total, by contrast, is a sum of the sampled values with multi-
plicative weights yielded by specific sampling designs. A cal-
ibration approach adjusts these initial sampling weights, the
new weights keeping close to them but satisfying certain
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xviii Preface to the Second Edition

consistency constraints or calibration equations determined
by one or more auxiliary variables with known population
totals.

This approach was not discussed in the first edition but is
now treated at length. Adjustments here need further care to
keep the new weights within certain plausible limits, for which
there is considerable documentation in the literature. Here we
also discuss a concern for outliers—a topic which also recom-
mends adjustments of sampling weights. While calibration and
restricted calibration estimators remain asymptotically design
unbiased (ADU) and asymptotically design consistent (ADC),
the other adjusted ones do not.

Earlier we discussed the QR predictors, which include
(1) the best predictors, (2) projection estimators, (3) gener-
alized regression estimators, and (4) the cosmetic predictors
for which (1) and (3) match under certain conditions. Devel-
opments since 1992 modify QR predictors into restricted QR
predictors (RQR) as we also recount.

SÄRNDAL (1996), DEVILLE (1999), BREWER (1999a,
1999b), and BREWER and GREGOIRE (2000) are prescribing a
line of research to justify omission of the cross-product terms
in the quadratic forms, giving the variance and mean square
error (MSE) estimators of linear estimators of population to-
tals, by suitable approximations. In this context SÄRNDAL
(1996) makes a strong plea for the use of generalized regres-
sion estimators based either on stratified (1) simple random
sampling (SRS) or (2) Bernoulli sampling (BS), which is a
special case of Poisson sampling devoid of cross-product
terms. This encourages us to present an appraisal of
Poisson sampling and its valuable ramifications employing
permanent random numbers (PRN), useful in coordination and
exercise of control in rotational sampling, a topic we omitted
earlier.

Among other novelties of this edition we mention the fol-
lowing. We give essential complements to our earlier discus-
sion of the minimax principle. In the first edition, exact results
were presented for completely symmetric situations and ap-
proximate results for large populations and samples. Now, fol-
lowing STENGER and GABLER (1996) an exact minimax
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property of the expansion estimator in connection with the
LAHIRI-MIDZUNO-SEN design is presented for arbitrary sam-
ple sizes.

An exact minimax property of a Hansen-Hurwitz estima-
tor proved by GABLER and STENGER (2000) is reviewed; in this
case a rather complicated design has to be applied, as sample
sizes are arbitrary.

A corrective term is added to SEN (1953) and YATES and
GRUNDY ’s (1953) variance estimator to make it unbiased even
for non-fixed-sample-size designs with an easy check for its
uniform non-negativity, as introduced by CHAUDHURI and PAL
(2002). Its extension to cover the generalized regression esti-
mator analogously to HORVITZ and THOMPSON’s (1952)
estimator is but a simple step forward.

In multistage sampling DURBIN (1953), RAJ (1968) and
J. N. K. RAO’s (1975a) formulae for variance estimation need
expression in general for single-stage variance formulae as
quadratic forms to start with, a condition violated in
RAJ (1956), MURTHY (1957) and RAO, HARTLEY and COCHRAN
(1962) estimators, among others. Utilizing commutativity of
expectation operators in the first and later stages of sampl-
ing, new simple formulae are derived bypassing the above
constraint following CHAUDHURI, ADHIKARI and DIHIDAR
(2000a, 2000b).

The concepts of borrowing strength, synthetic, and em-
pirical Bayes estimation in the context of developing small do-
main statistics were introduced in the first edition. Now we
clarify how in two-stage sampling an estimator for the popula-
tion total may be strengthened by employing empirical Bayes
estimators initiated through synthetic versions of GREG esti-
mators for the totals of the sampling clusters, which are them-
selves chosen with suitable unequal probabilities. A new ver-
sion of cluster sampling developed by CHAUDHURI and PAL
(2003) is also recounted.

S. K. THOMPSON (1992) and THOMPSON and SEBER’s
(1996) adaptive and network sampling techniques have been
shown by CHAUDHURI (2000a) to be generally applicable for
any sampling scheme in one stage or multistages with or with-
out stratification. It is now illustrated how adaptive sampling
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may help the capture of rare units with appropriate network
formations; vide CHAUDHURI, BOSE and GHOSH (2003).

In the first edition as well as in the text by CHAUDHURI
and MUKERJEE (1988), randomized response technique to
cover qualitative features was restricted to simple random
sampling with replacement (SRSWR) alone. Newly emerging
extension procedures to general sampling designs are now
covered.

In the first edition we failed to cover SITTER’s (1992a,
1992b) mirror-match and extended BWO bootstrap procedures
and discussed RAO and WU’s (1985, 1988) rescaled bootstrap
only cursorily; we have extended coverage on them now.

Circular systematic sampling (CSS) with probability pro-
portional to size (PPS) is known to yield zero inclusion proba-
bilities for paired units. But this defect may now be removed
on allowing a random, rather than a predetermined, sampling
interval—a recent development, which we now cover. Barring
these innovations and a few stylistic repairs the second edition
mimics the first.

Of course, the supplementary references are added alpha-
betically. We continue to remain grateful to the same persons
and institutions mentioned in the first edition for their sus-
tained support.

In addition, we wish to thank Mrs. Y. CHEN for typing and
organizing typesetting of the manuscript.

ARIJIT CHAUDHURI

HORST STENGER
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Our subject of attention is a finite population with a known
number of identifiable individuals, bearing values of a char-
acteristic under study. The main problem is to estimate the
population total or mean of these values by surveying a suit-
ably chosen sample of individuals. An elaborate literature has
grown over the years around various criteria for appropriate
sampling designs and estimators based on selected samples so
designed. We cover this literature selectively to communicate
to the reader our appreciation of the current state of devel-
opment of essential aspects of theory and methods of survey
sampling.

Our aim is to reach graduate and advanced level students
of sampling and, at the same time, researchers in the area
looking for a reference book. Practitioners will be interested
in many techniques of sampling that, we believe, are not ade-
quately covered in most textbooks. We have avoided details of
foundational aspects of inference in survey sampling treated
in the texts by CASSEL, SÄRNDAL and WRETMAN (1977) and
CHAUDHURI and VOS (1988).

In the first four chapters we state fundamental results
and provide proofs of many propositions, although often

xxi
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leaving some of them incomplete purposely in order to save
space and invite our readers to fill in the gaps themselves. We
have taken care to keep the level of discussion within reach of
the average graduate-level student.

The first four chapters constitute the core of the book.
Although not a prerequisite, they are nevertheless helpful in
giving motivations for numerous theoretical and practical pro-
blems of survey sampling dealt with in subsequent chapters,
which are rather specialized and indicate several lines of ap-
proach. We have collected widely scattered materials in order
to aid researchers in pursuing further studies in areas of spe-
cific interest. The coverage is mostly review in nature, leaving
wide gaps to be bridged with further reading from sources cited
in the References.

In chapter 1 we first formulate the problem of getting
a good point estimator for a finite population total. We sup-
pose the number of individuals is known and each unit can be
assigned an identifying label. Consequently, one may choose
an appropriate sample of these labels. It is assumed that un-
known values can be ascertained for the individuals sampled.
First we discuss the classical design-based approach of infer-
ence and present GODAMBE (1955) and GODAMBE and JOSHI’s
(1965) celebrated theorems on nonexistence of the best esti-
mator of a population total. The concepts of likelihood and
sufficiency and the criteria of admissibility, minimaxity, and
completeness of estimators and strategies are introduced and
briefly reviewed. Uses and limitations of well-known super-
population modeling in finding serviceable sampling strategies
are also discussed. But an innovation worth mentioning is the
introduction of certain preliminaries on GODAMBE’s (1960b)
theory of estimating equations. We illustrate its application to
survey sampling, bestowing optimality properties on certain
sampling strategies traditionally employed ad hoc.

The second chapter gives RAO and VIJAY AN’s (1977) pro-
cedure of mean square error estimation for homogeneous lin-
ear estimators and mentions several specific strategies to
which it applies.

The third chapter introduces ROY ALL’s (1970) linear pre-
diction approach in sampling. Here one does not speculate
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about what may happen if another sample is drawn with a
preassigned probability. On the contrary, the inference is based
on speculation on the possible nature of the finite population
vector of variate values for which one may postulate plausible
models. It is also shown how and why one needs to revise ap-
propriate predictors and optimal purposive sampling designs
to guard against possible mis-specifications in models and, at
the same time, seek to employ robust but nonoptimal proce-
dures that work well even when a model is inaccurately hy-
pothesized. This illustrates how these sampling designs may
be recommended when a model is correctly but simplistically
postulated. Later in the chapter, Bayes estimators for finite
population totals based on simplistic priors are mentioned and
requirements for their replacements by empirical Bayes meth-
ods are indicated with examples. Uses of the JAMES–STEIN
technique on borrowing strength from allied sources are also
emphasized, especially when one has inadequate sample data
specific to a given situation.

In chapter 4 we first note that if a model is correctly pos-
tulated, a design-unbiased strategy under the model may be
optimal yet poorer than a comparable optimal predictive strat-
egy. On the other hand, the optimal predictive strategy is de-
void of design-based properties and modeling is difficult. Hence
the importance of relaxing design-unbiasedness for the design-
based strategy and replacing the optimal predictive strategy
by a nonoptimal robust alternative enriched with good design
properties. The two considerations lead to inevitable asymp-
totics. We present, therefore, contemporary activities in ex-
ploring competitive strategies that do well under correct mod-
eling but continue to have desirable asymptotic design-based
features in case of model failures. Although achieving robust-
ness is a guiding motive in this presentation, we do not re-
peat here alternative robustness preserving techniques, for
example, due to GODAMBE (1982). However, the asymptotic
approaches for minimax sampling strategies are duly reported
to cover recently emerging developments.

In chapter 5 we address the problem of mean square error
estimation covering estimators and predictors and we follow
procedures that originate from twin considerations of designs
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and models. In judging comparative efficacies of competing
procedures one needs to appeal to asymptotics and extensive
empirical investigations demanding Monte Carlo simulations;
we have illustrated some of the relevant findings of established
experts in this regard.

Chapter 6 is intended to supplement a few recent develop-
ments of topics concerning multistage, multiphase, and repet-
itive sampling. The time series methods applicable for a fuller
treatment are not discussed.

Chapter 7 recounts a few techniques for variance esti-
mation involving nonlinear estimators and complex survey
designs including stratification, clustering, and selection in
stages.

The next chapter deals with specialized techniques needed
for domain estimation, poststratification, and estimation from
samples taken using inadequate frames. The chapter empha-
sizes the necessity for conditional inference involving specu-
lation over only those samples having some recognizable fea-
tures common with the sample at hand.

Chapter 9 introduces the topic of analytic rather than de-
scriptive studies where the center of attention is not the survey
population at hand but something that lies beyond and typifies
it in some discernible respect. Aspects of various methodologies
needed for regression and categorical data analyses in connec-
tion with complex sampling designs are discussed as briefly as
possible.

Chapter 10 includes some accounts of methods of generat-
ing randomized data and their analyses when there is a need
for protected privacy relating to sensitive issues under inves-
tigation.

Chapter 11 presents several methods of analyzing survey
data when there is an appreciable discrepancy between those
gathered and those desired. The material presented is culled
intensively from the three-volume text on incomplete data by
MADOW et al. (1983) and from KALTON’s (1983a,b) texts and
other sources mentioned in the references.

The concluding chapter sums up our ideas about inference
problems in survey sampling.
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We would like to end with the following brief remarks.
In employing a good sampling strategy it is important to ac-
quire knowledge about the background of the material under
investigation. In light of the background information at one’s
command one may postulate models characterizing some of
the essential features of the population on which an inference
is to be made. While employing the model one should guard
against its possible incorrectness and hence be ready to take
advantage of the classical design-based approach in adjust-
ing the inference procedures. While deriving in full the virtue
of design-based arguments one should also examine if appro-
priate conditional inference is applicable in case some cogniz-
able features common to the given sample are discernible. This
would allow averaging over them instead of over the entire set
of samples.

ARIJIT CHAUDHURI gratefully acknowledges the facili-
ties for work provided at the Virginia Polytechnic Institute
and University of Mannheim as a visiting professor and the
generosity of the Indian Statistical Institute in granting him
the necessary leave and opportunities for joint research with
his coauthor. He is also grateful to his wife, Mrs. BINATA
CHAUDHURI, for her nonacademic but silent help.

HORST STENGER gratefully acknowledges the support of
the Deutsche Forschungsgemeinschaft offering the opportu-
nity of an intensive cooperation with the coauthor. His thanks
also go to the Indian Statistical Institute, where joint research
could be continued. In addition, he wishes to thank Mrs. R.
BENT, Mrs. H. HARY ANTO, and, especially, Mrs. P. URBAN,
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Chapter1

Estimation in Finite Populations:
A Unified Theory

1.1 INTRODUCTION

Suppose it is considered important to gather ideas about, for
example, (1) the total quantity of food grains stocked in all the
godowns managed by a state government, (2) the total number
of patients admitted in all the hospitals of a country classified
by varieties of their complaints, (3) the amount of income tax
evaded on an average by the income earners of a city. Now,
to inspect all godowns, examine all admission documents of
all hospitals of a country, and make inquiries about all income
earners of a city will be too expensive and time consuming. So it
seems natural to select a few godowns, hospitals, and income
earners, to get all relevant data for them and to be able to
draw conclusions on those quantities that could be ascertained
exactly only by a survey of all godowns, hospitals, and income
earners. We feel it is useful to formulate mathematically as
follows the essentials of the issues at hand common to the
above and similar circumstances.

1

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch01 January 27, 2005 16:8

2 Chaudhuri and Stenger

1.2 ELEMENTARY DEFINITIONS

Let N be a known number of units, e.g., godowns, hospitals, or
income earners, each assignable identifying labels 1, 2, . . . , N
and bearing values, respectively, Y1, Y2, . . . , YN of a real-
valued variable y, which are initially unknown to an inves-
tigator who intends to estimate the total

Y =
N∑
1

Yi

or the mean Y = Y /N .
We call the sequence U = (1, . . . , N ) of labels a popula-

tion. Selecting units leads to a sequence s = (i1, . . . , in), which
is called a sample. Here i1, . . . , in are elements of U , not neces-
sarily distinct from one another but the order of its appear-
ance is maintained. We refer to n = n(s) as the size of s, while
the effective sample size ν(s) = | s | is the cardinality of s,
i.e., the number of distinct units in s. Once a specific sample
s is chosen we suppose it is possible to ascertain the values
Yi1 , . . . , Yin of y associated with the respective units of s. Then

d = [
(i1, Yi1), . . . , (in, Yin)

]
or briefly

d = [
(i, Yi)|i ∈ s

]
constitutes the survey data.

An estimator t is a real-valued function t(d ), which is
free of Yi for i �∈ s but may involve Yi for i ∈ s. Sometimes we
will express t(d ) alternatively by t(s, Y ), where Y = (Y1, . . . ,
Y N )′.

An estimator of special importance for Y is the sample
mean

t(s, Y ) = 1
n(s)

N∑
i=1

f siYi = y, say

where f si denotes the frequency of i in s such that
N∑

i=1

f si = n(s).

N y is called the expansion estimator for Y .
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More generally, an estimator t of the form

t(s, Y ) = bs +
N∑

i=1

bsiYi

with bsi = 0 for i /∈ s is called linear (L). Here bs and bsi are
free of Y . Keeping bs = 0 we obtain a homogeneous linear
(HL) estimator.

We must emphasize that here t(s, Y ) is linear (or homo-
geneous linear) in Yi, i ∈ s. It may be a nonlinear function of
two random variables, e.g., when bs = 0 and bsi = X/�N

1 f si Xi
so that

t(s, Y ) =
∑N

1 f siYi∑N
1 f si Xi

X .

Here, Xi is the value of a variable x on i ∈ U and X = �N
1 Xi

(see section 2.2.)
In what follows we will assume that a sample is drawn

at random, i.e., with each sample s is associated a selection
probability p(s). A design p may depend on related variables
x, z, etc. But we assume, unless explicitly mentioned other-
wise, that p is free of Y . To emphasize this freedom, p is often
referred to in the literature as a noninformative design.

If p involves any component of Y it is an informative
design.

A design p is without replacement (WOR) if no repeti-
tions occur in any s with p(s) > 0; otherwise, p is called with
replacement (WR). A design p is of fixed size n (fixed effec-
tive size n) if p(s) > 0 implies that s is of size n (of effective
size n). With respect to WOR designs there is, of course, no
difference between fixed size and fixed effective size.

A design p is called simple random sampling without
replacement (SRSWOR) if

p(s) = 1(
N
n

)
n!
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for s of size n without repetitions, while it is called simple
random sampling with replacement (SRSWR) if

p(s) = 1
N n

for every s of size n, n fixed in advance.
The combination ( p, t) denoting an estimator t based on

s chosen according to a design p is called a strategy. Some-
times a redundant epithet sampling is used before design and
strategy but we will avoid this usage.

Whatever Y may be, let

Ep(t) =
∑

s
t(s, Y ) p(s)

denote the expectation of t and

Mp(t) = Ep(t − Y )2 =
∑

s
p(s)(t(s, Y ) − Y )2

the mean square error (MSE) of t. If Ep(t) = Y for every Y ,
then t is called a p-unbiased estimator (UE) of Y . In this
case Mp(t) becomes the variance of t and is written

V p(t) = Ep(t − Ep(t))2.

For an arbitrary design p, consider the inclusion prob-
abilities

πi =
∑
s	i

p(s) ; i = 1, 2, . . . , N

πi j =
∑

s	i, j

p(s) ; i �= j = 1, 2, . . . , N

and, provided π1, π2, . . . , πN > 0, the Horvitz–Thompson
(HT) estimator (HTE)

t =
∑
i∈s

Yi

πi

(see HORVITZ and THOMPSON, 1952) where the sum is over
|s| terms while s is of length n(s). It is easily seen that t is HL
and p-unbiased (HLU) for Y .
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REMARK 1.1 To mention another way to write t define

Isi =
{

1 if i ∈ s
0 if i /∈ s

for i = 1, 2, . . . , N . Then

t = t(s, Y ) =
N∑

i=1

Isi
Yi

πi
.

where the sum is over i = 1, 2, . . . , N

REMARK 1.2 Assume i0 ∈ U exists with πi0 = 0 for a design p.
Then, for an estimator t

Ept =
∑
s	i0

p(s)t(s, Y ) +
∑
s �	i0

p(s)t(s, Y ).

The second term on the right of this equation is obviously free
of Yi0 . Since p(s) = 0 for all s with i0 ∈ s, the first term is 0.
Hence, Ept is free of Yi0 and, especially, not equal to Y = �N

1 Yi.
Consequently, no p-unbiased estimator exists.

1.3 DESIGN-BASED INFERENCE

Let �1 be the sum over samples for which |t(s, Y ) −Y | ≥ k > 0
and let �2 be the sum over samples for which |t(s, Y ) −Y | < k
for a fixed Y . Then from

Mp(t) = �1 p(s)(t − Y )2 + �2 p(s)(t − Y )2

≥ k2Prob
[|t(s, Y ) − Y | ≥ k

]
one derives the Chebyshev inequality:

Prob[|t(s, Y ) − Y | ≥ k] ≤ Mp(t)
k2 .

Hence

Prob[t − k ≤ Y ≤ t + k] ≥ 1 − Mp(t)
k2 = 1 − 1

k2

[
V p(t) + B2

p(t)
]

where Bp(t) = Ep(t) − Y is the bias of t. Writing σp(t) =√
V p(t) for the standard error of t and taking k = 3σp(t), it fol-

lows that, whatever Y may be, the random interval t ± 3σp(t)
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covers the unknown Y with a probability not less than

8
9

− 1
9

B2
p(t)

V p(t)
.

So, to keep this probability high and the length of this covering
interval small it is desirable that both |Bp(t)| and σp(t) be
small, leading to a small Mp(t) as well.

EXAMPLE 1.1 Let y be a variable with values 0 and 1 only. Then,
as a consequence of Y 2

i = Yi,

σyy = 1
N

∑
(Yi − Y )2

= Y (1 − Y ) ≤ 1
4
.

Therefore, with p SRSWR of size n,

V p(N y) = N 2 σyy
n

≤ N 2

4n .

From

Ep y = Y

we derive that the random interval

N y ± 3

√
N 2 1

4n
= N

[
y ± 3

2
√

n

]

covers the unknown N Y with a probability of at least 8/9.

It may be noted that Y is regarded as fixed (nonstochastic) and
s is a random variable with a probability distribution p(s) that
the investigator adopts at pleasure. It is through p alone that
for a fixed Y the interval t ± 3σp(t) is a random interval. In
practice an upper bound of σp(t) may be available, as in the
above example, or σp(t) is estimated from survey data d plus
auxiliary information by, for example, σ̂p(t) inducing necessary
changes in the above confidence statements.

If |Bt(t)| is small, then we may argue that the average
value of t over repeated sampling according to p is numeri-
cally close to Y and, if Mp(t) is small, then we may say that
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the average square error Ep(t − Y )2 calculated over repeated
sampling according to p is small.

Let us stress this point more fully. The parameter to be
estimated may be written as Y = �sYi +�r Yi, the sums being
over the distinct units sampled and the remaining units of U ,
respectively. Its estimator is

t =
∑

s
Yi +

(
t −

∑
s

Yi

)
.

Now, t is close to Y for a sample s at hand and the realized
survey data d = (i, Yi | i ∈ s) if and only if (t − �sYi) is close
to �r Yi, the first expression depending on Yi for i ∈ s and the
second determined by Y j for j /∈ s. Now, so far we permit Y to
be any vector of real numbers without any restrictions on the
structural relationships among its coordinates. In this fixed
population setup we have no way to claim or disclaim the
required closeness of (t − �sYi) and �r Yi for a given sample
s. But we need a link between Yi for i ∈ s and Y j for j /∈ s
in order to provide a base on which our inference about Y
from realized data d may stand. Such a link is established by
the hypothesis of repeated sampling. The resulting design-
based (briefly: p-based) theory following NEY MAN (1934) is
developed around the faith that it is desirable and satisfactory
to assess the performance of the strategy ( p, t) over repeated
sampling, even if in practice a sample will really be drawn
once, yielding a single value for t.

This theory is unified in the sense that the performance
of a strategy ( p, t) is evaluated in terms of the characteristics
Ep(t) and Mp(t), such that there is no need to refer to specific
selection procedures.

1.4 SAMPLING SCHEMES

A unified theory is developed by noting that it is enough to
establish results concerning ( p, t) without heeding how one
may actually succeed in choosing samples with preassigned
probabilities. A method of choosing a sample draw by draw,
assigning selection probabilities with each draw, is called a
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sampling scheme. Following HANURAV (1966), we show be-
low that starting with an arbitrary design we may construct a
sampling scheme.

Suppose for each possible sample s from U the selection
probability p(s) is fixed. Let

βi1 = p(i1), βi1,i2 = p(i1, i2), . . . , βi1,...,in = p(i1, . . . , in)
αi1 = �1 p(s), αi1,i2 = �2 p(s), . . . , αi1,...,in = �np(s)

where �1 is the sum over all samples s with i1 as the first
entry; �2 is the sum over all samples with i1, i2, respectively,
as the first and second entries in s, . . . , and �n is the sum
over all samples of which the first, second, . . . , nth entries are,
respectively, i1, i2, . . . , in.

Then, let us consider the scheme of selection such that
on the first draw from U , i1 is chosen with probability αi1, a
second draw from U is made with probability(

1 − βi1

αi1

)
.

On the second draw from U the unit i2 is chosen with proba-
bility

αi1,i2

αi1 − βi1
.

A third draw is made from U with probability(
1 − βi1,i2

αi1,i2

)
.

On the third draw from U the unit i3 is chosen with probability

αi1,i2,i3

αi1,i2 − βi1,i2

and so on. Finally, after the nth draw the sampling is termi-
nated with a probability

βi1,i2,...,in

αi1,... ,in
.
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For this scheme, then, s = (i1, . . . , in) is chosen with a proba-
bility

p(s) = αi1

(
1 − βi1

αi1

)
αi1,i2

αi1 − βi1

(
1 − βi1,i2

αi1,i2

)
. . .

αi1,...,in−1

αi1,...,in−2 − βi1,...,in−2

×
(

1 − βi1,...,in−1

αi1,...,in−1

)
αi1,...,in

αi1,...,in−1 − βi1,...,in−1

(
βi1,...,in

αi1,...,in

)

= βi1,... ,in

as it should be.

1.5 CONTROLLED SAMPLING

EXAMPLE 1.2 Consider the population U = (1, 2, . . . , 9) and
the SRSWOR design of size n = 3, p, with the inclusion prob-
abilities

πi = 1/3 for i = 1, 2, . . . , 9
πi j = 1/12 for i �= j .

Define

q(s) = 1/12

if s is equal to one of the following samples

(1,2,3) (1,6,8)
(4,5,6) (2,4,9)
(7,8,9) (3,5,7)
(1,4,7) (1,5,9)
(2,5,8) (2,6,7)
(3,6,9) (3,4,8)

and q(s) = 0 otherwise. Then q obviously is a design with the
same inclusion probabilities as p. For the sample mean y,
which, as a consequence of πi = 1/3 for all i, is identical with
the HTE, we therefore have

Ep y = Eq y
V p y = Vq y

that is, the performance characteristics of the sample mean do
not change when p is replaced by q.
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Now, consider an arbitrary design p of fixed size n and a
linear estimator t; suppose a subset S0 of all samples is less
desirable from practical considerations like geographical loca-
tion, inaccessibility, or, more generally, costliness. Then, it is
advantageous to replace design p by a modified one, for exam-
ple, q, which attaches minimal values q(s) to the samples s in
S0 keeping

Ep(t) = Eq(t)

Ep(t − Y )2 = Eq(t − Y )2

and even maintaining other desirable properties of p, if any. A
resulting q is called a controlled design and a corresponding
scheme of selection is called a controlled sampling scheme.
Quite a sizeable literature has grown around this problem of
finding appropriate controlled designs. The methods of imple-
menting such a scheme utilize theories of incomplete block de-
signs and predominantly involve ingeneous devices of reducing
the size of support of possible samples demanding trials and
errors. But RAO and NIGAM (1990) have recently presented
a simple solution by posing it as a linear programming prob-
lem and applying the well-known simplex algorithm to demon-
strate their ability to work out suitable controlled schemes.

Taking t as the HORVITZ–THOMPSON estimator t = ∑
i∈s

Yi/πi, they minimize the objective function F = ∑
s∈S0

q(s)
subject to the linear constraints∑

s	i, j

q(s) =
∑

s	i, j

p(s) = πi j

q(s) ≥ 0 for all s

where πi j
′s are known quantities in terms of the original

uncontrolled design p.
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Chapter2

Strategies Depending
on Auxiliary Variables

Besides y there may be related variables x, z, . . ., called aux-
iliary variables, with values

X1, X2, . . . , X N ; Z1, Z2, . . . , ZN ; . . .

respectively, for the units of U . These values may be partly
or fully known to the investigator; if the values of an auxil-
iary variable are positive, this variable may be called a size
measure of the units of U .

In the present chapter we discuss a few strategies of inter-
est in theory and practice. They are based on the knowledge
of a size measure and are representative, in a sense to be
explained, with respect to this measure. Unbiased estimation
of the mean square error of these strategies is of special im-
portance. A general method of estimation is presented in sec-
tion 2.3. Applications to examples of representative strategies
(which are less essential for later chapters) are considered in
section 2.4.

11
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2.1 REPRESENTATIVE STRATEGIES

Let p be a design. Consider a size measure x and assume that,
approximately,

Yi ∝ Xi.

Then it seems natural to look for an estimator

t =
N∑

i=1

bsiYi

with bsi = 0 for i /∈ s, such that
N∑

i=1

bsi Xi = X

for all s with p(s) > 0. With reference to HÁJEK (1959), a strat-
egy with this property is called representative with respect
to X = (X1, X2, . . . , X N )′.

For the mean square error (MSE) of a strategy ( p, t) we
have

Mp (t) = Ep (t − Y )2

= Ep

(∑
Yi(bsi − 1)

)2

=
∑

i

∑
j

YiY j dij

where

dij = Ep (bsi − 1)(bsj − 1).

A strategy ( p, t) is representative if and only if there exists a
vector X = (X1, X2, . . . , X N )′ such that Mp(t) = 0 for Yi ∝ Xi
implying∑

i

∑
j

Xi X j dij = 0.

It may be advisable to use strategies that are representative
with respect to several auxiliary variables x1, x2, . . . , xK . Let

xi = (Xi1, Xi2, . . . , XiK )′
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be the vector of values of these variables for unit i and write
X 1 = (X11, X21, . . . , X N 1)′

...

X K = (X1K , X2K , . . . , X N K )′ .

A strategy ( p, t) is representative with respect to X k; k =
1, . . . , K if p(s) > 0 implies

N∑
i=1

bsi Xik =
N∑

i=1

Xik

for k = 1, . . . , K , which may be written as
N∑

i=1

bsi xi =
N∑

i=1

xi.

This equation is often called a calibration equation.
In sections 2.2, 2.3, and 2.4 we deal with representativity

for K = 1. In section 2.5 this restriction is dropped and the
concept of calibration is introduced.

2.2 EXAMPLES OF REPRESENTATIVE
STRATEGIES

The ratio estimator

t1 = X
∑

i∈s Yi∑
i∈s Xi

is of special importance because of its traditional use in prac-
tice. Here, (p, t1) is obviously representative with respect to a
size measure x, more precisely to (X1, . . . , X N ), whatever the
sampling design p.

Note, however, that t1 is usually combined with SRSWOR
or SRSWR. The sampling scheme of LAHIRI–MIDZUNO–SEN
(LAHIRI, 1951; MIDZUNO, 1952; SEN, 1953) (LMS) yields a
design of interest to be employed in conjunction with t1 by
rendering it design unbiased.

The Hansen–Hurwitz (HH, 1943) estimator (HHE)

t2 = 1
n

N∑
i=1

f si
Yi

Pi
,
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with f si as the frequency of i in s, i ∈ U , combined with any
design p, gives rise to a strategy representative with respect to
(P1, . . . , PN )′. For the sake of design unbiasedness, t2 is usually
based on probability proportional to size (PPS) with replace-
ment (PPSWR) sampling, that is, a scheme that consists of n
independent draws, each draw selecting unit i with probability
Pi.

Another representative strategy is due to RAO, HARTLEY
and COCHRAN (RHC, 1962). We first describe the sampling
scheme as follows: On choosing a sample size n, the popula-
tion U is split at random into n mutually exclusive groups
of sizes suitably chosen Ni(i = 1, . . . , n;∑n

1 Ni = N ) coex-
tensive with U , the units bearing values Pi, the normed sizes
(0 < Pi < 1,

∑
Pi = 1). From each of the n groups so formed

independently one unit is selected with a probability propor-
tional to its size given the units falling in the respective groups.
Writing Pij for the j th unit in the ith group,

Qi =
Ni∑
i=1

Pij ,

the selection probability of j is Pij /Qi. For simplicity, sup-
pressing j to mean by Pi the P value for the unit chosen from
the ith group, the Rao-Hartley-Cochran estimator (RHCE)

t3 =
n∑

i=1

Yi
Qi

Pi
,

writing Yi for the y value of the unit chosen from the ith group
(i = 1, 2, . . . , n). This strategy is representative with respect
to P = (P1, . . . , PN )′ because �n

1 Qi = 1.
Murthy’s (1957) estimator

t4 = 1
p (s)

∑
i∈s

Yi p (s | i)

is based on a design p and a sampling scheme for which p (s | i)
is the conditional probability of choosing s given that i was
chosen on the first draw. If Pi is the probability to select unit i
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on the first draw we have

p (s) =
N∑

i=1

Pi p (s | i),
N∑

i=1

Pi = 1.

It is evident that the strategy so defined is representative with
respect to (P1, P2, . . . , PN ).

2.3 ESTIMATION OF THE
MEAN SQUARE ERROR

Let ( p, t) be a strategy with

t =
N∑

i=1

bsiYi

where bsi is free of Y = (Y1, . . . , YN )′ and bsi = 0 for i /∈ s.
Then, the mean square error may be written as

Mp(t) = Ep

[∑
Yi(bsi − 1)

]2
=

N∑
i=1

N∑
j =1

YiY j dij

with

dij = Ep(bsi − 1) (bsj − 1).

Let ( p, t) be representative with respect to a given vector X =
(X1, . . . , X N )′, Xi > 0 , i ∈ U . Then, writing

Zi = Yi

Xi

we get

Mp(t) =
∑∑

Zi Zj (Xi X j dij )

such that∑
i

∑
j

Xi X j dij = 0.

Define aij = Xi X j dij . Then

Mp(t) =
∑∑

Zi Zj aij
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is a non-negative quadratic form in Zi; i = 1, . . . , N subject to∑
i

∑
j

aij = 0.

This implies for every i = 1, . . . , N∑
j

aij = 0.

From this Mp(t) = ∑∑
Zi Zj aij may be written in the form

Mp(t) = −
∑∑

i< j

(
Zi − Zj

)2 aij

= −
∑∑

i< j

(
Yi

Xi
− Y j

X j

)2

Xi X j dij .

This property of a representative strategy leads to an unbi-
ased quadratic estimator for Mp(t), an estimator that is non-
negative, uniformly in Y , if such an estimator does exist. This
may be shown as follows.

Let

mp(t) =
N∑

i=1

N∑
j =1

YiY j dsij

be a quadratic unbiased estimator for Mp(t) with dsij free of
Y and dsij = 0 unless i ∈ s and j ∈ s. Then

N∑
1

N∑
1

YiY j dij =
∑

s
p(s)

[ N∑
1

N∑
1

YiY j dsij

]

or
N∑
1

N∑
1

Zi Zj Xi X j dij =
∑

s
p(s)

[ N∑
1

N∑
1

Zi Zj Xi X j dsij

]
.

If mp(t) is to be uniformly non-negative, then for every s with
p(s) > 0

N∑
i

N∑
1

Xi X j dsij
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must be a uniformly non-negative quadratic form subject to

N∑
1

N∑
1

Xi X j dsij = 0

because
∑N

i
∑N

1 Xi X j dij = 0. Therefore, mp(t) is necessarily
of the form

mp(t) = −
∑

i< j

∑(
Yi

Xi
− Y j

X j

)2

Xi X j dsij .

RESULT 2.1 Let the strategy ( p, t) be representative with respect
to X = (X1, X2, . . . , X N )′ and assume M̂ is a uniformly non-
negative quadratic function in Yi, i ∈ s such that

EpM̂ = Mp(t) .

Then, M̂ must be of the form

M̂ =−
∑

i< j

∑(
Yi

Xi
− Y j

X j

)2

Xi X j dsij

where dsij = 0 unless i ∈ s and j ∈ s.

REMARK 2.1 Even if representativity does not hold for a strategy
( p, t)

M =
∑

i

∑
j

YiY j dij =
∑

i

Y 2
i dii +

∑∑
i 
= j

YiY j dij

may be estimated unbiasedly, for example, by

m =
∑

i

Y 2
i dii

Isi

πi
+
∑∑

i 
= j

YiY j dij
Isij

πi j
,

where Isij = Isi Isj , provided πi j > 0 for all i 
= j and hence πi >

0 for all i. But, in order that this may be uniformly non-negative,
we have to ensure that dij , πi j ’s are so chosen as to make m
a non-negative definite quadratic form, which is not easy to
achieve. CHAUDHURI and PAL (2002) have given the following
simple solution to get over this trouble. For Xi 
= 0, i ∈U they
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define

βi =
N∑

j =1

dij X j

and show

M = −
∑

1≤ i

∑
< j ≤ N

Xi X j dij

(
Yi

Xi
− Y j

X j

)2

+
∑

i

Y 2
i

Xi
βi.

Consequently, they propose

m′ = −
∑

1≤ i

∑
< j ≤ N

Xi X j dij
Isij

πi j

(
Yi

Xi
− Y j

X j

)2

+
∑ Y 2

i

Xi
βi

Isi j

πi

as an unbiased estimator for M above.

2.4 ESTIMATION OF MP( T ) FOR SPECIFIC
STRATEGIES

2.4.1 Ratio Strategy

Utilizing the theory thus developed by RAO and VIJAY AN
(1977) and RAO (1979), one may write down the exact MSE
of the ratio estimator t1 about Y if t1 is based on SRSWOR in
n draws as

M = −
∑ ∑
1≤i< j ≤N

[
Yi

Xi
− Y j

X j

]2
Xi X j(

N
n

)

×

X 2

∑
si, j

1
(
∑

i∈s Xi)2 − X
∑
si

1
(
∑

i∈s Xi)

− X
∑
s j

1
(
∑

i∈s Xi)
+
(N

n

)
because

t1 = X


∑

i∈s

Yi


/


∑

i∈s

Xi


=

N∑
1

Yibsi Isi with bsi = X∑
i∈s Xi
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has

dij = Ep
(
bsi Isi − 1

)(
bsj Isj − 1

)
= 1(

N
n

)

X 2

∑
si, j

1
(
∑

i∈s Xi)2 − X
∑
si

1
(
∑

i∈s Xi)

− X
∑
s j

1
(
∑

i∈s Xi)
+
(N

n

)
= Bij , say.

Writing

aij = Xi X j

[
Yi

Xi
− Y j

X j

]2

we have

M = −
∑∑

i< j

aij Bij .

Since for SRSWOR, πi j = n(n−1)
N (N −1) for every i, j (i 
= j ) an obvi-

ous uniformly non-negative quadratic unbiased estimator for
M is

M̂ = − N(N − 1)
n(n − 1)

∑∑
i< j

aij Bij Isij .

It is important to observe that M and M̂ are exact formulae,
unlike the approximations

M ′ = N
N − n
N − 1

1
n

N∑
1

(Yi − RXi)2

M̂ ′ = N
N (N − n)
n(n − 1)

∑
i∈s

(Yi − R̂Xi)2

where R = Y/X , R̂ = y/x and

y = 1
n

∑
i∈s

Yi, x = 1
n

∑
i∈s

Xi

due to COCHRAN (1977). For the approximations n is required
to be large and N much larger than n. These formulae are,
however, much simpler than M and M̂ because Bij is very
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hard to calculate even if Xi is known for every i = 1, . . . , N .
To use M̂ ′ it is enough to know only Xi for i ∈ s, but to use M̂
one must know Xi for i /∈ s as well.

2.4.2 Hansen–Hurwitz Strategy

For the HANSEN–HURWITZ estimator t2, which is unbiased
for Y , when based on PPSWR sampling, the variance is well
known to be

V2 = M = 1
n

[ N∑
1

Y 2
i

Pi
− Y 2

]

= 1
n

∑
Pi

[Yi

Pi
− Y

]2

= 1
n

∑∑
i < j

Pi P j

[
Yi

Pi
− Y j

P j

]2

admitting a well-known non-negative estimator

v2 = 1
n2(n − 1)

∑∑
r <r ′

[ yr

pr
− yr ′

pr ′

]2

= 1
n(n − 1)

n∑
r =1

[ yr

pr
− t2

]2

where yr is the y value of the unit drawn in the r th place, while
pr is the probability of this unit to be drawn.

2.4.3 RHC Strategy

Again, the RHC estimator t3 (see section 2.2) is unbiased
for Y because writing EC as the expectation operator, given
the condition that the groups are already formed and EG as
the expectation operator over the formation of the groups, we
have

EC(t3) =
n∑
1


 Ni∑

j =1

Y j
Qi

Pij

Pij

Qi


 =

n∑
1

Ni∑
1

Y j = Y
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and hence Ep(t3) = EG[EC(t3)] = EG(Y ) = Y . Also, writing
VC , VG as operators for variance corresponding to EC , EG,
respectively, we have

M = V p(t3) = EG[VC(t3)] + VG[EC(t3)]

= EG


 n∑

1

∑ ∑
1≤ j <k≤Ni

Pij

Qi

Pik

Qi

(
Yij Qi

Pij
− Yik Qi

Pik

)2



= EG

n∑
1


∑ ∑

1≤ j <k≤Ni

Pij Pik

(
Yij

Pij
− Yik

Pik

)2



=
n∑
1


Ni(Ni − 1)

N (N − 1)

∑ ∑
1≤ j <k≤N

P j Pk

(
Y j

P j
− Yk

Pk

)2



=
∑n

1 N 2
i − N

N (N − 1)

∑ ∑
1≤ j <k≤N

P j Pk

(
Y j

P j
− Yk

Pk

)2

= V3.

By Cauchy’s inequality, n
∑n

1 N 2
i ≥ (�Ni)2 = N 2, hence∑n

1 N 2
i ≥ N 2

n and
∑n

1 N 2
i is minimal if Ni = N

n for all i pro-
vided, as assumed here, N/n is an integer. Then, t3 has the
minimal variance

V p(t3) = N − n
(N − 1)n

∑ ∑
1≤ j <k≤N

Pi P j

[
Yi

Pi
− Y j

P j

]2

= N − n
N − 1

V2.

If N
n = 1/ f is not an integer, then to minimize �n

1 N 2
i and

equivalently to minimize V3 one should take k(<n) of the Ni ’s
as equal to [ N

n ] and the (n − k) remaining of them equal to
[ N

n ]+1 with k so chosen that
∑n

1 Ni = N . By [x] we denote the
largest integer not exceeding x > 0.

RHC have themselves given a uniformly non-negative un-
biased estimator for V3 as v3 derived as below. Let v3 be such
that Ep(v3) = V3 and let

e =
n∑

i=1

Y 2
i j

P 2
i j

Qi.
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Then, Ep(t2
3 − v3) = Y 2. Also,

Ep(e) = EG


 n∑

1


 Ni∑

1

Y 2
i j

P 2
i j

Qi
Pij

Qi






= EG


 n∑

1


 Ni∑

1

Y 2
i j

Pij




 =

N∑
1

Y 2
i

Pi
.

Writing

V =
N∑
1

Y 2
i

Pi
− Y 2, V3 =

∑
N 2

i − N
N (N − 1)

V

an unbiased estimator for V is e − (t2
3 − v3). So∑

N 2
i − N

N (N − 1)
Ep
(
e − t2

3 + v3
) = V3 = Ep(v3)

or ∑
N 2

i − N
N (N − 1)

Ep
(
e − t2

3
) =

[
1 −

∑
N 2

i − N
N (N − 1)

]
Ep(v3).

So ∑
N 2

i − N
N 2 −∑

N 2
i

(
e − t2

3
)

is an unbiased estimator for V3. This may be written as

v3 =
[ ∑

N 2
i − N

N 2 −∑
N 2

i

] n∑
i=1

Y 2
i j

P 2
i j

Qi − t2
3




=
∑

N 2
i − N

N 2 −∑
N 2

i

n∑
1

[
Yij

Pij
− t3

]2

Qi

and taken as a uniformly non-negative unbiased estimator for
V3. These results are all given by RHC (1962).

REMARK 2.2 OHLSSON (1989) has given the following alterna-
tive unbiased estimator for V p(t3)

v′
3 =

∑n
1 N 2

i − N
N (N − 1)

∑∑
i< j

Qi

Ni

Q j

N j

(
Yi

Pi
− Y j

P j

)2

.
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He also claimed that v′
3 possibly is better than v3, showing their

numerical illustrative comparisons based on simulated obser-
vations. But in their illustrations they allowed Ni ’s to deviate
appreciably from[N

n

]
,

[N
n

]
+ 1

which choice has been recommended by RHC as the optimal
one for t3. CHAUDHURI and MITRA (1992) virtually nullified
OHLSSON’s (1989) claims demonstrating v3 to remain quite
competitive with v′

3 when Ni ’s are chosen optimally. Of course
the two match completely if one may take Ni = N

n as an integer
for every i = 1, 2, . . . , n, as is also noted by OHLSSON (1989).

2.4.4 HT Estimator t

Since t is unbiased for Y (see section 1.2), its MSE is the same
as its variance, the following formula for which is given by
HORVITZ and THOMPSON (1952)

V1 = V p(t) =
∑ Y 2

i

πi
(1 − πi) +

∑∑
i 
= j

Yi

πi

Y j

π j
(πi j − πiπ j ).

A formula for an unbiased estimator for V1 is also given by
HORVITZ and THOMPSON as

v1 =
∑ Y 2

i

πi
(1 − πi)

Isi

πi
+
∑∑

i 
= j

Yi

πi

Y j

π j
(πi j − πiπ j )

Isij

πi j

assuming πi j > 0 for i 
= j .
If Yi = c πi for all i ∈ U

t =
∑
i∈s

Yi

π i
= cν(s)

and Y = c
∑

πi. If ν(s) = n for every s with p(s) > 0, that is, t is
based on a design pn, then, since

∑
πi = n as well, the strategy

(p, t) is representative with respect to (π1, π2, . . . , πN )′.
In this case it follows from RAO and VIJAY AN’s (1977)

general result of section 2.3 (noted earlier by SEN, 1953) that
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one may write V p(t) alternatively as

V2 =
∑∑

i< j

(πiπ j − πi j )

(
Yi

πi
− Y j

π j

)2

.

Hence, SEN and YATES and GRUNDY ’s unbiased estimator for
V2 as given by them is

v2 =
∑∑

i< j

(πiπ j − πi j )

(
Yi

πi
− Y j

π j

)2
Isij

πi j

assuming πi j > 0 for all i 
= j . For designs satisfying πiπ j ≥ πi j
for all i 
= j v2 is uniformly non-negative.

If ν(s) is not a constant for all s with p(s) > 0 represen-
tativity of ( p, t) is violated. To cover this case, CHAUDHURI
(2000a) showed that writing

αi = 1 + 1
πi

∑
j 
=i

πi j −
∑

π j

for i ∈ U one has a third formula for V p(t) as

V3 = V2 +
∑ Y 2

i

πi
αi

and hence proposed

v3 = v2 +
∑ Y 2

i

πi
αi

Isi

πi

as an unbiased estimator for V p(t ). This v3 is uniformly non-
negative if

πiπ j ≥ πi j for all i 
= j

αi > 0 for all i ∈ U .

CHAUDHURI and PAL (2002) illustrated a sampling scheme for
which the above conditions simultaneously hold while repre-
sentativity fails.
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2.4.5 Murthy’s Estimator t4

Writing

aij = Pi P j

[
Yi

Pi
− Y j

P j

]2

we have

M = V p(t4) = −
∑∑

i< j

Pi P j

[
Yi

Pi
− Y j

P j

]2

× Ep

[( p(s | i)
p(s)

Isi − 1
)( p(s | j )

p(s)
Isj − 1

)]

=
∑∑

i< j

aij


1 −

∑
si, j

p(s)>0

p(s | i) p(s | j )
p(s)




because

Ep

[ p(s | i)
p(s)

Isi

]
=
∑

s
p(s | i)Isi

=
∑
si

p(s | i) = 1 for i = 1, . . . , N .

One obvious unbiased estimator for V p(t4) is

M̂ =
∑ ∑
1≤i< j ≤N

aij
Isij

p2(s)
[p(s | i, j ) p(s) − p(s | i) p(s | j )]

which follows from∑
s

Isij p(s | i, j ) =
∑

si, j

p(s | i, j ) = 1

writing p(s | i, j ) as the conditional probability of choosing s
given that i and j are the first two units in s. It is assumed
that the scheme of sampling is so adopted that it is meaningful
to talk about the conditional probabilities p(s | i), p(s | i, j ).

Consider in particular the well-known sampling scheme
due to LAHIRI (1951), MIDZUNO (1952), and SEN (1953) to be
referred to as LMS scheme. Then on the first draw i is chosen
with probability Pi(0 < Pi < 1, �N

1 Pi = 1), i = 1, . . . , N and
subsequently (n − 1) distinct units are chosen from the re-
maining (N − 1) units by the SRSWOR method, leaving aside
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the unit chosen on the first draw. For this scheme, then

p(s) =
∑
i∈s

Pi

/(N − 1
n − 1

)
.

If based on this scheme t4 reduces to the ratio estimator

tR =
∑
i∈s

Yi

/∑
i∈s

Pi.

Writing Cr =
(

N −r
n−r

)
, it follows that for this LMS scheme

p(s | i) = 1/C1, p(s | i, j ) = 1/C2

Ep(tR) = Y

M = Ep(tR − Y )2 = V p(tR)

=
∑ ∑
1≤i< j ≤N

aij


1 − 1

C1

∑
si, j

1
[
∑

i∈s Pi]


 .

An unbiased estimator for M is

M̂ =
∑ ∑
1≤i< j ≤N

aij
Isij∑
i∈s Pi

[
N − 1
n − 1

− 1∑
i∈s Pi

]
.

It may be noted that if one takes Pi = Xi/X , then tR reduces
to t1, which is thus unbiased for Y if based on the LMS scheme
instead of SRSWOR, which is p-biased for Y in the latter case.

2.4.6 Raj’s Estimator t5

Another popular strategy is due to RAJ (1956, 1968). The sam-
pling scheme is called probability proportional to size without
replacement (PPSWOR) with Pi ’s (0 < Pi < 1, �Pi = 1) as
the normed size measures. On the first draw a unit i1 is cho-
sen with probability Pi1 , on the second draw a unit i2( 
= i1)
is chosen with probability Pi2/(1 − Pi1) out of the units of U
leaving i1 aside, on the third draw a unit i3( 
= i1, i2) is chosen
with probability Pi3/(1− Pi1 − Pi2) out of U leaving aside i1, i2,
and so on. On the final nth (n > 2) draw a unit in( 
= i1, . . . , in−1)
is chosen with probability

Pin

1 − Pi1 − Pi2 − . . . , −Pin−1
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out of the units of U minus i1, i2, . . . , in−1. Then,

e1 = Yi1

Pi1

e2 = Yi1 + Yi2

Pi2
(1 − Pi1)

e j = Yi1 + . . . + Yij −1 + Yij

Pij

(1 − Pi1 − . . . − Pij −1)

j = 3, . . . , n are all unbiased for Y because the conditional
expectation

Ec

[
e j | (i1, Yi1), . . . , (i j −1, Yij −1)

]

= (Yi1 + . . . , +Yij −1) +
N∑

k=1
( 
=i1,...,i j−1)

Yk = Y .

So, unconditionally, Ep(e j ) = Y for every j = 1, . . . , n, and

t5 = 1
n

n∑
j =1

e j ,

called Raj’s (1956) estimator, is unbiased for Y .
To find an elegant formula for M = V p(t5) is not easy, but

RAJ (1956) gave a formula for an unbiased estimator for M =
V p(t5) noting e j , ek ( j < k) are pair-wise uncorrelated since

Ep(e j ek) = E
[
Ec(e j ek | (i1, Yi1), . . . , (ik−1, Yik−1)

]
= E

[
e j Ec(ek | (i1, Yi1), . . . , (ik−1, Yik−1)

]
= Y E(e j ) = Y 2 = Ep(e j )Ep(ek)

that is, covp(e j , ek) = 0. So,

V p(t5) = 1
n2

n∑
j =1

V p(e j )

and

v5 = 1
n(n − 1)

n∑
j =1

(e j − t5)2

is a non-negative unbiased estimator for V p(t5).
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Incidentally, it can be shown that V p(t5) is smaller than
the variance of t2 with respect to PPSWR:

V p(e1) =
N∑
1

Y 2
i

Pi
− Y 2 =

∑
Pi

[Yi

Pi
− Y

]2

=
∑ ∑
1≤i< j ≤N

Pi P j

[
Yi

Pi
− Y j

P j

]2

= V .

And

V p(e2) = Ep[V p(e2 | (i1, Yi1))] + V p[Ep(e2 | (i1, Yi1))]

= E


∑∑

1≤i< j ≤N
(i, j 
=i1)

Qi Q j

[
Yi

Qi
− Y j

Q j

]2

 , writing Qi = Pi

1 − Pi1

= E


∑∑

1≤i< j ≤N
(i, j 
=i1)

Pi P j

[
Yi

Pi
− Y j

P j

]2



=
∑ ∑
1≤i< j ≤N

(
1 − Pi − P j

)
Pi P j

[
Yi

Pi
− Y j

P j

]2

< V

V p(e3) = E


∑∑

1≤i< j ≤N
(i, j 
=i1)

Ri R j

[
Yi

Pi
− Y j

P j

]2



(
writing Rk = Pk

1 − Pi1 − Pi2
= Pk/(1 − Pi1)

1 − Pi2
1−Pi1

= Qk

1 − Qi2

)

= E
∑∑

1≤i< j ≤N
(i, j 
=i1,i2)

Qi Q j

[
Yi

Qi
− Y j

Q j

]2

= E
∑∑

1≤i< j ≤N
(i, j 
=i1,i2)

(1−Qi−Q j )Qi Q j

[
Yi

Qi
− Y j

Q j

]2

<V p(e2).
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Similarly, V p(ek) < V p(e j ) for every j < k = 2, . . . , n. So,

V p(t5) = 1
n2

n∑
j =1

V p(e j ) <
V p(e1)

n
= V

n

which is the variance of t2 with respect to PPSWR.
Clearly, t5 depends on the order in which the units are

drawn in the sample s. So, one may apply Murthy’s (1957)
unordering on t5 to get the estimator

t6 =
∑
s′∼s

p(s′)t5(s′, Y )
/∑

s′∼s

p(s′)

for which V p(t6) < V p(t5) < V p(t2). Here s = (i1, . . . , in) is
a sample drawn by PPSWOR scheme and

∑
s′∼s denotes the

sum over all samples obtained by permuting the coordinates
of s. This estimator t6 is called Murthy’s (1957) symmetrized
Des Raj estimator (SDE) based on PPSWOR sampling.

2.4.7 Hartley–Ross Estimator t7

Another estimator based on SRSWOR due to HARTLEY and
ROSS (1954), called Hartley-Ross estimator (HRE) is defined
as follows.

Let

Ri = Yi

Xi
, i = 1, 2, . . . , N .

R = 1
N

∑ Yi

Xi
, r = 1

n

∑
i∈s

Ri

Define

C = 1
N

N∑
i=1


Yi

Xi
− 1

N

N∑
j =1

Y j

X j




Xi − 1

N

N∑
j =1

X j




= 1
N

N∑
1

Yi − X
N

1
N

N∑
1

Yi

Xi
= Y − X R.

Then r and

Ĉ = N − 1
N

1
n − 1

∑
i∈s

(Ri − r )(Xi − x) = (N − 1)n
N (n − 1)

(y − r x)
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based on SRSWOR in n draws are unbiased estimators of R
and C, respectively. So,

Xr + (N − 1)n
N (n − 1)

(y − r x)

is an unbiased estimator of Y and the HRE

t7 = Xr + (N − 1)n
N (n − 1)

(y − r x)

is an unbiased estimator of Y . t7 is regarded as a ratio-type
estimator that is exactly unbiased for Y . Other strategies will
be mentioned in subsequent chapters.

2.5 CALIBRATION

Consider a design p and the corresponding HT estimator t.
Such a strategy may not be representative with respect to a
relevant size measure x with values X1, X2, . . . , X N . Then, it
is important to look for an estimator∑

bsiYi

which, in combination with p, is representative with respect
to (X1, X2, . . . , X N )′ and, at the same time, is closer to t in an
appropriate topology than all other estimators yielding repre-
sentative strategies.

The relevant ideas of DEVILLE (1988) and DEVILLE and
SÄRNDAL (1992) are presented below in a general framework,
with auxiliary variables x1, x2, . . . , xk. Define (see section 2.1)

xi = (Xi1, Xi2, . . . , Xik)′

x =
N∑

i=1

xi

and consider an estimator

t = t(s, Y ) =
N∑

i=1

asiYi
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with weights asi not satisfying the calibration equation

N∑
i=1

asi xi = x

(see section 2.1). Then we may look for new weights bsi sat-
isfying the calibration equation but kept close to the original
weights asi. Let a measure of the distance between the new
and the original weights be a function∑

i∈s

(bsi − asi)2/Qi (2.1)

with Qi > 0; i = 1, 2, . . . , N to be determined; note that asi =
bsi = 0 for i /∈ s.

RESULT 2.2 Minimizing Eq. (2.1) subject to the calibration
equation∑

bsixi = x

leads to

t̃ =
N∑

i=1

bsiYi

=
N∑

i=1

asiYi +

x −

N∑
i=1

asixi




′ 
 N∑

i=1

Qixix
′
i




−1
N∑

i=1

QixiYi.

(2.2)

PROOF : Consider the Lagrange function

N∑
i=1

(bsi − asi)2/Qi − 2 · λ′

 N∑

i=1

bsixi − x




with partial derivative ∂/∂bsi

2(bsi − asi)/Qi − 2λ′xi

where λ = (λ1, . . . , λk)′ is a vector of Lagrange factors. Equating
the partial derivative to 0 yields

bsi = Qiλ
′xi + asi
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leading to
N∑

i=1

(
Qiλ

′xi + asi
)

x′
i = x′

λ′ =

x −

N∑
i=1

asixi




′ 
 N∑

i=1

Qixix
′
i




−1

.

and the estimator t̃ stated in Eq. (2.2).

EXAMPLE 2.1 Let

asi = 1
πi

for i ∈ s

(and 0 otherwise) for which the calibrated estimator takes the
form

t̃π =
∑
i∈s

Yi/πi +

x −

∑
i∈s

xi/πi




′ 
∑

i∈s

Qixix
′
i




−1∑
i∈s

QixiYi

t̃π coincides with the generalized regression (GREG) esti-
mator which was introduced by CASSEL, SÄRNDAL and
WRETMAN (1976) with a totally different approach, which we
will discuss in section 6.1.
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Chapter3

Choosing Good
Sampling Strategies

3.1 FIXED POPULATION APPROACH

3.1.1 Nonexistence Results

Let a design p be given and consider a p-unbiased estimator
t, that is, Bp(t) = Ep(t − Y ) = 0 uniformly in Y . The perfor-
mance of such an estimator is assessed by V p(t) = Ep(t − Y )2

and we would like to minimize V p(t) uniformly in Y . Assume
t∗ is such a uniformly minimum variance (UMV) unbiased
estimator (UMVUE), that is, for every unbiased t (other than
t∗) one has V p(t∗) ≤ V p(t) for every Y and V p(t∗) < V p(t) at
least for one Y .

Let � be the range (usually known) of Y ; for example,
� = {Y : ai < Yi < bi, i = 1, . . . , N } with ai, bi(i = 1, . . . , N )
as known real numbers. If ai = −∞ and bi = +∞, then � coin-
cides with the N -dimensional Euclidean space RN ; otherwise
� is a subset of RN . Let us choose a point A = (A1, . . . , Ai, . . . ,
AN )′ in � and consider as an estimator for Y

tA = tA(s, Y )
= t∗(s, Y ) − t∗(s, A) + A

33
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where A = �Ai. Then,

Ep(tA) = Ept∗(s, Y ) − Ept∗(s, A) + A = Y − A+ A = Y

that is, tA is unbiased for Y . Now the value of

V p(tA) = Ep[t∗(s, Y ) − t∗(s, A) + A− Y ]2

equals zero at the point Y = A. Since t∗ is supposed to be the
UMVUE, V p(t∗) must also be zero when Y = A. Now A is
arbitrary. So, in order to qualify as the UMVUE for Y, the t∗
must have its variance identically equal to zero. This is possible
only if one has a census, that is, every unit of U is in s rendering
t∗ coincident with Y . So, for no design except a census design,
for which the entire population is surveyed, there may exist
a UMV estimator among all UE’s for Y . The same is true if,
instead of Y, one takes Y as the estimand. This important non-
existence result is due to GODAMBE and JOSHI (1965) while
the proof presented above was given by BASU (1971).

Let us now seek a UMV estimator for Y within the re-
stricted class of HLU estimators of the form

t = tb = t(s, Y ) =
∑
i∈s

bsiYi.

Because of the unbiasedness of the estimator we need, uni-
formly in Y , Y equal to

E(tb) =
∑

s
p(s)

∑
i∈s

bsiYi

 =
N∑

i=1

Yi

∑
s�i

bsi p(s)

 .

Allowing Y j to be zero for every j = 1, . . . , N we derive for
all i ∑

s�i

bsi p(s) = 1.

To find the UMV estimators among such estimators based on
a fixed design p, we have to minimize

Ep
(
t2
b
) =

∑
s

p(s)

∑
i∈s

bsiYi

2
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subject to∑
s�i

bsi p(s) = 1 for i = 1, . . . , N .

Hence, we need to solve

0 = ∂

∂bsi

∑
s

p(s)

∑
i∈s

bsiYi

2

−
N∑
1

λi

∑
s�i

bsi p(s) − 1




=
2Yi

∑
i∈s

bsiYi − λi

 p(s)

introducing Lagrangian undetermined multipliers λi. There-
fore, for s with p(s) > 0 and s � i∑

j ∈s

bsj Y j = λi

2Yi

for all Y with Yi = 0. Letting Yi = 0, Y j = 0 for every j = i
this leads to a possible solution

bsi = λi

2Y 2
i

= bi, say

free of s, leading to bi = 1/πi.
From the above it follows that the UMV estimator, if avail-

able, is identical with the HT estimator and, in addition, sat-
isfies∑

j ∈s

Y j

π j
= λi

2Yi

for every s � i with p(s) > 0, provided Yi = 0. For example, if

s1 � i, s2 � i, p(s1) > 0, p(s2) > 0, Yi = 0

then we need∑
s1

Yi

πi
=
∑
s2

Yi

πi
for all Y

for the existence of a UMV estimator in the class of homo-
geneous linear unbiased estimators (HLUE). This cannot be
realized unless the design p satisfies the conditions that for
s1, s2 with p(s1) > 0, p(s2) > 0, either s1 ∩s2 is empty or s1 ∼ s2,
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meaning that s1 and s2 are equivalent in the sense of both
containing an identical set of distinct units of U.

Such a design, for example, one corresponding to a sys-
tematic sample, is called a unicluster design (UCD). Any
design that does not meet these stringent conditions is called
a non-unicluster design (NUCD). For a UCD it is possible
to realize∑

s1

Yi

πi
=
∑
s2

Yi

πi

uniformly in Y , but not for an NUCD. So, for any NUCD,
a UMV estimator does not exist among the HLUE’s.

This celebrated nonexistence result really opened up the
modern problem of finite population inference. It is due to
GODAMBE (1955); the exceptional character of uni-cluster de-
signs was pointed out by HEGE (1965) and HANURAV (1966).

If the class of estimators is extended to that of linear
unbiased estimators (LUE) of the form

tL = bs +
∑
i∈s

bsiYi

with bs free of Y such that

Ep(bs) = 0, Ep(tL) = Y

uniformly in Y , then it is easy to apply BASU’s (1971) ap-
proach to show that, again, a UMV estimator does not ex-
ist. However, if bs = 0, then BASU’s proof does not apply and
GODAMBE’s (1955) result retains its importance covering the
HLUE subclass.

3.1.2 Rao-Blackwellization

An estimator t = t(s, Y ) may depend on the order in which the
units appear in s and may depend on the multiplicities of the
appearances of the units in s.

EXAMPLE 3.1 Let Pi (0 < Pi < 1, �N
1 Pi = 1) be known numbers

associated with the units i of U . Suppose on the first draw a
unit i is chosen from U with probability Pi and on the second
draw a unit j ( = i) is chosen with probability P j

1−Pi
.
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Consider RAJ’s (1956) estimator (see section 2.4.6)

tD = t(i, j ) = 1
2

[
Yi

Pi
+
(

Yi + Y j

P j
(1 − Pi)

)]
= 1

2
(e1 + e2), say.

Now,

Ep(e1) = Ep

[Yi

Pi

]
=

N∑
1

Yi

Pi
Pi = Y

and

e2 = Yi + Y j

P j
(1 − P j )

has the conditional expectation, given that (i, Yi) is observed
on the first draw,

EC(e2) = Yi +
∑
j =i

[
Y j

P j
(1 − Pi)

]
P j

1 − Pi
= Yi +

∑
j =i

Y j = Y

and hence the unconditional expectation Ep(e2) = Y . So tD is
unbiased for Y , but depends on the order in which the units
appear in the sample s = (i, j ) that is, in general

tD(i, j ) = tD( j , i).

EXAMPLE 3.2 Let n draws be independently made choosing the
unit i on every draw with the probability Pi and let t be an
estimator for Y given by

t = 1
n

n∑
r =1

yr

pr

where yr is the value of y for the unit selected on the rth draw
(r = 1, . . . , n) and pr the value Pi if the r th draw produces
the unit i. This t, usually attributed to HANSEN and HURWITZ
(1943), may also be written as

tHH = 1
n

N∑
i=1

Yi

Pi
f si

and, therefore, depends on the multiplicity f si of i in s (see
section 2.2).
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With an arbitrary sample s = (i1, i2, . . . , in), let us associate
the sample

ŝ = { j1, j2, , . . . , jk}
which consists of all distinct units in s, with their order and/or
multiplicity in s ignored; this ŝ thus is equivalent to s (s ∼ ŝ).

By � let us denote the parameter space, that is, the set
of all vectors Y relevant in a situation, say, the cases

� = RN

� = {
Y : 0 ≤ Yi for i = 1, 2, . . . , N

}
� = {

Y : Yi = 0, 1 for i = 1, 2, . . . , N
}

� = {
Y : 0 ≤ Yi ≤ Xi for i = 1, 2, . . . , N

}
with X1, X2, . . . , X N > 0, being of special importance.

Now consider any design p, yielding the survey data

d = (i, Yi|i ∈ s) = ((i1, Yi1), . . . , (in, Yin))

compatible with the subset

�d = {Y ∈ � : Yi as observed for i ∈ s}
of the parameter space. The likelihood of Y given d is

Ld (Y ) = p(s)Id (Y ) = PY (d )

which is the probability of observing d when Y is the under-
lying parametric point, writing

Id (Y ) = 1(0) if Y ∈ �d ( /∈ �d ).

Define the reduced data

d̂ = (i, Yi|i ∈ ŝ).

Then, for all d

Id (Y ) = Id̂ (Y )

and

Ld̂ (Y ) = p(ŝ)Id̂ (Y ) = PY (d̂ ).

For simplicity we will suppress Y in PY (d ) and write P (d |d̂ )
to denote the conditional probability of observing d when d̂ is
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given. Since

P (d ) = P (d ∩ d̂ ) = P (d̂ )P (d |d̂ ) or
p(s)Id (Y ) = p(ŝ)Id̂ (Y )P (d |d̂ )

it follows that for p(ŝ) > 0, P (d |d̂ ) = p(s)/p(ŝ) implying that
d̂ is a sufficient statistic, assuming throughout that p is a
noninformative design. Let t = t(d ) be any function of d that
is also a sufficient statistic. If for any two samples s1, s2 with
p(s1), p(s2) > 0 and corresponding entities ŝ1, ŝ2, d1, d2, d̂ 1, d̂ 2
it is true that t(d1) = t(d2), then it follows that

P (d1) = P (d1 ∩ t(d1)) = P (t(d1))P (d1|t(d1))
= P (t(d2))P (d1|t(d1))

= P (d2)
P (d2|t(d2))

P (d1|t(d1))

and hence

p(ŝ1)Id̂ 1
(Y ) ∝ p(ŝ2)Id̂ 2

(Y )

implying that d̂ 1 = d̂ 2 and hence that d̂ is the minimal suffi-
cient statistic derived from d . Thus a maximal reduction of
data d sacrificing no relevant information on Y yields d̂ .

Starting with any estimator t = t(s, Y ) for Y depending
on the order and/or multiplicity of the units in s chosen with
probability p(s), let us construct a new estimator as the con-
ditional expectation

t∗ = Ep(t|d̂ )
that is,

t∗(s, Y ) =
∑
s′∼s

t(s′, Y ) p(s′)
/∑

s′∼s

p(s′).

Here
∑

s′∼s refers to summation over all samples s′ equivalent
to s.

Then

Ep(t∗) = Ep(t)

Ep(tt∗) = Ep[Ep(tt∗|d̂ )] = Ep[t∗Ep(t|d̂ )] = Ep(t∗2)

and

Ep(t − t∗)2 = Ep(t2) + Ep(t∗2) − 2Ep(tt∗) = Ep(t2) − Ep(t∗2)
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giving Ep(t2) ≥ Ep(t∗2); hence

V p(t) ≥ V p(t∗)

equality holding if and only if for every s with p(s) > 0, t(s, Y ) =
t∗(s, Y ). The Rao-Blackwellization of t is t∗. We may state
this as:

RESULT 3.1 Given any design p and an unbiased estimator t for
Y depending on order and/or multiplicity of units in s, define
the Rao-Blackwellization t∗ of t by

t∗(s, Y ) =
∑

s′:s′∼s

t(s′, Y ) p(s′)
/ ∑

s′:s′∼s

p(s′)

where the summation is over all s′ consisting of the units of s,
possibly in other orders and/or using their various multiplici-
ties.

Then, t∗ is unbiased for Y and is independent of order
and/or multiplicity of units in s with

V p(t∗) ≤ V p(t)

equality holding uniformly in Y if and only if t∗ = t for all s
with p(s) > 0, that is, if t itself shares the property of t∗ in being
free of order and/or multiplicity of units in s.

So, within the class of all unbiased estimators for Y based
on a given design p, the subclass of unbiased estimators inde-
pendent of the order and/or multiplicity of the units in s is a
complete class, C, in the sense that given any estimator in
the class UE but outside C there exists one inside C that is
better, that is, has a uniformly smaller variance. This result is
essentially due to MURTHY (1957) but in fact is a straightfor-
ward application of the Rao-Blackwellization technique in the
finite population context.

EXAMPLE 3.3 Reconsider Example 3.3.1. For i = j and s =
(i, j )

s′ = ( j , i)
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is the only sample with p(s′) > 0 and s′ ∼ s. From

p(i, j ) = Pi P j

1 − Pi

p(i, j )
p(i, j ) + p( j , i)

=
1

1 − Pi
1

1 − Pi
+ 1

1 − P j

= αi

αi + α j
, say

we derive

t∗(s, Y ) = t((i, j ), Y )
αi

αi + α j
+ t(( j , i), Y )

α j

αi + α j

= αi

αi + α j

Yi

Pi
+ α j

αi + α j

Y j

P j

which is symmetric in i and j , that is, independent of the order
in which the units are drawn.

To consider an application of Result 3.1 suppose p is a
UCD and tb = �i∈sbsiYi with �s�ibsi p(s) = 1 for every i is an
HLUE for Y . If a particular t∗

b = �b∗
siYi is to be the UMVHLUE

for Y , then it must belong to the complete subclass CH of the
HLUE class. Let s0 be a typical sample containing i; then for
every other sample s � i, which is equivalent to s0 because p is
UCD, we must have b∗

si = b∗
s0i as a consequence of t∗

b ∈ CH . So,
1 = b∗

s0i�s�i p(s) = b∗
s0iπi giving b∗

s0i = b∗
si = 1

πi
for every s � i,

that is, t∗
b must equal the HT estimator t, which is the unique

member of CH . Consequently, t is the unique UMVHLUE for a
UCD. This result is due to HEGE (1965) and HANURAV (1966)
with the proof later refined by LANKE (1975).

3.1.3 Admissibility

Next we consider a requirement of admissibility of an estima-
tor in the absence of UMVUEs for useful designs in a mean-
ingful sense.

An unbiased estimator t1 for Y is better than another
unbiased estimator t2 for Y if V p(t1) ≤ V p(t2) for every Y ∈
� and V p(t1) < V p(t2) at least for one Y ∈ �. Subsequently,
the four cases mentioned in section 3.1.2 are considered for �

without explicit reference.
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If there does not exist any unbiased estimator for Y better
than t1, then t1 is called an admissible estimator for Y within
the UE class. If this definition is restricted throughout within
the HLUE class, then we have admissibility within HLUE.

RESULT 3.2 The HTE

t =
∑
i∈s

Yi

πi

is admissible within the HLUE class.

PROOF : For tb in the HLUE class and for the HTE t we have

V p(tb) =
∑

i

Y 2
i

∑
s�i

b2
si p(s)

+
∑∑

i = j

YiY j

∑
s�i, j

bsibsj p(s)

− Y 2

V p(t) =
∑

i

Y 2
i /πi +

∑∑
i = j

YiY j
πi j

πiπ j
− Y 2.

Evaluated at a point Y (i)
0 = (0, . . . , Yi = 0, . . . , 0), [V p(tb) −

V p(t)] equals

Y 2
i

∑
s�i

b2
si p(s) − 1

πi

 ≥ 0 (3.1)

on applying Cauchy’s inequality. This degenerates into an equa-
lity if and only if bsi = bi, for every s � i, rendering tb equal to
the HTE t. So, for tb other than t,

[V p(tb) − V p(t)]Y =Y (i)
0

> 0.

This result is due to GODAMBE (1960a). Following
GODAMBE and JOSHI (1965 ) we have:

RESULT 3.3 The HTE t is admissible in the wider UE class.

PROOF : Let, if possible, t be an unbiased estimator for Y better
than the HTE t. Then, we may write

t = t(s, Y ) = t(s, Y ) + h(s, Y ) = t + h

with h = h(s, Y ) = t − t as an unbiased estimator of zero. Thus,

0 = Ep(h) =
∑

s
h(s, Y ) p(s). (3.2)
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For t to be better than t, we need V p(t) ≤ V p(t)

or
∑

s
h2(s, Y ) p(s) ≤ −2

∑
s

t(s, Y )h(s, Y ) p(s). (3.3)

Let Xi(i = 0, 1, . . . , N ) consist of all vectors Y = (Y1, . . . ,
Y N )′ such that exactly i of the coordinates in them are non-
zero. Now, if Y ∈ X 0, then t(s, Y ) = 0, giving h2(s, Y ) p(s) = 0
implying h(s, Y ) p(s) = 0 for every s and for Y ∈ X 0.

Let us suppose that r = 0, 1, . . . , N − 1 exists with
h(s, Y ) p(s) = 0 for every s and every

Y ∈ Xr . (3.4)

Then, it will follow that h(s, Y ) p(s) = 0 for every s and every
Y in Xr +1. To see this, let Z be a point in Xr +1. Then, by Eq.
(3.2) and Eq. (3.3), we have

0 =
∑

s
p(s)h(s, Z)∑

s
p(s)h2(s, Z) ≤ −2

∑
s

p(s)t(s, Z)h(s, Z).

Let S denote the totality of all possible samples s with p(s) > 0
and Si the collection of samples s in S such that exactly i of
the coordinates Zj of Z with j in s are non-zero. Then, each
Si is disjoint with each Sk for i = k and S is the union of
Si, i = 0, 1, . . . , r + 1. So we may write

0 =
r +1∑

0

∑
s∈Si

p(s)h(s, Z)

r +1∑
0

∑
s∈Si

p(s)h2(s, Z) ≤ −2
r +1∑

0

∑
s∈Si

p(s)t(s, Z)h(s, Z).

Now, by Eq. (3.4),

p(s)h(s, Z) = 0 for every s in Si, i = 0, 1, . . . , r. (3.5)

So it follows that

0 =
∑

s∈Sr +1

p(s)h(s, Z)

∑
s∈Sr +1

p(s)h2(s, Z) ≤ −2
∑

s∈Sr +1

p(s)t(s, Z)h(s, Z). (3.6)
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But, for every s in Sr +1

t(s, Z) =
∑
i∈s

Zi

πi
equals

N∑
i=1

Zi

πi
.

Since the latter is a constant (for every s) we may write by Eq.
(3.6),

∑
s∈Sr +1

p(s)h2(s, Z) ≤ −2

[ N∑
i

Zi

πi

] ∑
s∈Sr +1

p(s)h(s, Z) = 0,

leading to p(s)h2(s, Z) = 0 for every s in Sr +1 or p(s)h(s, Z) = 0
for every s in Si, i = 0, 1, . . . , r + 1 using Eq. (3.5), that is,
h(s, Z) p(s) = 0 for every s in S, that is, h(s, Y ) p(s) = 0 for every
s and every Y in Xr +1. But h(s, Y ) p(s) = 0 for every s and every
Y in X 0 as already shown. So, it follows that h(s, Y ) p(s) = 0
for every s and every Y in � if t is to be better than t. So, for
every sample s with p(s) > 0, t must coincide with t itself.

Admissibility, however, is hardly a very selective crite-
rion. There may be infinitely many admissible estimators for Y
among UEs. For example, if we fix any point A = (A1, . . . , AN )′
in �, then with A = ∑N

1 Ai we can take an estimator for Y as

tA =
∑
i∈s

Yi − Ai

πi
+ A

Obviously, tA is unbiased for Y . Writing Wi = Yi − Ai and con-
sidering the space or totality of points W = (W1, . . . , WN )′ and
assuming it is feasible to assign zero values to any number
of its coordinates, it is easy to show that tA is also admissible
for Y within UE class. The estimator tA is called a general-
ized difference estimator (GDE). If the parameter space of
Y is restricted to be a close neighborhood N (A) of the fixed
point A, then it is easy to see that Ep(t) = Y = Ep(tA) but
V p(tA) < V p(t) for every Y in N (A) showing inadmissibility
of t when the parametric space is thus restricted. In practice,
the parametric spaces are in fact restricted. A curious reader
may consult GHOSH (1987) for further details.
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3.2 SUPERPOPULATION APPROACH

3.2.1 Concept

With the fixed population approach considered so far it is diffi-
cult, as we have just seen, to hit upon an appropriately optimal
strategy or an estimator for Y or Y based on a fixed sam-
pling design. So, one approach is to regard Y = (Y1, . . . , YN )′
as a particular realization of an N -dimensional random vec-
tor η = (η1, . . . , ηN )′, say, with real-valued coordinates. The
probability distribution of η defines a population, called a su-
perpopulation. A class of such distributions is called a su-
perpopulation model or just a model, in brief. Our central
objective remains to estimate the total (or mean) for the par-
ticular realization Y of η. But the criteria for the choice of
strategies ( p, t) may now be changed suitably.

We assume that the superpopulation model is such that
the expectations, variances of ηi, and covariances of ηi, η j exist.
To simplify notations we write Em, Vm, Cm as operators for ex-
pectations, variances, and covariances with respect to a model
and write Yi for ηi pretending that Y is itself a random vector.

Let ( p1, t1) and ( p2, t2) be two unbiased strategies for esti-
mating Y , that is, Ep1t1 = Ep2t2 = Y . Assume that p1, p2 are
suitably comparable in the sense of admitting samples of com-
parable sizes with positive selection probabilities. We might
have, for example, the same average effective sample sizes;
that is,∑

|s|p1(s) =
∑

|s|p2(s)

where
∑

extends over all samples and |s| is the cardinality
of s.

Then, ( p1, t1) will be preferred to ( p2, t2) if

EmV p1(t1) ≤ EmV p2(t2)

REMARK 3.1 We assume that the expectation operators Ep and
Em commute. This assumption is automatically fulfilled in
most situations. But to illustrate a case where Ep and Em may
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not commute, let

p(s) = 1(
N −1
n−1

)∑
s

Xi/X and t = X
∑

s
Yi

/∑
s

Xi

where X = ∑N
1 Xi and Xi ’s, i = 1, . . . , N are independent

realizations on a positive valued random variable x. Define
X = (X1, . . . , X N )′ and let EC, Ex denote, respectively, opera-
tors of expectation conditional on a given realization X and the
expectation over the distribution of x. Then, we may meaning-
fully evaluate the expectation

EmEp(t) = Ex EC Ep(t)

where again we may interchange EC and Ep to get

EC Ep(t) = Ep EC(t) = X Ep

(∑
s EC(Yi|X )∑

s Xi

)
.

But here we cannot meaningfully evaluate Ep Em(t)=Ep Ex EC(t)
because p(s) involves Xi ’s that occur in t on which Em = Ex EC
operates. Such a pathological case, however, may not arise in
case Xi ’s are nonstochastic. To avoid complications we assume
commutativity of Ep and Em.

3.2.2 ModelM1

Let us consider a particular model, M1, such that for i =
1, 2, . . . , N

Yi = µi + σiεi

with
µi ∈ R, σi > 0

Emεi = 0
Vmεi = 1

Cm(εi, ε j ) = 0 for i = j

that is,
Em(Yi) = µi

Vm(Yi) = σ 2
i

Cm(Yi, Y j ) = 0 for i = j .
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Then, we derive for any UE t

EmV p(t) = EmEp(t − Y )2 = Ep Em(t − Y )2

= Ep Em [(t − Em(t)) + (Em(t) − Em(Y ))

− (Y − EmY )]2

= EpVm(t) + Ep�2
m(t) − Vm(Y ) (3.7)

writing �m(t) = Em(t − Y ). The same is true for t and any
other HLUE tb. Thus,

EmV p(tb) − EmV p(t)

= Ep

∑
i∈s

σ 2
i b2

si −
∑
i∈s

σ 2
i /π2

i

+ Ep

[
�2

m(tb) − �2
m(t)

]

=
∑

σ 2
i

∑
i∈s

b2
si p(s) − 1

πi



+ Ep

(Emtb − µ)2 −
∑

i∈s

µi

πi
− µ

2


≥ Ep

(Emtb − µ)2 −
∑

i∈s

µi

πi
− µ

2
 (3.8)

by Cauchy’s inequality (writing µ = �µi).
To derive a meaningful inequality we will now impose

conditions on the designs. By pn we shall denote a design for
which pn(s) > 0 implies that the effective size of s is equal to
n. If, in addition, πi = nµi/µ for every i = 1, 2, . . . , N , we write
pn as pnµ.

Then, from Eq. (3.8) we get

EmV pnµ
(tb) − EmV pnµ

(t) ≥ Epnµ
[Em(tb) − µ]2 ≥ 0

because, for pnµ,∑
i∈s

µi

πi
= µ.

Thus, we may state:
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RESULT 3.4 Let pnµ be a design of fixed size n with inclusion
probabilities

πi = n
µi

µ
; i = 1, 2, . . . , N .

Then, for modelM1, we have

EmV pnµ
(tb) ≥ EmV pnµ

(t)

where tb is an arbitrary HLUE and

t =
∑
i∈s

Yi

πi
= µ

n

∑ Yi

µi
.

Thus, among the competitors ( pnµ, tb) the strategy ( pnµ, t) is
optimal.

However, this optimality result due to GODAMBE (1955)
is not very attractive. This is because pnµ is well suited to t
since V p(t) = Ep[

∑
i∈s

Yi
πi

− Y ]2 equals zero if πi = nYi/Y and
although such a πi cannot be implemented, it may be approx-
imated by πi = nXi/X if Yi is closely proportional to Xi; or, if
Em(Yi) ∝ Xi, V p(t) based on pnµ should be under control. But
this does not justify forcing this design on every competing es-
timator tb, each of which may have V p(tb) suitably controlled
when combined with an appropriate design pn.

3.2.3 Model M2

To derive optimal strategies among all ( p, t) with t unbiased
for Y let us postulate that Y1, Y2, . . . , YN are not only uncor-
related, but even independent. We writeM2 forM1 together
with this independence assumption.

Thus, the modelM2 may be specified as follows:
Assume for Y = (Y1, Y2, . . . , YN )′

Yi = µi + σiεi

with µi, σi as constants and εi (i = 1, 2, . . . , N ) as independent
random variables subject to

Emεi = 0
Vmεi = 1.
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Consider a design p and an estimator

t = t(s, Y ) = t + h

with

t =
∑
i∈s

Yi

πi

and

h = h(s, Y )

subject to

Ep(h) =
∑

h(s, Y ) p(s) = 0

implying that∑
s:i∈s

h(s, Y ) p(s) = −
∑
s:i /∈s

h(s, Y ) p(s)

for all i = 1, 2, . . . , N . Then, for m =M2,

EpCm(t, h) = Ep Em

∑
i∈s

Yi − µi

πi

h(s, Y )

= Em

N∑
1

[Yi − µi

πi

]∑
s�i

h(s, Y ) p(s)

= −Em

N∑
1

[Yi − µi

πi

]∑
s �i

h(s, Y ) p(s)

= 0.

where the last equality holds by the independence assumption.
By Eq. (3.7) we derive for t = t + h

EmV p(t) = EpVm(t) + EpVm(h) + Ep�2
m(t) − Vm(Y ). (3.9)

Writing

tµ = tµ(s, Y ) =
∑
i∈s

[Yi − µi

πi

]
+ µ = t + hµ

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch03 January 27, 2005 16:32

50 Chaudhuri and Stenger

with

hµ = −
∑
i∈s

µi

πi
+ µ

we note that Vm(hµ) = 0, �m(tµ) = 0 and so,

EmV p(tµ) = EpVm(t) − Vm(Y )

=
∑

σ 2
i

( 1
πi

− 1
)

. (3.10)

From Eq. (3.9) and Eq. (3.10) we obtain

EmV p(t) − EmV p(tµ) = EpVm(h) + Ep�2
m(t) ≥ 0 (3.11)

and therefore

EmV p(t) ≥ EmV p(tµ)

=
∑

σ 2
i

( 1
πi

− 1
)

.

RESULT 3.5 Let p be an arbitrary design with inclusion proba-
bilities πi > 0 and

tµ =
∑
i∈s

Yi − µi

πi
+ µ (3.12)

(µ = ∑
µi). Then, under modelM2

EmV p(t) ≥ EmV p(tµ)

=
∑

σ 2
i

( 1
πi

− 1
)

for any UE t.

In order to specify designs for which �σ 2
i [ 1

πi
−1] may attain

its minimal value, let us restrict to designs pn. Then Cauchy’s
inequality applied to

N∑
1

πi

N∑
1

σ 2
i

πi

gives
N∑

i=1

σ 2
i

πi
≥
(∑

σi
)2

n
.
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Writing pnσ for a design pn with

πi = nσi∑
σi

(3.13)

we have

EmV pn(t) ≥ EmV pn(tµ) =
∑

σ 2
i

[ 1
πi

− 1
]

≥
(∑

σi
)2

n
−
∑

σ 2
i = EmV pnσ

(tµ).

RESULT 3.6 Let pn and pnσ be fixed size ndesigns, pnσ satisfying
Eq. (3.13). Then, underM2,

EmV pn(t) ≥ EmV pnσ
(tµ)

=
(∑

σi
)2

n
−
∑

σ 2
i

for any UE t; here µi, σ 2
i are defined inM2 and

tµ =
∑
i∈s

Yi − µi

πi
+ µ.

REMARK 3.2 Obviously,

tµ =
∑
i∈s

Yi

πi
−
(∑N

1 σi

n

)∑
i∈s

µi

σi
+ µ. (3.14)

If we have, in particular, µi > 0 and

σi ∝ µi

for i = 1, 2, . . . , N , then tµ reduces to the HTE

t =
∑ Yi

πi
=
∑N

1 σi

n

∑
i∈s

Yi

σi
(3.15)

because of

πi = nσi

/ N∑
i

σi.

3.2.4 Model M2γ

Now, pnσ and tµ are practicable only if σ1, σ2, . . . , σN and µ1,
µ2, . . . , µN , respectively, are known up to proportionality
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factors. A useful case is

σ 2
i ∝ X γ

i

µi ∝ Xi

where X1, X2, . . . , X N > 0 are given size measures and γ ≥ 0 is
known. The superpopulation model defined byM2 with these
proportionality conditions is denoted byM2γ .

Consider, for example,M22. This model postulates inde-
pendence of ε1, ε2, . . . , εN and for i = 1, . . . , N

Yi = Xiβ + σ Xiεi

with

Emεi = 0
Vmεi = 1.

AssumeM22 and Eq. (3.13). Then πi ∝ Xi and tµ reduces to

t = X
n

∑
i∈s

Yi

Xi
.

Then, according to Result 3.6

EmV pn(t) ≥ EmV pnx (t) = σ 2

[
X 2

n
−
∑

X 2
i

]

if σ 2
i = σ 2 X 2

i for i = 1, 2, . . . , N .

RESULT 3.7 Let m =M22, i.e.,M2 with

µi ∝ Xi

σ 2
i ∝ X 2

i .

Let t be a UE with respect to the fixed size n design pn while pnx
is a fixed size n design with inclusion probabilities πi = nXi

X .
Then

EmV pn(t) ≥ EmV pnx (t)

= σ 2

[
X 2

n
−
∑

X 2
i

]

if σ 2
i = σ 2 X 2

i for i = 1, 2, . . . , N .
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This optimality property of the HTE follows from the works
of GODAMBE and JOSHI (1965), GODAMBE and THOMPSON
(1977), and HO (1980).

3.2.5 Comparison of RHCE and HTE
under Model M2γ

Incidentally, we have already noted that if a fixed sample-
size design is employed with πi ∝ Yi, then V p(t) = 0. But
Y is unknown. So, if X = (X1, . . . , Xi , . . . , X N )′ is available
such that Yi is approximately proportional to Xi, for example,
Yi = βXi + εi, with β an unknown constant, εi ’s small and un-
known but Xi ’s known and positive, then taking πi ∝ Xi, one
may expect to have V p(t) under control. Any sampling design
p with πi ∝ Xi is called an IPPS or πPS design—more fully,
an inclusion probability proportional to size design. Nu-
merous schemes are available that satisfy or approximate this
πPS criterion for n ≥ 2. One may consult BREWER and HANIF
(1983) and CHAUDHURI and VOS (1988) for a description of
many of them along with a discussion of their properties and
limitations. We need not repeat them here.

Supposing n as the common fixed sample size and N /n =
1/ f as an integer let us compare t based on a πPS scheme with
t3 based on the RHC scheme with N /n as the common group
size and Pi = Xi/X as the normed size measures. For this we
postulate a superpopulation modelM2γ :

Yi = βXi + εi, Em(εi) = 0, Vm(εi) = σ 2 X γ

i

where σ, γ are non-negative unknown constants and Yi ’s
are supposed to be independently distributed. Then, with πi =
nPi = nXi/X

Em[V p(t3) − V p(t)]

= Em

N − n
N − 1

1
n

∑∑
i< j

Xi X j

(
Yi

Xi
− Y j

X j

)2

−
∑∑

i< j

(πiπ j − πi j )

(
Yi

πi
− Y j

π j

)2
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= σ 2

N − n
N − 1

1
n

∑∑
i< j

Xi X j

(
X γ−2

i + X γ−2
j

)

−
∑∑

i< j

(
Xi X j − X 2πi j

n2

)(
X γ−2

i + X γ−2
j

)
= σ 2

[N − n
N − 1

1
n

(
X
∑

X γ−1
i −

∑
X γ

i

)
−
(

X
∑

X γ−1
i −

∑
X γ

i

)
+ n − 1

n
X
∑

X γ−1
i

]

= σ 2 (n − 1)
n(N − 1)

[
N
∑

X γ

i −
(∑

Xi

) (∑
X γ−1

i

)]

= σ 2N 2(n − 1)
(N − 1)n

cov
(

X γ−1
i , Xi

)
.

Writing γ −1 = a and noting that Xi > 0 for all i = 1, . . . , N , it
follows that Xi ≥ X j ⇒ Xa

i ≥ Xa
j if a ≥ 0 and Xi ≥ X j ⇒ Xa

i ≤
Xa

j if a ≤ 0, implying that for γ ≤ 1, cov(X γ−1
i , Xi) ≤ 0 and for

γ ≥ 1, cov(X γ−1
i , Xi) ≥ 0 and, of course, for γ = 1, cov(X γ−1

i ,
Xi) = 0. So,

for γ < 1, EmV p( RHCE) < EmV p( HTE),

for γ > 1, EmV p( RHCE) > EmV p( HTE),

for γ = 1, EmV p( RHCE) = EmV p( HTE).

Thus, when γ < 1, HTE is not optimal when based on any
πPS design relative to other available strategies. So, it is nec-
essary to have more elaborate comparisons among available
strategies under superpopulation models coupled with empir-
ical and simulated studies. Many such exercises are known
to have been carried out. Relevant references are RAO and
BAY LESS (1969) and BAY LESS and RAO (1970), and for a re-
view, CHAUDHURI and VOS (1988).

Under the same model M2γ above, CHAUDHURI and
ARNAB (1979) compared these two strategies with the strategy
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involving tR based on LMS scheme (see section 2.4.5) taking
the same n, Xi, and Pi = Xi/X as above for all the three strate-
gies. Their finding is stated below, omitting the complicated
proof.

for γ < 1, EmV p(tR) < EmV p( RHCE) < EmV p( HTE),

for γ > 1, EmV p(tR) > EmV p( RHCE) > EmV p( HTE),

for γ = 1, EmV p(tR) = EmV p( RHCE) = EmV p( HTE).

3.2.6 Equicorrelation Model

Following CSW (1976, 1977), consider the model of equicor-
related Yi ’s for which

Em(Yi) = αi + βXi

αi known with mean α, β unknown, 0 < Xi known with �Xi =
N ,

Vm(Yi) = σ 2 X 2
i

Cm(Yi, Y j ) = ρσ 2 Xi X j , − 1
N − 1

< ρ < 1.

Linear unbiased estimators (LUE) for Y are of the form

t = t(s, Y ) = as +
∑
i∈s

bsiYi

with as, bsi free of Y such that for a fixed design p

Ep(as) = 0,
∑
s�i

bsi p(s) = 1
N

for i = 1, . . . , N .

To find an optimal strategy ( p, t) let us proceed as follows. First
note that writing csi = bsi Xi,

1 = X
N

= 1
N

N∑
1

Xi =
N∑
1

∑
s�i

csi p(s) =
∑

s
p(s)

∑
i∈s

csi

.

(3.16)
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Again we have

EmV p(t) = EpVm(t) + Ep[Em(t) − Em(Y )]2 − Vm(Y )

= Ep

σ 2
∑

b2
si X

2
i + ρσ 2

∑∑
i = j ∈s

bsibsj Xi X j


+ Ep

as +
∑
i∈s

bsi(αi + βXi) − α − β

2

− 1
N 2

σ 2
∑

X 2
i + ρσ 2

∑∑
i = j

Xi X j


= σ 2

∑
s

p(s)

∑ c2
si + ρ

∑∑
i = j ∈s

csicsj



+ Ep

as − α +
∑
i∈s

αibsi + β
∑
i∈s

csi − β

2

− σ 2

N 2

[∑
X 2

i + ρ

{(∑
Xi

)2 −
∑

X 2
i

}]
.

Note that∑
s

p(s)

∑
i∈s

c2
si + ρ

∑∑
i = j ∈s

csicsj



=
∑

p(s)

{1 − (1 − ρ)
}∑

i∈s

csi

2

+ (1 − ρ)
∑
i∈s

c2
si



=
∑

p(s)

∑
i∈s

csi

2

− (1 − ρ)

∑ p(s)


∑

i∈s

csi

2

−
∑
i∈s

c2
si




≥ 1 − (1 − ρ)

∑
s

p(s)


∑

i∈s

csi

2

−
∑
i∈s

c2
si


 (3.17)

by Cauchy’s inequality and Eq. (3.16).
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To maximize the second term in Eq. (3.17) subject to
Eq. (3.16) we need to solve the following equation:

0 = ∂

∂csi

∑
s

p(s)

∑
i∈s

csi

2

−
∑

s
p(s)

∑
i∈s

c2
si



− λ

∑
s

p(s)
∑
i∈s

csi − 1




= 2p(s)

∑
i∈s

csi

− 2csi p(s) − λp(s)

where a Lagrangian multiplier λ has been introduced. Then,
for p(s) > 0,∑

i∈s

csi − csi = λ

2
.

Assuming a design pn, we get by summing up over i ∈ s∑
i∈s

csi = nλ

2(n − 1)

giving

1 =
∑

s
p(s)

∑
i∈s

csi = nλ

2(n − 1)

hence∑
i∈s

csi = 1 and csi = 1
n
.

Note that equality holds in Eq. (3.17) for csi = 1
n. Since

bsi = csi

Xi
= 1

nXi

we derive, following CSW (1976, 1977),

Ep

as − α +
∑
i∈s

αibsi + β
∑
i∈s

csi − β

2

= 0,
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choosing

as = α − 1
n

∑
i∈s

αi

Xi
.

This leads to the optimal estimator

tα = α + 1
N

∑
i∈s

Yi − αi

πi
, πi = nXi

X
= nXi

N
.

It follows that

EmV pn(t) ≥ EmV pnx (tα)

= σ 2
[
1 − (1 − ρ)

(
1 − 1

n

)]
− σ 2

N 2

[∑
X 2

i + ρ
(

N 2 −
∑

X 2
i

)]
= σ 2 (1 − ρ)

n

[
1 − f

∑
X 2

i

N

]

where we have written f = n
N as will be done throughout.

RESULT 3.8 Consider the equicorrelation model

Yi = αi + βXi + Xiεi

with Emεi = 0 and

Vm(εi) = σ 2

Cm(εi, ε j ) = ρσ 2, i = j .

Define α = �αi/N and

tα = α + 1
n

∑
i∈s

Yi − αi

Xi
.

Then, for any linear estimator t that is unbiased for Y ,

EmV pn(t) ≥ EmV pnx (tα)

= σ 2 1 − ρ

n

[
1 − f

∑
X 2

i

N

]
.
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3.2.7 Further Model-Based Optimality Results
and Robustness

Avoiding details, we may briefly mention a few recently availa-
ble optimality results of interest under certain superpopula-
tion models related to the models considered so far.

Postulating independence of Yi ’s subject to

(a) Em(Yi) = αi + βXi

with Xi(> 0), α = (α1, . . . , αN )′, β known
and

(b) Vm(Yi) = σ 2 f 2
i

σ (> 0) unknown, f i(> 0) known, i = 1, . . . , N

GODAMBE (1982) showed that a strategy ( p∗
n, e∗) is opti-

mal among all strategies ( pn, e) with Epn(e) = Y in the sense
that

EmV pn(e) ≥ σ 2
[(∑

f i

)2/
n −

∑
f 2

i

]
= EmV p∗

n
(e∗)

for all Y . Here p∗
n is a pn for which πi equals

π∗
i = nf i

/ N∑
j =1

f j

and

e∗ =
∑
i∈s

(Yi − αi − βXi)
/
π∗

i +
N∑
1

(αi + βXi)

= t(α, β), say

which is the generalized difference estimator (GDE) in this
case.

TAM (1984) revised the above model, relaxing indepen-
dence and postulating the covariance structure specified by

Cm(Yi, Y j ) = ρσ 2 f i f j

with ρ(0 ≤ ρ ≤ 1) unknown, but considered only LUEs

e = as +
∑
i∈s

bsiYi = eL, say.
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With this setup he showed that

EmV pn(eL) = EmEpn(eL − Y )2 ≥ σ 2(1 − ρ)

[
(
∑

f i)2

n
−
∑

f 2
i

]
= EmEp∗

n
(e∗ − Y )2

= EmV p∗
n
(e∗).

It is important to observe here that the same strategy ( p∗
n, e∗)

is optimal under both GODAMBE’s (1982) and TAM’s (1984)
models provided one admits only linear design-unbiased esti-
mators based on fixed sample-size designs.

If in (a), β is unknown but α is known, then adopting a
design pnx for which

πi = nXi

X
, i = 1, . . . , N

one may employ the estimator

X
n

∑
i∈s

[Yi − αi

Xi

]
+

N∑
1

αi = t(α), say,

to get rid of β in (α, β). But EmV pnx [t(α)] will differ from
EmV p∗

n
(e∗) under GODAMBE’s (1982) and TAM’s (1984) models

and the extent of the deviation will depend on the variation
among the Xi/ f i, i = 1, . . . , N . So, t(α) is optimal if Xi ∝ f i
and remains nearly so if Xi/ f i ’s vary within a narrow range.

If both α and β are unknown, then a course to follow is to
try the HORVITZ–THOMPSON (1952) estimator

t =
∑
i∈s

Yi

πi

instead of the optimal estimator t(α, β). Then, since

EmV p(t) = EpVm(t) + Ep�2
m(t) − Vm(Y )

where �m(e) = Em(e − Y ), for any p-unbiased estimator e of
Y , GODAMBE (1982) suggests employing a pn design pn0, say,
such that each of

(a) Epn0�2
m(t)

(b) Epn0(t − t(α, β))2

(c) Epn0�2
m(t) − Epn0�2

m(t(α, β))
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is small so that EmV pn0(t) may not appreciably exceed
EmV p∗

n
(t(α, β)). If these conditions can be realized then it will

follow that t, which is optimal in the special case when αi = 0,
i = 1, . . . , N and f i ∝ Xi, approximately remains so even
otherwise. Such a property of a strategy is called robustness.
A reader may consult GODAMBE (1982) for further discussions
and also for reviews IACHAN (1984) and CHAUDHURI and VOS
(1988).

MUKERJEE and SENGUPTA(1989) considered eL as above,
but a more general model stipulating

Em(Yi) = µi, Cm(Yi, Y j ) = vij

and obtained the optimality result

EmV pn(eL) = EmEpn(eL − Y )2 ≥ 1′�−11 − 1′V 1

= EmEpn(eL − Y )2

= EmV pn(eL)

Here V = (vij ), 1 is the N × 1 vector with each entry as unity,
� = (�i j ), �i j = ∑

s�i, j vij
s pn(s), vij

s = i j th element of the in-
verse of the matrix Vs, which is an n × n submatrix of V con-
taining only the entries for i ∈ s. Further,

λ = �−11.

λs is an n× 1 subvector of λ with only entries for i ∈ s, bs is an
n × 1 vector with entries bsi for i ∈ s, and

b̄s = V −1
s λs

as =
N∑
1

µi −
∑
i∈s

bsiµi.

eL is eL evaluated at as = as and bs = b̄s and pn is a pn design
for which 1′�−11 is the least.

An important point noted by these authors with due illus-
trations and emphasis in this case is that the optimal estimator
eL here need not be the GDE.

A common limitation of each of these three optimality
results above is the dependence, except in special cases, of
both the design and the estimator components of the optimal
strategies on model parameters, which in practice should
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be unknown. One way to circumvent this is to use a simpler
strategy that is free of unknown parameters but optimal when
a special case of a model obtains and identify circumstances
when it continues to be so at least closely under more com-
prehensive modeling, which we have just illustrated. A second
course may be to substitute unknown parameters in the op-
timal strategies by their suitable estimators. How to ensure
good properties for the resulting strategies thus revised is a
crucial issue in survey sampling, which we will discuss fur-
ther in chapter 6.

3.3 ESTIMATING EQUATION APPROACH

Following the pioneering work of GODAMBE (1960b) and later
developments by GODAMBE and THOMPSON (1986a, 1986b)
we shall discuss an alternative approach of deriving suitable
sampling strategies.

3.3.1 Estimating Functions and Equations

Suppose Y = (Y1, . . . , YN )′ is a random vector and X = (X1, . . . ,
X N )′ is a vector of known numbers Xi(> 0), i = 1, . . . , N . Let
the Yi ’s be independent and normally distributed with means
and variances, respectively

θ Xi and σ 2
i , i = 1, . . . , N .

If all the Yi ’s i = 1, . . . , N are available for observation, then
from the joint probability density function (pdf) of Y

p(Y , θ ) =
N∏

i=1

1

σi
√

2π
e
− 1

2σ2
i

(Yi−θ Xi)2

one gets the well-known maximum likelihood estimator (MLE)
θ0, based on Y , for θ , given by the solution of the likelihood
equation

∂

∂θ
log p(Y , θ ) = 0

as

θ0 =
[ N∑

1

Yi Xi
/
σ 2

i

]/[ N∑
1

X 2
i
/
σ 2

i

]
.
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On the other hand, let the normality assumption above be
dropped, everything else remaining unchanged, that is, con-
sider the linear model

Yi = θ Xi + εi

with εi ’s distributed independently and

Em(εi) = 0, Vm(εi) = σ 2
i , i = 1, . . . , N .

Then, if (Yi, Xi), i = 1, . . . , N are observed, one may derive
the same θ0 above as the least squares estimator (LSE) or as
the best linear unbiased estimator (BLUE) for θ .

Such a θ0, based on the entire finite population vector
Y = (Y1, . . . , YN )′, is really a parameter of this population
itself and will be regarded as a census estimator.

If Xi = 1, σi = σ for all i above, then θ0 reduces to Y/N = Y .
We shall next briefly consider the theory of estimating

functions and estimating equations as a generalization that
unifies (see GHOSH, 1989) both of these two principal methods
of point estimation and, in the next section, illustrate how the
theory may be extended to yield estimators in the usual sense
of the term based on a sample of Yi values rather than on the
entire Y itself.

We start with the supposition that Y is a random vector
with a probability distribution belonging to a class C of distri-
butions each identified with a real-valued parameter θ . Let

g = g(Y , θ )

be a function involving both Y and θ such that

(a) ∂g
∂θ

(Y , θ ) exists for every Y
(b) Emg(Y , θ ) = 0, called the unbiasedness condition
(c) Em

∂g
∂θ

(Y , θ ) = 0
(d) the equation g(Y , θ ) = 0 admits a unique solution θ0 =

θ0(Y )

Such a function g = g(Y , θ ) is called an unbiased estimating
function and the equation

g(Y , θ ) = 0

is called an unbiased estimating equation.
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Let G be a class of such unbiased estimating functions for
a given C. Furthermore, let g be any estimating function and
θ the true parameter. If Y happens to be such that |g(Y , θ )| is
small while | ∂g

∂θ
(Y , θ )| is large, then θ0 with g(Y , θ0) = 0 should

be close to θ ; note that using TAY LOR’s expansion this is quite
obvious if g(Y , θ ) is linear in θ .

Since g(Y , θ ) and ∂g
∂θ

(Y , θ ) are random variables, this ob-
servation motivated GODAMBE (1960b) to call a function g0
in G as well as the corresponding estimating equation g0 = 0
optimal if for all g ∈ G

Em
(
g2

0(Y , θ )
)[

Em
∂g0
∂θ

(Y , θ )
]2 ≤ Em(g2(Y , θ ))[

Em
∂g
∂θ

(Y , θ )
]2 . (3.18)

If in a particular case Y has the density function p(Y , θ ),
not necessarily normal but satisfying certain regularity condi-
tions (cf. GODAMBE, 1960b) usually required for MLEs to have
their well-known properties (cf. CRAMÉR, 1966), then this op-
timal g0 turns out to be the function

∂

∂θ
log p(Y , θ ).

Consequently, the likelihood equation

∂

∂θ
log p(Y , θ ) = 0

is the optimal unbiased estimating equation, implying that the
MLE is a desired good estimator θ0 for θ .

Without requiring a knowledge of the density function of
Y and thus intending to cover more general situations, let it
be possible to find unbiased estimating functions

φi(Yi, θ ), i = 1, . . . , N

that is,

(a) Emφi(Yi, θ ) = 0
(b) ∂

∂θ
φi(Yi, θ ) exists for all Y

(c) Em
∂
∂θ

φi(Yi, θ ) = 0.
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Then,

g = g(Y , θ ) =
N∑
1

φi(Yi, θ )ai(θ ) =
N∑
1

φiai, say,

with differentiable functions ai(θ ) is an unbiased estimating
function, which is called linear in φi(Yi, θ ); i = 1, 2, . . . , N . If
we restrict to such a class L(φ), then a function g0 ∈ L(φ), sat-
isfying Eq. (3.18) for all g ∈ L(φ), is called linearly optimal.

If, in particular, the Yi ’s are assumed to be independently
distributed, then a sufficient condition for linear optimality of

g0 = g0(Y , θ ) =
∑

φi(Yi, θ )

is that

Em
∂φi

∂θ
(Yi, θ ) = k(θ )Emφ2

i (Yi, θ ), (3.19)

for i = 1, 2, . . . , N , where k(θ ) is a non-zero constant free of Y .
The condition Eq. (3.18), taking g = �φiai and g0 = �φi

in L(φ), may be checked on noting that for

u =
∑

φiai

Em
∂
∂θ

(∑
φiai

) , v =
∑

φi

Em
∂
∂θ

∑
φi

one has Em(uv) = Em(v2), giving Em(u2) − Em(v2) = Em(u −
v)2 ≥ 0.

EXAMPLE 3.4 Let the Yi ’s be independently distributed with
Em(Yi) = θ Xi, Xi known, Vm(Yi) = σ 2

i . Taking

φi(Yi, θ ) = Xi(Yi − θ Xi)
σ 2

i

and checking Eq. (3.19) one gets

g0 =
N∑
i

Xi(Yi − θ Xi)
σ 2

i

and as a solution of g0 = 0:

θ0 =
∑N

1 Yi Xi/σ
2
i∑N

1 X 2
i /σ 2

i
.

This is the same MLE and LSE derived under stipulations con-
sidered earlier.
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3.3.2 Applications to Survey Sampling

A further line of approach is now required because θ0 itself
needs to be estimated from survey data

d = (i, Yi|i ∈ s)

available only for the Yi ’s with i ∈ s, s a sample supposed to
be selected with probability p(s) according to a design p for
which we assume

πi =
∑
s�i

p(s) > 0 for all i = 1, 2, . . . , N .

With the setup of the preceding section, let the Yi ’s be indepen-
dent and consider unbiased estimating functions φi(Yi, θ ); i =
1, 2, . . . , N . Let

θ0 = θ0(Y )

be the solution of g(Y , θ ) = 0 where

g(Y , θ ) =
N∑
1

φi(Yi, θ )

and consider estimating this θ0 using survey data d = (i, Yi|i ∈
s). For this it seems natural to start with an unbiased sam-
pling function

h = h(s, Y , θ )

which is free of Y j for j /∈ s and satisfies

(a) ∂h
∂θ

(s, Y , θ ) exists for all Y
(b) Em

∂h
∂θ

(s, Y , θ ) = 0
(c) Eph(s, Y , θ ) = g(Y , θ ) for all Y , the unbiasedness con-

dition.

Let H be a class of such unbiased sampling functions. Follow-
ing the extension of the approach in section 3.3.1 by GODAMBE
and THOMPSON (1986a), we may call a member

h0 = h0(s, Y , θ )
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of H and the corresponding equation h0 = 0, optimal if

EmEph2(s, Y , θ )[
EmEp

∂h
∂θ

(s, Y , θ )
]2 (3.20)

as a function of h ∈ H is minimal for h = h0.
Because of the unbiasedness condition (c) above, one may

check that

EmEp

[
∂h
∂θ

]
= Em

[
∂g
∂θ

]
Ep(h − g)2 = Eph2 − g2.

So, to minimize Eq. (3.20) it is enough to minimize

EmEp(h − Eph)2.

This is in line with the criterion considered in section 3.2.
It follows that the optimal h0 is given by

h0 = h0(s, Y , θ ) =
∑
i∈s

φi(Yi, θ )
πi

To see this, let

α = α(s, Y , θ ) = h(s, Y , θ ) − h0(s, Y , θ ).

Then, noting 0 = Epα(s, Y , θ ), and checking, with the argu-
ments as in section 3.1.3 that Epαh0 = 0, one may conclude
that

EmEph2 = EmEp(h0 + α)2 = EmEph2
0 + EmEp(h − h0)2

≥ EmEph2
0

thereby deriving the required optimality of h0.
On solving the equation

h0(s, Y , θ ) = 0

for θ one derives an estimator θ̂0, based on d , which may be
regarded as the optimal sample estimator for θ0, the census
estimator for θ based on Y derived on solving the equation

g(Y , θ ) = 0.
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EXAMPLE 3.5 Consider the model

Yi = θ + εi

where the εi ’s are independent with Emεi = 0, Vmεi = σ 2
i . Then

the estimating function
N∑
i

φi(Yi, θ ) =
N∑
i

(Yi − θ )
σ 2

i

is linearly optimal, but does not define the survey population
parameter Y , which is usually of interest. Therefore, we may
consider the estimating equation g0 = 0 where

g0 =
∑

φi(Yi, θ ) =
∑

(Yi − θ )

is unbiased and, while not linearly optimal, defines

θ0 = Y

and the optimal sample estimator

θ̂0 =
∑

s Yi/πi∑
s 1/πi

for θ0. Incidentally, this estimator was proposed earlier by
HÁJEK (1971).

In general, the solution θ0 of

g =
∑

φi(Yi, θ ) = 0

where φi(Yi, θ ), i = 1, 2, . . . , N are unbiased estimating func-
tions is an estimator of the parameter θ of the superpopulation
model, provided all Y1, Y2, . . . , YN are known. In any case, it
may be of interest in itself, that is, an interesting parameter of
the population. The solution θ̂0 of the optimal unbiased sam-
pling equation h0 = 0 is used as an estimator for the population
parameter θ0.

If g is linearly optimal, then the population parameter θ0
is especially well-motivated by the superpopulation model.

EXAMPLE 3.6 Consider, for example, the model

Yi = θ Xi + εi

with X1, X2, . . . , X N > 0, ε1, ε2, . . . , εN independent and

Emεi = 0, Vmεi = σ 2 X γ

i , γ ≥ 0.
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Define

φi(Yi, θ ) = Xi(Yi − θ Xi)
X γ

i
.

It is easily seen that∑
φi(Yi, θ ) = 0

is linearly optimal. So the solution

θ0 =
∑

XiYi/X γ

i∑
X 2

i /X γ

i

should be estimated by the solution of∑
i∈s

φi(Yi, θ )
πi

= 0

that is, by

θ̂0 =
∑

i∈s Yi X
1−γ

i /πi∑
i∈s X 2−γ

i /πi
.

Two cases of special importance are

(a) γ = 1. Then

θ0 =
∑N

1 Yi∑N
1 Xi

= Y
X

θ̂0 =
∑

i∈s Yi/πi∑
i∈s Xi/πi

.

(b) γ = 2. Then

θ0 = 1
N

∑ Yi

Xi
θ̂0 =

∑
i∈s Yi/Xiπi∑

i∈s 1/πi
.

Finally, it is worth noting that among designs pn with
pn(s) > 0 only for samples s containing a fixed number n of
units, each distinct, the subclass pnφ for which

πi = n

[
Emφ2

i

/ N∑
1

Emφ2
i

]1/2

, i = 1, 2, . . . , N

is optimal because for each of them the value of

EmEp

∑
i∈s

φi(Yi, θ )
πi

2

=
N∑
i

Em(φ2
i )

πi

is minimized.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch03 January 27, 2005 16:32

70 Chaudhuri and Stenger

Thus, among all strategies

( pn, t(d ))

the optimal class of strategies is

( pnφ, θ̂ (d ))

where θ̂ = θ̂ (d ) is derived on solving∑
i∈s

φi(Yi, θ )
πi

= 0 in θ.

3.4 MINIMAX APPROACH

3.4.1 The Minimax Criterion

So far, the performance of a strategy ( p, t) has been described
by its MSE Mp(t), which is a function defined as the parameter
space �, the set of all vectors Y relevant in a given situation.

Now, � may be such that

sup
Y ∈�

Mp(t) = Rp(t), say,

is finite for some strategies ( p, t) of a class � fixed in advance,
especially by budget restrictions. Then it may be of interest to
look for a strategy minimizing Rp(t), with respect to the pair
( p, t).

Let � be the class of all available strategies and Rp(t) be
finite for at least some elements of �. Then

r ∗ = inf
( p,t)∈�

Rp(t) = inf
( p,t)∈�

sup
Y ∈�

Mp(t) < ∞

and r ∗ is called minimax value with respect to � and �; a
strategy ( p∗, t∗) ∈ � is called a minimax strategy if

Rp∗(t∗) = r ∗.

For given size measures x and z with

0 < Xi; i = 1, 2, . . . , N
0 < Zi ≤ Z/2; i = 1, 2, . . . , N
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where Z = ∑N
1 Zi let us define the parameter space

�xz =
{

Y ∈ RN :
∑ Xi

X

(Yi

Zi
− Y

Z

)2
≤ 1

}
.

Of special importance is the class of strategies
�n = {( p, t) : p of fixed effective size n, t homogeneously

linear}.

3.4.2 Minimax Strategies of Sample Size 1

We first consider the special case �1, consisting of all pairs
( p, t) such that

p(s) > 0 implies |s| = 1
t(s, Y ) = t(i, Y ) = Yi/qi, qi = 0.

Writing pi = p(i) each strategy in �1 may be identified with
a pair ( p, q); p, q ∈ RN , and its MSE is∑

pi

[Yi

qi
− Y

]2
.

Now, following STENGER (1986), we show that

sup
Y ∈�xz

∑
pi

[Yi

qi
− Y

]2

is minimum for

pi = Xi

X
= p∗

i , say,

qi = Zi

Z
= q∗

i , say,

(i = 1, 2, . . . , N ) such that ( p∗, q∗) is a minimax strategy.
Y ∈ �xz implies Y + λZ ∈ �xz for every real λ and the MSE of
a strategy ( p, q) evaluated for Y + λZ is∑

pi

[Yi + λZi

qi
− Y − λZ

]2
.

This quadratic function of λ is bounded if and only if
Zi

qi
− Z = 0
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which is equivalent to qi = q∗
i . So Rp(t) < ∞ for ( p, q) = ( p, t) ∈

�1 if and only if q = q∗. Now, for

A( p) = sup
Y ∈�xz

∑
pi

[
Yi

q∗
i

− Y

]2

we have

A( p∗) = sup
Y ∈�xz

∑
p∗

i

[
Yi

q∗
i

− Y

]2

= Z2.

For p = p∗ there exists j with p j = p∗
j + ε, ε > 0.

It is easily seen that

p∗
j − 2p∗

j q
∗
j + q∗

j
2

> 0.

So we may define

Y ( j )
i = q∗

j

/√
p∗

j − 2p∗
j q

∗
j + q∗

j
2 for i = j

= 0 for i = j .

The total Y ( j ) of Y ( j ) is equal to Y ( j )
j and

∑
pi

[
Y ( j )

i

q∗
i

− Y ( j )

]2

= Z2 p j − 2p j q∗
j + q∗

j
2

p∗
j − 2p∗

j q
∗
j + q∗

j
2

= Z2

[
1 + ε(1 − 2q∗

j )

p∗
j − 2p∗

j q
∗
j + q∗

j
2

]
≥ Z2

because Zj ≤ Z/2 implies 1 − 2q∗
j ≥ 0.

Obviously, Y ( j ) ∈ �xz and

A( p) ≥ Z2 = A( p∗)

for all p.

RESULT 3.9 Consider the class of strategies ( p, t) where p is a
fixed size 1 design, and t is homogeneously linear (HL).

In this class the minimax strategy with respect to �xz is as
follows: Select unit i with probability

p∗
i = Xi

X
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and use the estimator

Yi

q∗
i

where q∗
i = Zi

Z and Zi ≤ Z/2 for all i.

Note that the minimax strategy is unbiased if and only if
X and Z are proportionate.

Consider the special case Xi = Zi for i = 1, 2, . . . , N . The
minimax strategy for �xx and �1 obviously consists in select-
ing a unit with x-proportionate probabilities and using the
estimator

Yi

Xi
X

if the unit i is selected.

REMARK 3.3 The same strategy has been shown to be minimax
in another context by SCOTT and SMITH (1975 ). Their param-
eter space is

�x = {Y ∈ RN : 0 ≤ Yi ≤ Xi for i = 1, 2, . . . , N }
where it is assumed that a subset U0 of U = {1, 2, . . . , N } exists
with∑

i∈U0

Xi = X/2.

They prove that the above strategy is minimax within the set
�−

1 , say, of all strategies ( p, t), p an arbitrary design of fixed
sample size 1 and

t(i, Y ) = XYi/Xi.

This result may also be stated as follows: The design of fixed
sample size 1 with x-proportionate selection probabilities is
minimax if �x is relevant and t(i, Y ) = XYi/Xi is prescribed.
An exact generalization for arbitrary sample sizes n is not
available, but an asymptotic result will be presented in
chapter 6.
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3.4.3 Minimax Strategies of Sample Size n ≥ 1

In the special case Xi = Zi = 1 we have the parameter space

�11 =
{

Y ∈ RN :
1
N

∑
(Yi − Y )2 ≤ 1

}
and, according to the above result, the minimax strategy within
�1 consists of choosing every unit with a probability 1/N and
employing the estimator N Yi for Y if the unit i is selected.

A much stronger result has been proved by AGGARWAL
(1959) and BICKEL and LEHMANN (1981). They consider �11
and the class �+

n of all strategies ( pn, t), pn a design of fixed
effective size n and t arbitrary, and show that the expansion
estimator N y based on SRSWOR of size n is minimax.

Unfortunately, it seems impossible to find analogously
general results for other choices of X and Z; however, in chap-
ter 6 we report some results valid at least for large samples.

In the present section we give two results for n ≥ 1 pos-
tulating additional conditions on n in relation to N and X1,
X2, . . . , X N .

Assume for i = 1, 2, . . . , N

Zi = 1

and
Xi

X
>

n − 1
n

1
N − 2

. (3.21)

According to the last condition, the variance of the values
X1, X2, . . . , X N must be small. This condition implies that

Pi = n
N − 2
N − 2n

Xi

X
− n − 1

N − 2n
(3.22)

(i = 1, 2, . . . , N ) are positive with sum 1. Denote by pLMS the
LAHIRI-MIDZUNO-SEN design based on the probabilities P1,
P2, . . . , PN , that is, in the first draw unit i is selected with
probability Pi ; i = 1, 2, . . . , N and subsequently n− 1 distinct
units are selected by SRSWOR from the N − 1 units left after
the first draw. STENGER and GABLER (1996) have shown:

RESULT 3.10 Let t̃ be the expansion estimator for Y and pLMS
the LAHIRI-MIDZUNO-SEN design based on P1, P2, . . . , PN
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defined in Eq. (3.22). Then

( pLMS , t̃)

is minimax in �n with respect to the parameter space

�x1 =
{

Y ∈ RN :
∑ Xi

X
(Yi − Y )2 ≤ 1

}
provided Eq. (3.21) is true. The minimax value is

N
n

N − n
N − 1

.

Another example of a very general nature seems to be
important. GABLER and STENGER (2000) assume

N − 2n ≥
∑√

1 − Xi/Xo

where Xo = max{X1, X2, . . . , X N }. By this inequality, situa-
tions are eliminated in which the x values of one or a few units
add up to 1 or nearly so, such that random sampling is not
suggestive. The inequality ensures that

(N − 2n)z =
N∑
1

√
z2 − Xi

admits a unique solution zo. We define for i = 1, 2, . . . , N

di =
zo +

√
z2

o − Xi

Xi

and obtain the estimator

t∗(s, Y ) =
∑
i∈s

a∗
siYi =

∑
i∈s diYi∑
i∈s di Xi

which is of fundamental importance. Defining αi = di Xi for
i = 1, 2, . . . , N , t∗(s, Y ) can be written as a HANSEN–HURWITZ
type estimator

t∗(s, Y ) =
∑

i∈s αi
Yi
Xi∑

i∈s αi

The parameter space is assumed to be defined as

� = {Y ∈ RN : Y ′U Y ≤ 1}
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where U is a N × N non-negative definite matrix with

U X = 0.

The αi ’s do not depend on U . For

D = diag(d1, d2, . . . , dN )

V ∗ = D−1

(
I − 1 1′

n

)
D−1 + X X ′

GABLER and STENGER (1999) show that

sup
Y ∈�

MSE(Y ; p, t) ≥ 1
tr (U V ∗)

for all strategies ( p, t) ∈ �n.

Under the assumption that the variance of X1, X2, . . . ,
X N is not too large a design, p∗ is constructed such that ( p∗, t∗)
is minimax.

REMARK 3.4 GABLER (1990) assumes that designs p with
�|s|p(s) = n, n fixed, are prescribed while all LEs

t(s, Y ) = bs +
∑
i∈s

bsiYi

are admitted. He considers �x and derives the minimax value

r ∗ = 1
4n

[
X 2

(
1 − n

N

)
− n

N
σxx

]
where

σxx = 1
N

∑
(Xi − X )2.

We will not discuss GABLER’s class of strategies. His re-
sult is mentioned especially because the same minimax value
r ∗ will play an important role in our asymptotic discussion of
�x and �n in chapter 6.
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Chapter4

Predictors

Writing a finite population total Y as Y = �iYi = �sYi + �r Yi
an estimator t = t(s, Y ) for it may be written as t = �sYi +
(t − �sYi), where �s(�r ) is the sum over the distinct units
sampled (unsampled). Here a sample s is supposed to be chosen
yielding the survey data d = (i, Yi|i ∈ s). To find a value t(d )
close to Y is equivalent to deriving from Yi, i ∈ s a quan-
tity, t(d ) − �sYi, which is close to �r Yi. In order to achieve
this we need a link between Yi, i /∈ s and Yi, i ∈ s. So far,
a link established by a design p has been exploited. Even
where a superpopulation model entered the scene, we did not
use it to bridge the “gap” between Yi, i ∈ s and Yi, i /∈ s. We
only took advantage of the model when deciding for a spe-
cific strategy ( p, t) and then based our conclusions on p
alone.

In section 4.1 we follow ROY ALL (1970, 1971, 1988), con-
sidering an approach for estimation founded on a superpopu-
lation from which Y at hand is just a realization.

In section 4.2 we assume that a suitable prior density
function of Y is given and derive Bayes estimators.

77
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4.1 MODEL-DEPENDENT ESTIMATION

We assume that the values Yi; i = 1, . . . , N may be consid-
ered to be realizations of random variables, also denoted as
Yi; i = 1, . . . , N and satisfying the conditions of a linear model
(regression model). In sections 4.1.1–4.1.4 models with only
one explanatory variable are considered, sections 4.1.5–4.1.7
deal with the linear model in its general form.

4.1.1 Linear Models and BLU Predictors

Let a superpopulation be modeled as follows:

Yi = βXi + εi, i = 1, . . . , N

where Xi ’s are the known positive values of a nonstochastic
real variable x; εi ’s are random variables with

Em(εi) = 0, Vm(εi) = σ 2
i , Cm(εi, ε j ) = ρi j σiσ j ,

writing Em, Vm, Cm as operators for expectation, variance and
covariance with respect to the modeled distribution.

To estimate Y = �sYi + �r Yi, where �r Yi is the value of
a random variable, is actually to predict this value, add that
predicted value to the observed quantity �sYi, and hence ob-
tain a predicted value of Y , which also is a random variable in
the present formulation of the problem.

Since∑
r

Yi = β
∑

r
Xi +

∑
r

εi

with Em�r εi = 0, a predictor for �r Yi may be β̂�r Xi. Here β̂

is a function of d (and X ) and for simplicity we will take it as
linear in Y ,

β̂ =
∑

s
BiYi, say.

The resulting predictor for Y

t =
∑

s
Yi + β̂

∑
r

Xi
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will then be model-unbiased (m-unbiased) if

0 = Em(t − Y )

= Em

(∑
s

Yi + β̂
∑

r
Xi −

∑
s

Yi −
∑

r
Yi

)

= Em

(
β̂

∑
r

Xi − β
∑

r
Xi −

∑
r

εi

)

= [Em(β̂) − β]
∑

r
Xi

that is, if

β = Emβ̂

= Em
∑
i∈s

Bi(βXi + εi)

= β
∑
i∈s

Bi Xi

which is equivalent to∑
i∈s

Bi Xi = 1.

Note that the predictor for Y then takes the form

t =
∑
i∈s

(
1 + Bi

∑
r

X j

)
Yi

=
∑
i∈s

asiYi, say,

and
∑

asi Xi =
∑
i∈s

Xi

(
1 + Bi

∑
r

X j

)

=
∑

s
Xi +

∑
s

Xi Bi ·
∑

r
X j

= X .

This is the equation known from representativity and calibra-
tion.
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For a linear m-unbiased predictor a measure of error is

Vm(t − Y ) = Em [(t − Y ) − Em(t − Y )]2

= Em

[
β̂

∑
r

Xi −
∑

r
Yi

]2

= Em

[(∑
r

Xi

)
(β̂ − β) −

∑
r

(Yi − βXi)

]2

= M, say.

M is a function of the coefficients Bi, i ∈ s and may be mini-
mized under the restriction �s Bi Xi = 1. Let Boi, i ∈ s be the
minimizing coefficients. The corresponding predictor

to =
∑

s
Yi +

∑
r

Xi
∑

s
BoiYi

is naturally called the best linear unbiased (BLU) predic-
tor (BLUP) for Y .

EXAMPLE 4.1 For illustration purposes, let us simplify the
above model by assuming σi = σ Xi(σ > 0, unknown) and ρi j =
ρ[− 1

N −1 < ρ < 1, unknown]. Then,

M =
(∑

r
Xi

)2

Em

[∑
s

Bi(Yi − βXi)

]2

+ Em

[∑
r

(Yi − βXi)

]2

−2
∑

r
Xi Em

[∑
s

Bi(Yi − βXi)
∑

r
(Yi − βXi)

]

= σ 2

[(∑
r

Xi

)2



∑
s

B2
i X 2

i + ρ
∑∑
i 	= j ∈s

Bi B j Xi X j




+
∑

r
X 2

i + ρ
∑∑
i 	= j ∈r

Xi X j − 2

[∑
r

Xi

]
ρ

∑∑
i∈s, j /∈s

Bi Xi X j

]

= σ 2



(∑

r
Xi

)2 {
ρ + (1 − ρ)

∑
s

B2
i X 2

i

}
+ (1 − ρ)

∑
r

X 2
i

+ ρ

(∑
r

Xi

)2

− 2ρ

(∑
r

Xi

)2

 .

A choice of Bi that minimizes M subject to �i∈s Bi Xi = 1 is
Bi = 1/nXi for i ∈ s, assuming n as the size of s. The resulting
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minimal value of M, M0 is

M0 = σ 2(1 − ρ)


∑

r
X 2

i +
(∑

r
Xi

)2/
n




= Vm(t0 − Y ) = Em(t0 − Y )2

writing t0 for the linear m-unbiased predictor with the above
Bi’s called BLUP, that is,

t0 =
∑

s
Yi + 1

n

[∑
s

Yi

Xi

] [∑
r

Xi

]
=

∑
s

Yi + β̂
∑

r
Xi.

It is easy to see that

β̂ = 1
n

∑
s

Yi

Xi

occurring in t0, is the BLU estimator of β.

EXAMPLE 4.2 Now, we assume, ρi j = 0 for all i 	= j . Hence
Em(Yi) = βXi, Vm(Yi) = σ 2

i but Cm(Yi, Y j ) = 0, i 	= j , that is,
we have (cf. section 3.2.2)M1 with µi = βXi. Then the BLUP
for Y comes out as

tBLU =
∑

s
Yi +

[∑
s Yi Xi/σ

2
i∑

s X 2
i /σ 2

i

] [∑
r

Xi

]

which reduces to the well-known ratio estimator, now to be
called the ratio predictor,

tR =
∑

s
Yi +

[∑
s Yi∑
s Xi

][∑
r

Xi

]
= X

[∑
s

Yi

]/[∑
s

Xi

]
= X y/x,

if in particular, σ 2
i = σ 2 Xi, i = 1, . . . , N , writing y (x) as the

sample mean of y (x). It follows, under this model, that
M0 = Vm(tR − Y ) = Em(tR − Y )2

= Em

[∑
s Yi∑
s Xi

∑
r

Xi −
∑

r
Yi

]2

= Em

[∑
r Xi∑
s Xi

∑
s

(Yi − βXi) −
∑

r
(Yi − βXi)

]2

= N 2

n
(1 − f )

X xr

x
σ 2,

writing xr for the mean of the (N − n) unsampled units.
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4.1.2 Purposive Selection

We introduce some notations for easy reference to several mod-
els.

Arbitrary random variables Y1, Y2, . . . , YN may be writ-
ten as

Yi = µi + εi

where ε1, ε2, . . . , εN are random variables with

Em(εi) = 0, Vm(εi) = σ 2
i , Cm(εi, ε j ) = ρi j σiσ j

for i, j = 1, 2, . . . , N and i 	= j .
A superpopulation model of special importance is defined

by the restrictions

µi = βXi

σ 2
i = σ 2 X γ

i

with known positive values Xi of a nonstochastic variable x.
This model is denoted by

M0γ if ρi j = ρ for all i 	= j
M1γ if ρi j = 0 for all i 	= j
M2γ if ε1, ε2, . . . , εN are independent

(cf. section 3.2.4). If the assumption µi = βXi is replaced by

µi = α + βXi

we writeM′
j γ instead ofM j γ for j = 0, 1, 2.

In the previous section we have shown that the ratio pre-
dictor tR is BLU underM11 and has the MSE

M0 = N 2

n
(1 − f )

X xr

x
σ 2.

It follows from the last formula that if the n units with the
largest Xi ’s are chosen as to constitute the sample on which to
base the BLUP tR, then the value of M0 will be minimal. So, an
optimal sampling design is a purposive one that prescribes to
select with probability one a sample of n units with the largest
Xi values.
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Let the optimal purposive design be denoted as pno. It
follows that

Epno Vm(tR − Y ) = Epno Em(tR − Y )2 ≤ Epn Em(tR − Y )2

for any other design of fixed sample size n.
Consider the modelM′

10, that is,

Yi = α + βXi + εi

with uncorrelated ε1, ε2, . . . , εN of equal variance σ 2. Let

t = t(s, Y ) =
∑

s
Yi +

∑
s

giYi

be an m-unbiased linear predictor for Y = ∑
s Yi +∑

r Yi, that
is,

Em

(
t −

∑
s

Yi

)
= Em

(∑
s

giYi

)
=

∑
r

(α + βXi).

This implies

(a)
∑

s
gi = N − n

(b)
∑

s
gi Xi =

∑
r

Xi.

Note that (a) and (b) may be written as∑
s

gi X k
i =

∑
r

X k
i ; k = 0, 1.

Obviously,

M = Vm(t − Y ) = Em(t − Y )2

= Em

[∑
s

giYi −
∑

r
(α + βXi) −

∑
r

(Yi − α − βXi)

]2

= Em

[∑
s

giYi − Em

(∑
s

giYi

)
−

∑
r

ε j

]2

= Em

(∑
s

giεi −
∑

r
εi

)2

=
(∑

g2
i + N − n

)
σ 2.
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To minimize this, subject to (a), (b), we are to solve

0 = ∂

∂gi

[
M − λ

(∑
s

gi − N + n

)
− µ

(∑
s

gi Xi −
∑

r
Xi

)]

taking λ, µ as Lagrangian multipliers and derive

gi =
( N

n
− 1

)
+ N (X − x)∑

s(Xi − x)2 (Xi − x) = gio, say.

The resulting BLU predictor

t0 =
∑

s
Yi +

∑
s

gi0Yi = N [y + b(X − x)]

with

b =
∑

s
(Yi − y)(Xi − x)

/∑
s

(Xi − x)2

is usually called a regression predictor. The model variance
of t0 is

M0 = Vm(t0 − Y ) =
[
(N − n) +

∑
s

g2
i0

]
σ 2

= N 2

[
1
n

(1 − f ) + (x − X )2∑
s(Xi − x)2

]
σ 2.

M0 achieves a minimum if x equals X . So, the optimal design
is again a purposive one that prescribes choosing one of the
samples of size n that has x closest to X . Note that for x = X
the predictor t0 is identical with the expansion predictor
N y. Analogous optimal purposive designs may also be derived
for more general models.

RESULT 4.1 LetM′
10 be given. Then, the regression predictor

t0 = t0(s, Y )

= N

[
y −

∑
s(Yi − y)(Xi − x)∑

s(Xi − x)2 (x − X )

]

is BLU for Y . Its MSE is minimum if

x = X

in which case

t0(s, y) = N y.
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REMARK 4.1 Consider the modelM02 with the BLUP t0 given
in Example 4.1.

Vm(t0 − Y ) is minimized for the purposive design pn0. If,
in addition, the εi ’s are supposed independent, that is,M22 is
assumed, then Vm(t0 − Y ) reduces to

σ 2

[∑
r

X 2
i +

(∑
r Xi

)2

n

]
.

For this same model an optimal p-unbiased strategy was found
in section 3.2.4 as ( pnx, t) among all competitors ( pn, t) with

Epn(t) = Y for every Y

in terms of the criterion EmEpn(t − Y )2. We may note that for
pnx

t =
∑

s

Yi

πi
= X

n

∑
s

Yi

Xi

has Em(t) = βX, that is, like t0 = ∑
s Yi + 1

n(
∑

s
Yi
Xi

)
∑

r Xi the
HTE t is m-unbiased. So, it follows that

EmEpno(to − Y )2 = Epno Em(to − Y )2

≤ Epnx Em(to − Y )2

≤ Epnx Em(t − Y )2 = EmEpnx (t − Y )2

Thus, the strategy ( pno, to) is superior to the strategy ( pnx, t),
which is optimal in the class of all ( pn, t), t pn-unbiased.

For any p-unbiased estimator for Y that is also m-unbiased
under any specific model, a similar conclusion will follow. So,
if a model is acceptable and mathematically tractable, there is
obviously an advantage in adopting an optimal model-based
strategy involving an optimal purposive design and the perti-
nent BLUP rather that a p-unbiased estimator.

4.1.3 Balancing and Robustness for M11

In practice, we never will be sure as to which particular model
is appropriate in a given situation. Let us suppose that the
model M11 is considered adequate and one contemplates
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adopting the optimal strategy ( pno, tR) for which

Vm(tR − Y ) = M0 = N 2(1 − f )
n

X xr

x
σ 2

as noted in section 4.1.1. We intend to examine what happens
to the performance of this strategy if the correct model isM′

11.
UnderM′

11,

Em(tR) = N α
X
x

+ βX

and thus tR has the bias

Bm(tR) = Em(tR − Y ) = N α

(
X
x

− 1

)

which vanishes if and only if x equals X . So, if instead of the
design pno, which is optimal under M11, one adopts a design
for which x equals X , then tR, which is m-unbiased underM11,
continues to be m-unbiased underM′

11 as well.
A sample for which x equals X is called a balanced sam-

ple and a design that prescribes choosing a balanced sam-
ple with probability one is called a balanced design. Hence,
based on a balanced sample, tR is robust in respect of model
failure.

It is important to note that tR based on a balanced sample
is identical to the expansion predictor N y.

REMARK 4.2 Of course, a balanced design may not be available,
for example, if there exists no sample of a given size admitting
x equal to X. In that case, an approximately balanced design
suggests itself, namely the one that chooses with probability
one a sample of a given size for which x is the closest to X. If
the sample size n is large, then simple random sampling (SRS)
without replacement (WOR) leads with high probability to a
sample, which is approximately balanced. This is so because
by CHEBY SHEV ’s inequality, under SRSWOR,

Prob[|x − X | ≤ ε] ≥ 1 − N − n
N n

S2

ε2 , for any ε > 0,

writing S2 = 1
N −1

∑N
1 (Xi − X )2.
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An obvious way to achieve a balance in samples is to strat-
ify a population in terms of the values of x, keeping each stratum
internally as homogeneous as possible.

Let the sizes N1, N2, . . . , N H of the H strata be suffi-
ciently large (with

∑H
1 Nh = N ) and assume that samples are

drawn from the H strata independently, by SRSWOR of suffi-
ciently large sizes n1, n2, . . . , nH (

∑H
1 nh = n) with nh/Nh small

relative to 1. Then, the stratum sample mean xh will be quite
close to the stratum mean X h of x for h = 1, 2, . . . , H. ROY ALL
and HERSON (1973) is a reference for this approach.

4.1.4 Balancing for Polynomial Models

We return to the modelM′
10 of 4.1.2 and consider an extension

Mk defined as follows:

Yi =
k∑

j =0

β j X j
i + εi

Em(εi) = 0, Vm(εi) = σ 2, Cm(εi, ε j ) = 0, for i 	= j

where i, j = 1, 2, . . . , N . By generalizing the developments of
section 4.1.2, we derive.

RESULT 4.2 Let Mk be given. Then, the MSE of the BLU pre-
dictor to for Y is minimum for a sample s of size n if

1
n

∑
s

X j
i = 1

N

N∑
1

X j
i for j = 0, 1, . . . , k.

If these equalities hold we have

to(s, Y ) = N y.

A sample satisfying the equalities in Result 4.2 is said to
be balanced up to order k.

Now, assume the true model Mk′ agrees with a statisti-
cian’s working modelMk in all respects except that

Em(Yi) =
k′∑
0

β j X j
i

with k′ > k. The statistician will use to instead of t ′
o, the BLU

predictor for Y on the base of Mk′ . However, if he selects a
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sample that is balanced up to order k′

t ′
o(s, Y ) = to(s, Y ) = N y

and his error does not cause losses.
It is, of course, too ambitious to realize exactly the bal-

ancing conditions even if k′ is of moderate size, for example,
k′ = 4 or 5. But if n is large the considerations outlined in Re-
sult 4.1 apply again for SRSWOR or SRSWOR independently
from within strata after internally homogeneous strata are
priorly constructed.

But how it fares in respect to its model mean square error
under incorrect modeling is more difficult to examine. Since
a model cannot be postulated in a manner that is correct and
acceptable without any dispute and a classical design-based
but model-free alternative is available, it is considered impor-
tant to examine how a specific model-based predictor, for ex-
ample, tm, fares in respect to design characteristics if it is based
on a sample s chosen according to some design p. On such a
sample may also be based a design-based estimator td , and one
may be inclined to compare the magnitudes of the design mean
square errors Mp(tm) = Ep(tm−Y )2 and Mp(td ) = Ep(td −Y )2.
Since Mp(tm) = V p(tm) + B2

p(tm) and Mp(td ) = V p(td ) + B2
p(td )

it may be argued that if the sample size is sufficiently large,
as is the case in large scale sample surveys, in practice both
V p(tm) and V p(td ) may be considered to be small in magni-
tudes. But |Bp(tm)| is usually large and appreciably dominates
both |Bp(td )| and V p(tm) and, consequently, for large samples
Mp(tm) often explodes relative to Mp(td ), especially if tm is
based on an incorrect model.

The estimator td itself may or may not be model-based,
but even if it is suggested by considerations of an underlying
model, its model-based properties need not be invoked; it may
be judged only in terms of the design, and, if it has good de-
sign properties, it may be considered robust because its perfor-
mance is evaluated without appeal to a model and hence there
is no question of model failures. However, if the sample size is
small and the model is not grossly inaccurate, then in terms of
model- and design-based mean square error criteria m-based
procedures may do better than td , as we have seen already.
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These discussions suggest the possibility of considering
estimators that may be appropriately based on both model and
design characteristics so that they may perform well in terms
of model-based bias and mean square error when the model
is correct, but will also do well in terms of design-based bias
and mean square error irrespective of the truth or falsity of
the postulated model. To examine such possibilities, in view of
what has been discussed above it is necessary to relax the con-
dition of design unbiasedness and to avoid small sample sizes.
In the next section we examine the prospects of exploration
in some other directions, but we will pursue this problem in
chapters 5 and 6.

4.1.5 Linear Models in Matrix Notation

Suppose x1, x2, . . . , xk are real variables, called auxiliary or
explanatory variables, each closely related to the variable
of interest y. Let

xi = (
Xi1, Xi2, . . . , Xik

)′

be the vector of explanatory variables for unit i and assume
the linear model

Yi = x′
iβ + εi

for i = 1, 2, . . . , N . Here

β = (β1, β2, . . . , βk)′

is the vector of (unknown) regression parameters; ε1, ε2, . . . ,
εN are random variables satisfying

Emεi = 0
Vmεi = υii

Cm(εi, ε j ) = υi j , i 	= j

where Em, Vm, Cm are operators for expectation, variance, and
covariance with respect to the model distribution; and the ma-
trix V = (υi j ) is assumed to be known up to a constant σ 2.

To have a more compact notation define

Y = (Y1, Y2, . . . , Y N )′

X = (x1, x2, . . . , xN )′ = (Xij )
ε = (ε1, ε2, . . . , εN )′
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and write the linear model as

Y = Xβ + ε

where

Emε = 0
Vm(ε) = V

Assume that n components of Y may be observed with the ob-
jective to estimate β or to predict the sum of all N − n compo-
nents of Y that are not observed. It is not restrictive to assume
that

Y s = (Y1, Y2, . . . , Yn)′

is observed; define

Y r = (Yn+1, . . . , YN )′

and partition X and V correspondingly such that

X =
(

X s

Xr

)

V =
(

Vss Vsr
Vrs Vrr

)

Assume
N∑
1

γiYi = γ ′Y

is to be predicted. Modifying slightly the approach of section
4.1.1 (to predict 1′Y ) we use g′

sY s as a predictor of γ ′
r Yr and

add the predicted value to the known quantity

γ ′
sY s

to get as a predictor for γ ′Y

(γ s + gs)
′Y s

where γ s = (γ1, γ2, . . . , γn)′ and gs = (g1, g2, . . . , gn)′.
gs will be chosen such that

Em[(γs + gs)′Y s − γ ′Y ] = 0
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and

Vm[(γs + gs)′Y s − γ ′Y ]2

is minimized. The linear predictor defined by these two prop-
erties is called the best linear unbiased (BLU) predictor
(BLUP) of γ ′Y . Assuming that the inverses of the occurring
matrices exist it may be shown:

RESULT 4.3 The BLU predictor of γ ′Y is

t0 = γ ′
sY s + γ ′

r

[
Xr β̂ + VrsV −1

ss (Y s − X sβ̂)
]

where

β̂ = (X ′
sV −1

ss X s)
−1 X ′

sV −1
ss Y s

is the BLU estimator of β. Further,

Vm(t0) = γ ′
r (Vrr − VrsV −1

ss Vsr )γr

+ γ ′
r (Xr − VrsV −1

ss Vsr )(X ′
sV −1

ss X s)
−1

× (Xr − VrsV −1
ss Vsr )′γ r .

For a proof we refer to VALLIANT, DORFMAN, and ROY ALL
(2000).

4.1.6 Robustness Against Model Failures

Consider the general linear model described in section 4.1.4.
TAM (1986) has shown that a necessary and sufficient condi-
tion for

T ′Y s =
∑

s
TiYi

to be BLU for Y = 1′Y is that

(a) T X s = 1′X
(b) VssT − K1 ∈ M(X s)

where

K = (Vss, Vsr ),

and M(X s) is the column space of X s.
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In case Vrs = 0 these conditions reduce to (q) and

(b)′ Vss(T − 1s) ∈ M(X s)

as given earlier by PEREIRA and RODRIGUES (1983).
By TAM’s (1986) results one may deduce the following.
If the true model is as above,M, but one employs the best

predictor postulating a wrong model, sayM∗, using X ∗ instead
of X throughout where

X = (X ∗, X̃ ),

then the best predictor underM∗ is still best underM if and
only if

T ′ X̃ s = 1′ X̃

using obvious notations. This evidently is a condition that
the predictor should remain model-unbiased under the correct
modelM. Thus, choosing a right sample meeting this stipula-
tion, one may achieve robustness. But, in practice, X̃ will be
unknown and one cannot realize this robustness condition at
will, although for large samples this condition may hold ap-
proximately. In this situation, it is advisable to adopt suitable
unequal probability sampling designs that assign higher selec-
tion probabilities to samples for which this condition should
hold approximately, provided one may guess effectively the
nature for variables omitted but influential in explaining vari-
abilities in y values. If a sample is thus rightly chosen one may
preserve optimality even under modeling deficient as above.
On the other hand, if one employs the best predictor using W ∗
instead of X when W ∗ = (X , W ), then this predictor contin-
ues to remain best if and only if the condition (b) above still
holds. But this condition is too restrictive, demanding correct
specification of the nature of V , which should be too elusive in
practice. ROY ALL and HERSON (1973), TALLIS (1978), SCOTT,
BREWER and HO (1978), PEREIRA and RODRIGUES (1983),
RODRIGUES (1984), ROY ALL and PFEFFERMANN (1982), and
PFEFFERMANN (1984) have derived results relevant to this
context of robust prediction.
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4.2 PRIOR DISTRIBUTION–BASED APPROACH

4.2.1 Bayes Estimation

Fruitful inference through the likelihood based d̂ cannot be
obtained without postulating suitable structures on Y . If Y is
given a suitable prior density function q(Y ), then a posterior
given d is

q∗
d (Y ) = q(Y ) Id (Y ) c(d )

where c(d ) is a function of d required for normalization. This
form is simplistic if q(Y ) is so. If a square error loss function
is assumed, then the BAY ES estimator (BE) for Y is

tB = Eq∗(Y |d ) =
∑

s
Yi +

∑
r

Eq∗(Yi|d )

writing Eq∗ for an operator for expectation with respect to the
posterior pdf q∗. If q is suitably postulated in a mathematically
tractable and realistically acceptable manner, then it is easy
to find Bayes estimators for Y . Let us illustrate as follows.

Suppose Yi ∼ N (θ , σ 2) and θ ∼ N (µ, φ2), meaning that
Yi ’s are independently, identically distributed (iid) normally
with a mean θ and variance σ 2 and θ itself is distributed nor-
mally with a mean µ and variance φ2. As a consequence, θ is
distributed independently of εi = Yi − θ , i = 1, . . . , N . Then,
writing ψ = o2

φ2 , W = 1 − [1 − n
N ] ψ

ψ+n , for a sample s of size n
with sample mean y, the BAY ES estimator of Y is

tB = N [W y + (1 − W )µ].

Of course it cannot be implemented unless µ, σ , and φ, or at
least µ and ψ , are known.

Leaving this issue aside for the time being, it is impor-
tant to observe that an optimal sampling design to choose a
sample on which a tB is to be based is again purposive, as
in the case of using m-based predictors. For optimality one
must assign a selection probability 1 to a sample that yields
the minimal value for the posterior mean square error of tB
to be called the posterior risk, in this case with a square
error loss, viz Eq∗(tB − Y )2. This is a function of s plus other
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parameters involved in q. Because of the appearance of un-
known parameters here, to implement a Bayesian strategy in
large-scale surveys is practically impossible. However, there
is a way out in situations where one may have enough sur-
vey data that may be utilized to obtain plausible estimates of
the parameters involved in the BAY ES estimator. Substitut-
ing these estimates for the nuisance parameters in the Bayes
estimator (BE) one gets what is called an empirical Bayes
estimator (EBE), which is often quite useful. Let us illustrate
a situation where an EBE may be available.

4.2.2 James–Stein and Empirical
Bayes Estimators

Suppose θ1, . . . , θk are k ≥ 3 finite population parameters,
that is, totals of a variable for mutually exclusive population
groups required to be estimated. Let independent estimators
t1, . . . tk, respectively, be available for them and suppose it is
reasonable to postulate that ti ∼ N (θi, σ 2) with σ 2 known.

Then, writing S = ∑k
1 t2

i it can be shown, following JAMES
and STEIN (1961), that

δ = (δ1, . . . , δk)′ where δi =
[
1 − k − 2

S
σ 2

]
ti

is a better estimator for θ = (θ1, . . . , θk)′ than t = (t1, . . . , tk)′
in the sense that

k∑
1

Eθi(δi − θi)2 ≤
k∑
1

Eθi(ti − θi)2 = k σ 2.

This shrinkage estimator δ is usually called the James–
Stein estimator (JSE). But a limitation of its applicability is
that all ti must have a common variance σ 2, which must be
known.

Assume further that it is plausible to postulate, in view
of the assumed closeness among θi ’s, that θi ∼ N (0, φ2), with φ

as a known positive number. Then the BEs for θi are

tBi =
[
1 − σ 2

σ 2 + φ2

]
ti, i = 1, . . . , k.
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Now S/(σ 2 + φ2) follows a χ2 distribution with k degrees of
freedom and, therefore,

E
[k − 2

S
σ 2

]
= σ 2

σ 2 + φ2 .

Hence δi can be interpreted as an EBE for θi, i = 1, . . . , k. In
this case, with a common σ 2 JSE and EBE coincide.

4.2.3 Applications to Sampling
of Similar Groups

Suppose there are k mutually exclusive population groups of
sizes Ni supposed to be closely related from which samples of
sizes ni are taken, yielding sample means

yi = 1
ni

ni∑
j =1

Yij , i = 1, . . . , k,

Yij denoting the value of j th unit of ith group. Let

Yij ∼ N (θi, σ 2), θi ∼ N (µ, φ2),

(with θi ’s independent of εi j = Yij − θi for every j = 1, . . . , ni).
Define ψ = σ 2/φ2 and

Bi = ψ

ψ + ni
, Wi = 1 − (1 − f i)Bi, f i = ni

Ni
, for i = 1, . . . , k.

Then, the BE of
∑Ni

1 Yij = Ti is

tBi = ni yi + (Ni − ni)
[
Biµ + (1 − Bi)yi

]
= Ni

[
Wi yi + (1 − Wi)µ

]
.

Assuming ni ≥ 2 and writing n = ∑k
1 n1,

y.. = 1
n

k∑
1

ni yi

BMS = 1
k − 1

k∑
1

ni(yi − y)2

WMS = 1
n − k

k∑
1

ni∑
j =1

(yij − yi)
2
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g = g(n1, . . . , nk) = n −
k∑
1

n2
i /n

one may estimate, following GHOSH and MEEDEN (1986),

1/� by

[
1̂
�

]
= max

{
0,

[(k − 1) BMS
(k − 3) WMS

− 1
]k − 1

g

}
assuming k ≥ 4

Bi by B̂i = 1

1 + ni

[
1̂
�

]

µ by µ̂ =
k∑
1

(1 − B̂i)yi

/ k∑
1

(1 − B̂i) if �̂−1 	= 0

= 1
k

k∑
1

yi if �̂−1 = 0.

Then the EBE for Ti, the total of the ith group, is

tEBi = Ni[Ŵ i ȳi + (1 − Ŵ i)µ̂]

writing Ŵ i = 1 − (1 − f i)B̂i, i = 1, . . . , k.

Again, suppose that ti are estimators of parameters θi
based on independent samples or on the same sample but θi ’s
supposed closely similar. Then further improvements on ti ’s
may be desired and achieved if additional information is avail-
able through auxiliary well-correlated variables in the follow-
ing way. First, let us postulate that ti ∼ N (θi, σ 2), i = 1, . . . , k.
Let x1, . . . , xp be p(≥1) auxiliary variables with known val-
ues X j i( j = 1, . . . , p; i = 1, . . . , k) such that it is further
postulated that θi ∼ N (xiβ, φ2), θi independent of ti − θi, i =
1, . . . , k, xi = (X1i, . . . , X pi)′, β = (β1, . . . , βp)′, a p vector of
unknown parameters, with p ≤ k − 3. Assuming that the ma-
trix X ′X of order p × p, with X ′ = (x1, . . . , xN ) has a full rank,
the regression estimator for θi is t∗

i = x′
i[(X ′X )−1 X ′t], writing

t = (t1, . . . , tk)′. Then the BAY ES estimator of θi is

θ∗
Bi = t∗

i +
[
1 − σ 2

σ 2 + φ2

] (
ti − t∗

i
)

=
[

σ 2

σ 2 + φ2

]
t∗
i +

[
φ2

σ 2 + φ2

]
ti.
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Writing S∗ = ∑k
1 (ti − t∗

i )2, we have E[k−p−2
S∗ ] = φ2

σ 2+φ2 yielding
the JSE of θi as

δ∗
i = t∗

i +
[
1 − k − p − 2

S∗

](
ti − t∗

i
)

= (k − p − 2)
σ 2

S∗ t∗
i +

{
1 − (k − p − 2)

σ 2

S∗

}
ti

which is, of course, an EBE. In particular, if p = 1, Xi = 1,
i = 1, . . . , k, then

1
k

k∑
1

ti = t̄, say, S∗ =
∑

(ti − t̄)2 and

δ∗
i =

[k − 3
S∗ σ 2

]
t̄ +

[
1 − k − 3

S∗ σ 2
]

ti.

Further generalizations allowing σ 2 to vary with i as σ 2
i render

JSEs unavailable, but EBEs are yet available in the literature
provided σ 2

i are known. This latter condition is not very re-
strictive because from samples that are usually large σ 2

i may
be accurately estimated.

The BAY ES estimators, as we have seen, are completely
design-free, and in assessing their performances design-based
properties are never invoked. The JAMES–STEIN estimators,
whenever applicable, and their adaptations as empirical
BAY ES estimators, may start with design-based estimators,
model-based estimators, or design-cum-model-based estima-
tors, but these estimators get their final forms exclusively from
considerations of postulated models. Also, only their model-
based properties like model bias, model MSE, and related char-
acteristics are studied in the literature. Details omitted here
may be found in works by GHOSH and MEEDEN (1986) and
GHOSH and LAHIRI (1987, 1988). Their design-based proper-
ties are not yet known to have been seriously examined. In the
context of sample surveys, the question of robustness of BAY ES
estimators, JAMES–STEIN estimators, and empirical BAY ES
estimators is not yet known to have been seriously taken up
or examined in the literature.
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4.2.4 Applications to Multistage Sampling

Let us suppose, following LITTLE (1983), that a finite popu-
lation U of N units with mean Ȳ is divided into C mutually
exclusive groups Ug with sizes Ng and group means Ȳg. Then,
with Pg = Ng/N ,

C∑
1

Ng = N , Ȳ =
∑

Pg Ȳg.

Let a sample s of size n be taken and denote by sg the sample
of ng units selected from group Ug and ȳg the corresponding
mean. Then

C∑
1

ng = n; ȳ = 1
n

C∑
1

ng ȳg.

Let Ygi denote the y variable value for the ith unit of the gth
group and assume that all Ygi are independently distributed
with

Ygi ∼ N (µg, σ 2 Vg)

where V1, V2, . . . , VC > 0 are known, σ > 0 and µ1, µ2, . . . , µC
are unknown. In practice ng’s are quite small for many of the
groups and even ng = 0 for several groups. One solution is to
reduce the number of groups by coalescing several similar
ones and thus ensure enough ng per group with the number of
groups reduced. Another alternative is to employ multistage
sampling designs or clustered designs where several ng’s are
taken to be zero deliberately. We may turn to such designs and
see how an extension of the above approach may be achieved,
yielding fruitful results.

Following SCOTT and SMITH (1969), we assume

µg ∼ N (µ, δ2)

where µg and Ygi − µg; g = 1, 2, . . . , C are independent and
µ is given a noninformative prior. Then one may derive the
BLUP for Y as

t =
∑

g

[
(ng ȳg) + (Ng − ng)

{
λg ȳg + (1 − λg) ȳ

}]
=

∑
g

[
ng(1 − λg) ( ȳg − ȳ) + Ng

{
λg ȳg + (1 − λg) ȳ

}]
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writing

λg = δ2

δ2 + σ 2 Vg

ng

for ng > 0 and λg = 0 for ng = 0,

ỹ =
(∑

g
λg ȳg

)/(∑
g

λg

)
.

Note that µ̃gi = λg ȳg + (1 − λg) ỹ is a predicted value for unit i
in group g. Thus, in this case only some of the groups are sam-
pled and from each selected group only some of the units are
selected. The units observed have values known and for them
no prediction is needed. For those units that are not observed
but belong to groups that are represented in the sample, there
is one type of prediction utilizing the sampled group means,
but there is a third type of unit with values not observed and
not within groups represented in the sample, and hence they
are predicted differently in terms of overall weighted sample
group means.

This t is really a BAY ES estimator and is not usable unless
δ2 and σ 2 are known. Since δ, σ are always unknown they have
to be estimated from the sample; if they are estimated by δ̂2, σ̂ 2

respectively t becomes an EBE. Writing λ̂g( ỹe) for λg( ỹ) with
δ2, σ 2, therein replaced by δ̂2, σ̂ 2, one gets the EBE as

t̂ =
∑

g
[ng(1 − λ̂g)( ȳg − ỹe) + Ng{λ̂g ȳg + (1 − λ̂g) ỹe}].

If ng
Ng

∼= 0, then

t̂ ∼=
∑

g
Ng{λ̂g ȳg + (1 − λ̂g) ỹe}

which is a combination of shrinkage estimators. If ng = 0 for a
group, then λg = 0; hence λ̂g = 0, too.

Now, assume

Ygi ∼ N (βog + β1 Xgi, σ 2Vg)

βog ∼ N (βo, δ2)
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where Xgi is the value of an auxiliary variable x for unit i of
group Ug and the notation and independence assumptions are
analogous to the above considerations. Then an unobserved
value is predicted by

µ̂gi = λg{ȳg + β̂1(xgi − x̄g)} + (1 − λg) {ỹ + β̂1(xgi − x̃)}
where

λg = δ2

(δ2 + σ 2

ng
Vg)

,

ỹ =
∑

λg ȳg∑
λg

, x̃ =
∑

λg x̄g∑
λg

and

β̂1 =

∑

g

∑
sg

Ygi(Xgi − x̄g)/Vg



/

∑
g

∑
sg

(Xgi − x̄g)2/Vg


.

Then the BLUP is

t =
∑

g
[ngyg + (Ng − ng)[λg{yg + β̂1(xrg − xg)}

+ (1 − λg){yg + β̂1(xrg − x̃)}]]
=

∑
g

[ng(1 − λg)yg + Ng{λgyg + (1 − λg) ỹ}

+ (Ng − ng)β̂1{λg(xrg − xg) + (1 − λg)(xrg − x̃)}]
writing x̄rg for the mean of units of group g that do not appear
in the sample.
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Chapter5

Asymptotic Aspects
in Survey Sampling

5.1 INCREASING POPULATIONS

It may be of interest to know the properties of a strategy as
the population and sample sizes increase. To investigate these
properties we follow ISAKI and FULLER (1982) and consider a
sequence of increasing populations

U1 ⊂ U2 ⊂ U3 ⊂ . . .

of sizes N1 < N2 < . . . and a sequence of increasing sample
sizes n1 < n2 < . . . . The units of UT are labeled

1, 2, . . . , NT

with values

Y1, Y2, . . . , Y NT

of a variable y of interest and, possibly, with K vectors

x1, x2 , . . . , xNT

defined by K auxiliary variables x1 , . . . , xK .

101
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The discussion of the sequence of populations is greatly
simplified by appropriate additional assumptions. To formu-
late such an assumption we define

U (1) = {
1, 2, . . . , N1

}
U (2) = {

N1 + 1 , N1 + 2 , . . . , N2
}

U (3) = {
N2 + 1, N2 + 2, . . . , N3

}
...

Assumption A: U (1), U (2), . . . are of the same size, that is,

NT = T N 1

and

nT = T n1

for T = 1, 2, . . . . In addition, for i = 1, 2, . . . , N1

Yi = Yi+N1 = Yi+2N 1 = . . .

xi = xi+N1
= xi+2N1

= . . .

According to this assumption U (2), U (3), . . . are copies of
U (1); UT is the union of U (1) with its first T − 1 copies.

Note that Assumption A implies that

Y T = 1
T N1

T N1∑
1

Yi

σyyT = 1
T N1

T N1∑
1

(Yi − Y T )2

are free of T and, similarly, for moments of the K vectors. So
we may drop the index T and write

Y , σyy

without ambiguity as long as Assumption A is true.
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5.2 CONSISTENCY, ASYMPTOTIC
UNBIASEDNESS

For T = 1, 2, . . . let ( pT , tT ) be a strategy for estimating Y T
by selecting a sample sT of size nT from UT .

pT and tT may depend on auxiliary variables; however,
pT does not depend on the variable of interest y and tT does
not involve Yi ’s with i outside sT .

Let

Y = (Y1, Y2, · · ·)
be a sequence of y values subject to Assumption A, but other-
wise arbitrary. Given Y ,

tT (sT , Y ) − Y ; T = 1, 2, . . . (5.1)

is a sequence of random variables with distributions defined
by

pT ; T = 1, 2, . . .

tT is asymptotically design unbiased or more fully asymp-
totically design unbiased (ADU) if

lim
T → ∞

EpT (tT − Y ) = 0.

Exact unbiasedness of tT of course ensures its asymptotic un-
biasedness.

By describing the sequence Eq. (5.1) of random variables
as converging in probability to 0 we mean

lim
T → ∞

PT
{∣∣tT − Y

∣∣ > ε
} = 0

for all ε > 0; here PT is the probability defined by pT .
In this case tT is called consistent for Y (with res-

pect to pT ) or more fully asymptotically design consistent
(ADC).

This type of consistency is to be distinguished from
COCHRAN’s (1977) well-known finite consistency for a finite
population parameter, meaning that the estimator and the
estimand coincide if the sample is coextensive with the
population.
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EXAMPLE 5.1 Accept condition A and let pT denote SRSWOR
of size

n = T n1

from a population of size

N = T N 1.

For a sample s = sT define

tT = tT (s , Y ) = 1
n

∑
s

Yi.

Then,

EpT tT = Y

V pT (tT ) = σyy

n
N − n
N − 1

.

Hence,

lim
T →∞

V pT (tT ) = lim
T → ∞

σyy

T n1

T N1 − T n1

T N1 − 1
= 0

and it follows that tT is a consistent estimator of Y .

5.3 BREWER’S ASYMPTOTIC APPROACH

Looking for properties of a strategy as population and sample
sizes increase presumes some relation between p1, p2, . . . on
one hand and between t1, t2, . . . on the other hand.

In this and the next section relations on the design and
estimator sequence, respectively, are introduced.

Consistency of an estimator tT is easy to decide on if As-
sumption A is true and pT satisfies a special condition consid-
ered by BREWER (1979):

Assumption B: Using Assumption A and starting with an arbi-
trary design p1 of fixed size n1 for U(1), then pT is as follows:

Apply p1 not only to U(1) but also, independently, to U(2),
. . . , U(T ) and amalgamate the corresponding samples

s(1), s(2), . . . , s(T )
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to form

sT = s(1) ∪ s(2) ∪ · · · ∪ s(T ).

A design satisfying Assumption B to give the selection
probability for sT is appreciably limited in scope and applica-
tion.

Some authors have considered such restrictive designs,
notably HANSEN, MADOW and TEPPING (1983). However, in-
teresting results have been derived under less restrictive as-
sumptions as well as by alternative approaches.

We mention ISAKI and FULLER (1982) proving the con-
sistency of the HT estimator under rather general conditions
on pT . In fact, they even drop Assumption A, a condition that
seems quite rational to us.

BREWER’s approach should be adequate where it is advis-
able to partition a large population UT into subsets of similar
size and structure and to use these subsets as strata in the se-
lection procedure. This is acceptable only if there is no loss in
efficiency. But it is doubtful that this may always be the case.

We plan to enlarge BREWER’s class of designs and obtain
a class containing the designs in common use and with the
same technical amenities as BREWER’s class.

Assumption B0: Using Assumption A and letting

π1, π2, . . . , πN1

be the inclusion probabilities of first order for p1, we have

πi = πi+N1 = . . . , πi+(T −1)N1; i = 1, . . . , N1. (5.2)

The inclusion probabilities of second order πi j satisfy the
condition

πi j − πiπ j ≤ 0 (5.3)

for all i, j = 1, 2, . . . , T N1 with

|i − j | = N1, 2N1, . . . . (5.4)

Assumption B0 is obviously less restrictive than Assump-
tion B. We want to motivate it more fully.

It is natural to give units with identical/similar K -vectors
the same/nearly the same chance of being selected. If a
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design pT is of this type, the first-order inclusion probabili-
ties π1, π2, . . . of the population units are made to satisfy the
condition

xi = x j ⇒ πi = π j (5.5)

implying Eq. (5.2) as a consequence of Assumption A.
In addition, it is desirable not to select too many units

with the same or similar K vectors implying

xi = x j ⇒ πi j − πi π j < 0. (5.6)

and, therefore, Eq. (5.3).

5.4 MOMENT-TYPE ESTIMATORS

To establish meaningful results of asymptotic unbiasedness
and consistency, the estimators t1, t2, . . . of a sequence to be
considered must be somehow related to each other. Subse-
quently, a relation is assumed that is based on the concept
of a moment estimator we define as follows: Let Ai, Bi, Ci, . . .

be values associated with i ∈ U . Then, for s ⊂ U with n(s) = n

1
n

∑
s

Ai,
1
n

∑
s

Ai Bi,
1
n

∑
s

Ai Bi Ci (5.7)

are sample moments. Examples are

1
n

∑
s

Yi

πi
,

1
n

∑
s

Xi1Yi,
1
n

∑
s

Xi1 Xi2

πi

where Yi, Xi1, Xi2 are values of variables y, x1, x2, respectively,
and πi inclusion probabilities defined by a design for i ∈ U .

1
N

N∑
1

Ai,
1
N

N∑
1

Ai Bi,
1
N

N∑
1

Ai Bi Ci

are population moments corresponding to the sampling mo-
ments Eq. (5.7).

A moment estimator t is an estimator that may be writ-
ten as a function of sample moments m(1), m(2), . . . , m(ν):

t = f (m(1), m(2), . . . , m(ν)). (5.8)
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Obvious examples of moment estimators are the sam-
ple mean, the HT-estimator, the HH-estimator, and the ratio
estimator.

Now, let t1 be a moment estimator, that is,

t1 = f
(
m(1)

1 , . . . , m(ν)
1

)

where m(1)
1 , . . . , m(ν)

1 are sample moments for s1.
Then, tT may be defined in a natural way:

tT = f
(
m(1)

T , m(2)
T , . . . , m(ν)

T

)
(5.9)

where m( j )
T is the sample moment for sT corresponding to m( j )

1 ,
j = 1, 2, . . . , ν. As an example, we mention the ratio estimator

t1 =
∑

s1
Yi∑

s1
Xi

X

for which

tT =
∑

sT
Yi∑

sT
Xi

X .

From this example it is clear that t1 may depend on popula-
tion moments also (here X ). These need not be noted explicitly
in Eq. (5.9) because, according to Assumption A, population
moments are free of T .

Of considerable importance are QR predictors, consis-
tency and asymptotic unbiasedness of which are discussed in
chapter 6.

5.5 ASYMPTOTIC NORMALITY AND
CONFIDENCE INTERVALS

Let p denote SRSWR of size n and t the sample mean, that is,
with s = (i1, . . . , in)

t(s, Y ) = 1
n

(Yi1 + Yi2 + · · · + Yin) = y , say.

Yi1 , . . . , Yin are independent and identically distributed (iid)
with expectation Y and variance σyy. Hence, according to the
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central limit theorem

y − Y√
σy y
n

is asymptotically standard-normal.

syy = 1
n − 1

∑
i∈s

(Yi − y)
2

is consistent for σyy, hence by SLUTSKY ’s Theorem (cf.
VALLIANT, DORFMAN and ROY ALL, 2000, p. 414)

y − Y√
sy y
n

is also standard-normal and confidence intervals may be de-
rived. For the confidence level 95% we derive, for example, the
interval[

y − 1, 96
√

sy y

n
; y + 1, 96

√
sy y

n

]
.

Note that there is no need to consider a sequence of populations
in connection with SRSWR. This is different for SRSWOR.

Let pT denote SRSWOR of size nT and tT = yT the sample
mean.

Then,

EpT
tT = Y T

V pT (tT ) = σyyT

nT

NT − nT

NT − 1
HÁJEK (1960) and RÉNY I (1966) have proved under weak con-
ditions (by far less restrictive than Assumption A)

yT − Y T√
σy yT
nT

NT −nT
NT −1

T = 1, 2, · · ·

is asymptotically standard-normal. Here σyyT may be replaced
by a consistent estimator

syyT = 1
nT − 1

∑
i∈sT

(Yi − yT )
2
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It should not be misleading to write NT , nT , Y T , yT , sy yT
without subscript T . A 95% confidence interval is then given
as [

y − 1, 96

√
sy y

n

(
1 − n

N

)
; y + 1, 96

√
sy y

n

(
1 − n

N

)]
.

To have one more example of practical importance, consider
the ratio strategy ( pT ,tT ). Here, pT is SRSWOR of size nT and

tT (sT , Y T ) = yT

xT
X T .

We have

tT (sT , Y T ) − Y T = X T

xT

(
yT − Y T

X T
xT

)

where

X T /xT

is consistent with limit 1. Further,
(

yT − Y T

X T
xT

)/√√√√V pT

(
yT − Y T

X T
xT

)

= √
n

(
yT − Y

X
xT

)/√√√√√N − n
N − 1


σyy − 2

Y
X

σyx +
(

Y
X

)2

σxx




is asymptotically standard-normal under the weak conditions
stated by HÁJEK (1960) and RÉNY I (1966). Hence, according
to SLUTSKY ’s Theorem

√
n(tT (sT , Y T ) − Y T )

/√√√√√N − n
N − 1


σyy − 2

Y
X

σyx +
(

Y
X

)2

σxx




is asymptotically standard-normal.
Now, the expression

σyy − 2
Y
X

σyx +
(

Y
X

)2

σxx
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may be estimated consistently by its sample analogy such that
confidence intervals are derived in a straightforward way.

For strategies with designs of varying selection probabili-
ties it is easy to derive confidence intervals under Assumptions
A and B. However, the relevance of these intervals may be
questionable. For a central limit theorem proved under much
weaker assumptions for the HT estimator, we refer to FULLER
and ISAKI (1981).
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Chapter6

Applications of Asymptotics

6.1 A MODEL-ASSISTED APPROACH

6.1.1 QR Predictors

In section 3.1.3 we saw that the generalized difference estima-
tor (GDE)

tA =
∑

s

[Yi − Ai

πi

]
+

N∑
1

Ai

is a design-unbiased estimator of Y with A = (A1, . . . , Ai, . . . ,
AN )′ as a vector of known quantities and that it has opti-
mal superpopulation model-based properties in case Ai = µi =
Em(Yi), i = 1, . . . , N . But the µi ’s are usually unknown in prac-
tice.

If one gets estimates µ̂i for µi then a possible estimator
for Y is

tµ̂ =
∑

s

[Yi − µ̂i

πi

]
+

N∑
1

µ̂i.

Consider the model

Y = X β + ε

111
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with
Em(ε) = 0
Vm(ε) = V , V diagonal.

Write for i = 1, 2, . . . , N

xi = (Xi1, . . . , XiK )′

µi = x′
iβ.

Then a natural choice of µ̂i would be

µ̂i = x′
i β̂

with the BLU estimator

β̂ =
(

X ′
sV −1

ss X s

)−1 (
X ′

sV −1
ss Y s

)
for β. If V is not known, a suitably chosen n× ndiagonal matrix
Qs with positive diagonal entries Qi might be used to define

β̂Q = (X ′
s Qs X s)

−1 (X ′
s QsY s

)

=
(∑

s
Qixix

′
i

)−1(∑
s

QixiYi

)

µ̂i = x′
iβ̂Q.

Note that, in spite of the unbiasedness of tA, tµ̂ will be p biased
in general. Alternatively, in view of the model, we might be
willing to use the predictor

∑
i∈s

Yi +
∑

r
µ̂i =

∑
s

(Yi − µ̂i) +
N∑
1

µ̂i

with µ̂i = x′
i β̂, or, more generally, µ̂i = x′

i β̂Q, which is m unbi-
ased but p biased in general. In both cases we are
concerned with functions of Yi, i ∈ s, having the following struc-
ture

tQR =
∑

s
Ri (Yi − µ̂i) +

N∑
1

µ̂i

=
∑

s
Riei +

N∑
1

µ̂i
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where

µ̂i = x′
i β̂Q , ei = Yi − µ̂i

with a diagonal matrix Q, Qi > 0, and real numbers R1,
R2, . . . , RN . These moment-type functions are called QR pre-
dictors and may finally be written as

tQR = tQR(s, Y ) =
∑

s
RiYi +

[ N∑
1

x′
i −
∑

s
Ri x′

i

]
β̂Q

=
∑

s
RiYi +

[N∑
1

x′
i −
∑

s
Ri x′

i

](∑
s

Qi xix
′
i

)−1(∑
s

QixiYi

)
.

EXAMPLE 6.1 The choice Ri = 1 for all i yields the linear pre-
dictor (LPRE)

tQ1 =
∑

s
Yi +

∑
r

µ̂i.

If Qi = 1/Vii, in addition, we obtain the BLUP, namely,

tB LU P =
∑

s
Yi +

∑
r

x′
iβ̂B LU

=
∑

s
Yi +

∑
r

x′
i

(∑
s

xi x′
i/Vii

)−1(∑
s

xi Yi/Vii

)
.

If Ri = 0, then

tQ0 =
N∑
1

µ̂i,

is called the simple projection predictor (SPRO). If Ri =
1/πi, then

tQ1/π =
∑

s

1
πi

(Yi − µ̂i) +
N∑
1

µ̂i

=
∑

s

Yi

πi
+
( N∑

1

x′
i −
∑

s

1
πi

x′
i

)
β̂Q

with

β̂Q = (X ′
s Qs X s

)−1 X ′
s Qs Y s

is the GREG predictor.
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A suitable choice for Qi is not easy to make, but usual
choices are

Qi = 1
Vii

or
1
πi

or
1

πiVii
.

REMARK 6.1 For later reference we give QR predictors in matrix
notation.

Define
R = diag (R1, . . . , RN )
	 = diag (π1, . . . , πN )

and let Rs, πs be the submatrices corresponding for s. Then

tQR = 1′
nRsY s + (1′

N X − 1′
nRs X s)β̂Q

and especially

tQ1/π = 1′
n	

−1
s Y s + (1′

N X − 1′
n	

−1
s X s)β̂Q

6.1.2 Asymptotic Design Consistency
and Unbiasedness

Introducing the indicator variable I defined by

Isi =
{

1 i f i ∈ s
0 i f i /∈ s

we may write tQR/N in the form

t = t (s, y) = 1
N

( N∑
1

x′
i −

N∑
1

Isi Ri x′
i

)
·
( N∑

1

Isi Qi xix
′
i

)−1

·
( N∑

1

Isi Qi xiYi

)
+ 1

N
·

N∑
1

Isi Ri Yi.

We want to prove the consistency of this estimator and use
Assumption A. Obviously,

tT = tT (sT , Y ) = 1
NT


NT∑

1

x′
i −

NT∑
1

IsT i Rix′
i


 ·

NT∑

1

IsT i Qixix
′
i




−1

·

NT∑

1

IsT i Qi xi Yi


+ 1

NT

NT∑
1

IsT i RiYi
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where for i = 1, 2, . . . , N1

Qi = Qi+N1 = Qi+2N 1 = · · ·
Ri = Ri+N1 = Ri+2N1 = . . .

and, for the sample sT ,

IsT i =
{

1 i f i ∈ sT
0 i f i /∈ sT.

Defining

f iT = 1
T

(IsT i + IsT i+Ni + . . . + IsT i+(T −1)N1)

we have

tT = 1
N1


 N1∑

1

x′
i −
∑

f iT Rix′
i




 N1∑

1

f iT Qixix
′
i




−1

·

 N1∑

1

f iT QixiYi


+ 1

N1

N1∑
1

f iT RiYi.

Now, let pT be of type B0. Then

IsT i, IsT i+N1 , . . .

are identically distributed with a common expectation πi and
a common variance πi(1 − πi). Hence,

V pT ( f iT ) = V pT

( 1
T
[
IsT i + . . .

]) ≤ 1
T 2 T πi(1 − πi)

= πi(1 − πi)
T

because of the assumption of nonpositivity of

CpT (IsT i, IsT i+N1,) = πii+N1 − πiπi+N1

for a B0-type design pT . From CHEBY SHEV ’s inequality follows
that f iT converges in probability to πi. Also according to the
consistency theorem, tT is consistent (ADC) for

1
N1


 N1∑

1

x′
i −

N1∑
1

πi Rix′
i


(∑πi Qixix

′
i

)−1∑
πi QixiYi

+ 1
N1

∑
πi RiYi.
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The last expression is equal to Y if, for j = 1, 2, . . . , N1,

1
N1

(∑
x′

i −
∑

πi Rix′
i

) (∑
πi Qixix

′
i

)−1
π j Q j x j

+ 1
N1

π j R j = 1
N1

which may be written

1 =
(∑

x′
i −
∑

πi Rix′
i

)(∑
πi Qixix

′
i

)−1
π j Q j x j + π j R j

= a′π j Q j x j + π j R j , say,

with a = (a1, a2, . . . , aK )′. This condition is equivalent to

a′x j = 1 − π j R j

π j Q j
= u j , say,

for j = 1, 2, . . . , N1. Defining

X =



x′
1
...

x′
N1




the last equation gives

X a = u

that is, u is an element of the column space M(X ) of X :

u ∈ M (X ).

For the special case K = 1, x denoting a single auxiliary vari-
able with values X1, X2, . . . > 0, we derive that tT is consistent
(ADC) if and only if

u j = 1 − π j R j

π j Q j
, ∝ X j .

RESULT 6.1 Consider a sequence of populations satisfying con-
dition A with K-vectors

 Xi
Qi
Ri


; i = 1, 2, . . . .
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Let pT be of type B0 with inclusion probabilities π1, π2, . . . such
that

1 − πi Ri

πi Qi
∝ Xi.

Then, the QR predictor

1
N

( N∑
1

Xi −
∑

s
Ri Xi

)∑
s Qi XiYi∑

s Qi X 2
i

+ 1
N

∑
s

RiYi

(with x as a single auxiliary variable) is consistent (ADC)
for Y .

EXAMPLE 6.2 We follow LITTLE (1983) and consider an arbi-
trary design p with inclusion probabilities π1, π2, . . . , πN . Writ-
ing π(1) for the smallest inclusion probability, π(2) for the next
larger one, etc., we define

U(g) = {i ∈ U : πi = π(g)}.
Assume that Y1, Y2, . . . , YN are independently distributed but
for i ∈ U(g), alternatively,

Yi ∼ N (α ; σ 2 V (g))

∼ N (α + β Xi ; σ 2V (g))

∼ N (α(g) ; σ 2V (g))

∼ N (α(g) + β Xi ; σ 2V (g))

∼ N (α(g) + β(g) Xi ; σ 2V (g))

where V (g) and Xi are known and σ 2, α, α(g), β, β(g) are un-
known parameters.

According to RESULT 4.3 the BLU predictors are of the
QR type. They are ADC in the first two cases if all

V (g)
1 − π(g)

π(g)
; g = 1, 2, . . .

are equal. Assume this is not true. The BLU predictor is never-
theless consistent in the second alternative if

Xi = X (g) for all i ∈ U(g)

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch06 January 27, 2005 12:29

118 Chaudhuri and Stenger

and a1, a2 exist with

V (g)
1 − π(g)

π(g)
= a1 + a2 X (g).

In the other three cases the BLU predictors are at any rate con-
sistent according to the general criterion above. So, the pres-
ence of a non-zero intercept term α(g) in these regression models
really ensures the ADC property of the BLUPs; hence LITTLE
(1983) recommends basing BLUPs on such models. But the in-
tercept term must be estimated for each group, and this requires
large enough samples from all groups that are not always
available.

6.1.3 Some General Results on QR Predictors

In the sequel we present some results given by WRIGHT (1983)
and SÄRNDAL and WRIGHT (1984).

It is easily seen that the ADC condition is always true for

Ri = 1
πi

for i = 1, 2, . . . , N .

Therefore,

RESULT 6.2 All GREG predictors are consistent and ADU.

Let tQR be an arbitrary QR predictor that is consistent; that is,
1 − πi Ri

πi Qi
= a′xi for i = 1, 2, . . . , N .

Consider the associated GREG predictor tQ1/π for which

tQ1/π − tQR =
∑

s

1
πi

(Yi − x′
iβ̂Q) − �s Ri(Yi − x′

iβ̂Q)

=
∑

s

1 − πi Ri

πi Qi
Qi(Yi − x′

iβ̂Q)

=
∑

s
a′xi Qi(Yi − x′

iβ̂Q)

= a′ (∑ QixiYi −
∑

Qixix
′
iβ̂Q

)
.

According to the definition of β̂Q the last difference equals 0;
hence
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RESULT 6.3 Let tQR be consistent. Then,

tQR = tQ1/π

The following is easily seen:

RESULT 6.4 Let θ ∈ Rk be such that x′
iθ > 0 and define

Qi ∝ 1
πix′

iθ

Q̃i ∝
[ 1
πi

− 1
]/

x′
iθ

(i = 1, 2, . . . , N ). Then the SPRO predictor tQ0 and the LPRE
tQ̃1 are consistent and hence ADU. For the special case K = 1,
taking

Q∗
i ∝ 1

Xi

[ 1
πi

− 1
]

one gets the LPRE proposed by BREWER (1979).

REMARK 6.2 Let us write

B =
[ N∑

1

Qixix
′
i

]−1 [ N∑
1

QixiYi

]
= (X ′QX )−1(X ′QY )

which is an estimate of β based on all the values Yi; i = 1, 2, . . . ,
N , an analogue of β̂Q both coinciding for s = U . This B is
called a census-fitted estimator for β and

µ̂ci = x′
i B

a census-fitted estimator of µi = Em(Yi). The residual

E ′
i = Yi − µ̂ci

for a census fit obviously cannot be ascertained from a sample
at hand. But for a consistent tQR, an asymptotic formula for the
design variance V p(tQR) or design mean square error Mp(tQR)
is available, as given by SÄRNDAL (1982)

V =
∑∑

i< j

(πiπ j − πi j )

[
Ei

πi
− E j

π j

]2

where

Ei = Yi − x′
i Bπ
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writing

Bπ =
( N∑

1

πi Qixix
′
i

)−1 N∑
1

πi QixiYi.

REMARK 6.3 For Q̃ defined in RESULT 6.4 consider

tQ̃1 = 1′
nY s + (1′

N X − 1′
nX s)β̂Q̃

tQ̃1/π = 1n	
−1
s Y s + (1′

N X − 1′
n	

−1
s X s)β̂Q̃.

where 	s is the diagonal matrix with diagonal elements

πi, i ∈ s.

tQ̃1 is attractive in a model-based approach, tQ̃1/π in a design-
based approach.

Now, BREWER (1999a) shows

tQ̃1 = tQ̃1/π = t, say

and calls t a cosmetic estimator.

6.1.4 Bestness under a Model

To choose among different Qi ’s satisfying the ADC and equiv-
alently ADU requirement in case R = 1, BREWER (1979) rec-
ommended as a criterion

L = lim
T →∞

EmEp

{[
tQ1T (sT , Y T ) − YT

]2
/T
}

where Yi = x′
iβ + εi is assumed with

Em(εi) = 0
Cm(εi, ε j ) = σ 2

i , if j = i (6.1)
= 0, if j �= i

(i, j = 1, 2, . . . , T N ). He has shown that

L ≥
∑

σ 2
i

[ 1
πi

− 1
]

holds with equality for the LPRE defined by Q∗
i (see RESULT

6.4).

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch06 January 27, 2005 12:29

Applications of Asymptotics 121

Now, every QR predictor with the consistency and ADU
property is a GREG predictor, tQ1/π , and

tQ1/π − Y =
[N∑

1

x′
i −
∑

Isi
1
πi

x′
i

][N∑
1

Isi Qixix
′
i

]−1[N∑
1

Isi QixiYi

]

+
N∑
1

Isi
1
πi

Yi −
N∑
1

IsiYi −
N∑
1

(1 − Isi)Yi

=
N∑
1

Isj



[N∑

1

x′
i −
∑

Isi
1
πi

x′
i

][ N∑
1

Isi Qixix
′
i

]−1

Q j x j

+
[

1
π j

− 1

]}
Y j −

N∑
1

(1 − Isj )Y j .

With s replaced by sT and N by N T we obtain

tQ1/πT − YT .

It is easily checked that Em(tQ1/πT − YT ) = 0 and under Eq.
(6.1)

Em
[
tQ1/πT − YT

]2 = Vm
[
tQ1/πT − YT

]

=
N T∑

1

IsT j

{[N T∑
1

x′
i −
∑

IsT i
1
πi

x′
i

] [N T∑
1

IsT i Qixix
′
i

]−1

Q j x j

+
[ 1
πi

− 1
]}2

σ 2
j +

N T∑
1

(1 − IsT j )σ 2
j .

Hence

Em

([
tQ1/πT − YT

]2
/T
)

=
N∑
1

f j T

{[∑
x′

i −
∑

f iT
1
πi

x′
i

] [ N∑
1

f iT Qixix
′
i

]−1

Q j x j

+
[ 1
πi

− 1
]}2

σ 2
j +

∑
(1 − f j T )σ 2

j
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and

lim
T →∞

Ep Em

(
[tQ1/πT − YT ]2/T

)

=
N∑
i

π j

[ 1
πi

− 1
]2

σ 2
j +

N∑
i

(1 − π j )σ 2
j

=
∑

σ 2
j

[
1
π j

− 1

]

that is, every QR predictor with the consistency property has
the common limiting value

∑
σ 2

j

[
1
π j

− 1

]

which is equal to the lower bound of BREWER’s (1979) L.
Restricting to pn designs, the minimum value of BREWER’s

lower bound is[∑
σ j
]2

n
−
∑

σ 2
j .

If, in particular, σ j = σ f j , j = 1, . . . , N with σ (> 0) unknown
but f j (>0) known, so that � = σ 2V with V = diag( f 2

1 , . . . ,
f 2

N ), the strategy ( pnf , eQ) is regarded as best when

eQ = 1′
s	

−1
s Y s + (1′X − 1′

s	
−1
s X s)β̂(Qs)

is based on the pn design pnf for which

πi = nf i∑N
1 f i

, i = 1, . . . , N .

By best we mean a strategy involving an ADU predictor for
which the above minimal value is attained.

TAM (1988a) has shown that

(a) 1′
s X s = 1′X

(b) Q−1
s (1s − kV −1/2

ss 1s) ∈ M(X s)

are sufficient conditions for a strategy ( pn, eL) with eL = 1′
sY s

to be best in estimating Y . Here k = 1
n
∑

f j and

V = diag
(

f 2
1 , . . . , f 2

N

)
=
(

Vss 0
0 Vrr

)
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It may be noted that (a) here is a condition of model unbiased-
ness. This is relevant in prescribing conditions for robustness.
If a working model differs from a true model one may go wrong
in misspecifying the design parameters πi and/or misspecify-
ing V . As long as both the conditions (a) and (b) are satis-
fied by a strategy the latter is robust even if one goes wrong
in postulating the right model in other respects. TAM (1988a,
1988b) and BREWER, HANIF and TAM (1988) give further re-
sults useful in fixing conditions on design parameters, on the
features of models in achieving the ADU property and/or in
bestowing optimality properties on several alternative design-
cum-model-based predictors and related strategies. One may
consult further the references cited in the above two, especially
the works due to SÄRNDAL and his colleagues.

6.1.5 Concluding Remarks

For a fuller treatment and alternative approaches by asymp-
totic analyses in survey sampling along with their interpre-
tations, one may refer to BREWER (1979), SÄRNDAL (1980),
FULLER and ISAKI (1981), ISAKI and FULLER (1982), ROBIN-
SON and SÄRNDAL (1983), HANSEN, MADOW and TEPPING
(1983), and CHAUDHURI and VOS (1988). We omit the details
to avoid a too technical discussion.

Robustness has been on the focus relating to LPREs.
GREG predictors by virtue of their forms acquire robustness
from design considerations in the sense of asymptotic design
unbiasedness, as we noticed in the previous section. At this
stage let us turn again to them to examine their robustness.

An LPRE is of the form tL = �sYi +�r µ̂i where Em(Yi) =
µi. If µi is a polynominal in an auxiliary variable x, for sam-
ples balanced up to a certain order every tB LU is bias robust,
that is, Em(tBLU −Y ) = 0, and asymptotically so for large sam-
ples selected by SRSWOR, preferably with appropriate strat-
ifications. But tBLU is not usually MSE robust, by which we
mean the following: Let us write tm′ for the predictor, which
is BLU under a model m′; its bias, MSE, and variance un-
der a true model, m, are, respectively, Bm(tm′), Mm(tm′), and
Vm(tm′ − Y ). Then, Mm(tm′) = Vm(tm′ − Y ) + B2

m(tm′) and
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Mm(tm) = Vm(tm −Y ) because Bm(tm) = 0. Even if |Bm(tm′)| is
negligible, Vm(tm′ − Y ) may be too far away from Vm(tm − Y )
and so may be Mm(tm′) from Mm(tm). So tm′ , even if bias robust,
may be quite fragile in respect to MSE.

Very little with practical utility is known about MSE ro-
bustness of LPREs. More importantly, nobody knows what the
true model is; even with a polynomial assumption it is hard to
know its degree, and in large-scale surveys diagnostic analy-
sis to fix a correct model is a far cry. So, it is being recognized
that even for model-based LPREs robustness should be exam-
ined with respect to design, that is, one should examine the
magnitude of

Mp(tL) = Ep(tL − Y )2 = V p(tL) + B2
p(tL).

Since the sample size is usually large, we may presume V p(tL)
to be suitably under control and we should concentrate on
|Bp(tL)|. In section 4.1.2 we saw how a restriction Bp(t) = 0
may lead to loss of efficiency, especially if a model is accu-
rately postulated. An accepted criterion for robustness studies
is therefore to demand that tL be ADC. Similar are the desir-
able requirements for any other estimator or predictor.

6.2 ASYMPTOTIC MINIMAXITY

In practice it is difficult to find a strategy ( p∗, t∗) which is
minimax in the strict sense, that is, with the property

sup
Y ∈�

Mp∗(t∗) = inf
( p,t)∈�

sup
Y ∈�

Mp(t) = r ∗, say

where � is the set of all relevant parameters Y and � the set of
all strategies available in a situation. So, CHENG and LI (1983)
have reported how one may derive strategies ( p′, t ′) that are
approximately minimax in the sense that

sup
Y ∈�

Mp′(t ′)

comes close to r ∗.
A more satisfactory approach is to aim at strategies that

are asymptotically minimax. In describing this approach
we follow STENGER (1988, 1989, 1990) to show, for example,
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that the ratio estimator, when based on SRSWOR, is asymp-
totically minimax. The RHC strategy, however, which is ap-
proximately minimax in the sense defined by CHENG and LI
(1983), is not minimax in our asymptotic setup.

6.2.1 Asymptotic Approximation
of the Minimax Value

For a population U and a size measure x with X1, X2, . . . ,
X N > 0 we define (c.f. section 3.4.2)

�x = {Y ∈ RN : 0 ≤ Yi ≤ Xi for all i = 1, 2, . . . , N }

�n =

( p, t) : p a design of fixed size n, t =

∑
i∈s

bsiYi




Define, as in section 5.1, X N +1, X N +2, . . . , X N T with

Xi = Xi+N = Xi+2N = . . .

for i = 1, 2, . . . , N , which may be interpreted as reproduc-
ing T − 1 times the population U with the known x values
leading to an extended population (1, 2, . . . , N T ) and X T =
(X1, . . . , X N T ).

Define Y T = (Y1, Y2, . . . , YN T ) where Yi is the value of
the variate under study for the unit i. We assume the param-
eter space

�xT =
{

Y T ∈ RN T : 0 ≤ Yi ≤ Xi for i = 1, 2, . . . , N T
}

It is worth noting that Y T ∈ �xT is assumed, but not
Yi = Yi+N = . . . .

RESULT 6.5 Let �nT be the class of all strategies ( pT , tT ) where
pT is a design of size T n used to select a sample sT from UT
and

tT = tT (sT , Y T ) =
∑
i∈sT

bsT iYi

a homogeneously linear estimator. Then, assuming

n
Xi

X
≤ 1 for i = 1, 2, . . . , N (6.2)
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we have

lim
T →∞

nTrT = 1
4

[
X 2
(
1 − n

N

)
− n

N
σxx

]

where

rT = inf
�nT

sup
�xT

MpT (tT )

σxx = 1
N

∑
(Xi − X )2.

Hence,
1
4n

[
X 2
(

1 − n
N

)
− n

N
σxx

]
= rx, say

approximates T r T .

PROOF : Define for i = 1, 2, . . . , N

Ui = (i, i + N , i + 2N , . . . , i + (T − 1)N )

and consider a design pT of size nT selecting a sample sT
that is composed of samples s1, s2, . . . , sN of sizes T f 1, T f 2, . . .

T f N from U1, U2, . . . , UN , respectively. f = ( f 1, f 2, . . . , f N )′
may be a random vector; we assume that, conditional on f , si
is selected by SRSWOR of size T f i.

The MSE of the estimator∑
τi( f )yi

where yi is the mean of the y values of all T f i units of Ui in the
sample is then

M0 = E f

{∑
τ2

i ( f )
σiyy

f i

1 − f i

T − 1
+
[∑

τi( f )Y i − 1
N

∑
Y i

]2}

where the expectation operator E f refers to f and Y i(σiyy) is
the mean (variance) of the y values of all units in Ui.

Now, under condition (6.2) the design may be chosen such
that

nT · Xi

X
− 1 < T f i ≤ nT · Xi

X
+ 1 for i = 1, 2, . . . , N

with T f i an integer and � f i = n, provided T is large enough.
Setting τi( f ) = 1/N and taking into account σiyy ≤ X 2

i /4

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch06 January 27, 2005 12:29

Applications of Asymptotics 127

we derive

rT ≤
N∑
1

1
N 2

X 2
i

4

[
1

nT Xi
X − 1

T
T − 1

− 1
T

]

lim
T →∞

T rT ≤ rx.

Assume ( p, t) ∈ �nT exists with

T sup
�xT

Mp(t) < rx.

Define for j = 1, 2, . . . , N a vector Y ( j ) with

Y j = Y j +N = Y j +2N = . . . = X j

and Yi = 0 for i �= j , j + N , j + 2N , . . . . Then Y ( j ) ∈ �xT and

E
[
τ j ( f )X j − X j

N

]2
<

rx

T
which implies

X j

N
−
√

rx

T
< Eτ j ( f )X j <

X j

N
+
√

rx

T

Eτ2
j ( f )X 2

j <

[ X j

N
+
√

rx

T

]2

.

Therefore, by Cauchy’s inequality

E
τ2

j ( f )X 2
j

f j
≥ [Eτ j ( f )X j ]2

E f j
>

1
E f j

[X j

N
−
√

rx

T

]2

and because of sup σiyy ≥ X 2
i (T − 1)/(4T )

sup
�xT

M0 ≥ E
{∑

τ2
i ( f )

X 2(T − 1)
4T

[ 1
f i

1
T − 1

− 1
T − 1

]}

≥ 1
4T

{∑ 1
E f i

[Xi

N
−
√

rx

T

]2

−
∑[Xi

N
+
√

rx

T

]2}
.

From n = �E f i we derive, therefore,

T inf sup M0 ≥ 1
4n

[∑[Xi

N
−
√

rx

T

]]2

− 1
4

∑[Xi

N
+
√

rx

T

]2

.

Obviously, the right-hand side converges to rx and the desired
result follows.
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In a similar way, asymptotic approximations may be de-
rived for the minimax value with respect to other parameter
spaces introduced in section 3.4.1. By equating x and z in �xz
we obtain

�xx =
{

Y ∈ RN :
1
X

∑ 1
Xi

[
Yi − Y

X
Xi

]2
≤ c2

}

and by defining Xi = Z2
i

�z2z =
{

Y ∈ RN :
1∑
Z2

i

∑[
Yi − Y

Z
Zi

]2
≤ c2

}
.

The asymptotic approximations of the minimax values (with
respect to �n) are

rxx = c2

n
X · ζ and

rz2z = c2

n

[
1 − n

N

] 1
N

∑
Z2

i

respectively, as has been shown by STENGER (1989); here ζ is
the unique solution of∑

Xi

/[
ζ + n

N
Xi

]
= N

and satisfies

ζ ≤ X
[
1 − n

N

]
with equality if and only if X1 = X2 = . . . = X N .

6.2.2 Asymptotically Minimax Strategies

To introduce the notion of asymptotic minimaxity of a strategy
we consider the following modification of �z2z:

�(L) =
{

Y ∈ RN : 0 < Yi < L for i = 1, 2, . . . , N and

1∑
Z2

i

∑(
Yi − Y

Z
Zi

)2
≤ c2

}

where L > 0 is given. �
(L)
T is correspondingly defined by ZT

instead of Z and �nT has the same meaning as earlier. Suppose
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a sample of size nT is selected by SRSWOR and denote by
yT , zT the sample means of the y and z values, respectively.
For the MSE MT of the ratio estimator

Z
yT

zT

we then have (cf. STENGER, 1990)

T sup
�

(L)
T

MT ≤ c2

n

[
1 − n

N

] 1
N

N∑
1

Z2
i + A√

T

with A free of T . Hence

lim
T →∞

T sup
�

(L)
T

MT ≤ c2

n

[
1 − n

N

] 1
N

N∑
1

Z2
i = rz2z

such that the ratio strategy achieves the asymptotic approxi-
mation of the minimax value with respect to �(L) and �n in an
asymptotic sense and may be called an asymptotically mini-
max strategy.

To give a more general definition of asymptotic minimax-
ity let � be any parameter space defined by a vector X (or
vectors X and Z). �T is the subset of RN T given by X T (or X T
and ZT ). Let a design pT of fixed size nT and an estimator
tT be defined by X T (and ZT ) without T appearing explicitly.
Then ( p1, t1) may be called asymptotically minimax if for
the MSE MT of ( pT , tT )

lim
T →∞

T sup
�T

MT

equals the asymptotic approximation of the minimax value
with respect to � and �n.

It is easily seen that the MSE MT of the RHC strategy of
size nT satisfies

T sup
�xx

MT = c2

n

[
1 − n

N

] N T
N T − 1

X 2

Hence,

lim
T →∞

T sup MT = c2

n

[
1 − n

N

]
X 2

> rxx
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and the RHC strategy is not asymptotically minimax with re-
spect to �xx and �n.

6.2.3 More General Asymptotic Approaches

In an asymptotic theory the actual population U is usually
treated as an element of a sequence of populations U1, U2, . . .

with increasing sizes N1, N2, . . . and the vector X of values of
an auxiliary variable x as an element of a sequence of vectors
X 1, X 2, . . . associated with U1, U2, . . . . In section 6.2.1, U and
X are the first elements of sequences defined in a very special
way such that doubts may arise on the relevance of the results.

Therefore, more general approaches will be described.
Define for ξ ∈ R
G(ξ ) = 1

N
[
number of Xi in X with Xi ≤ ξ

]
.

Replacing N and X in the definitions of �x and G by NT and
X T we obtain

�xT , GT (ξ ).

Consider sample sizes n1, n2, . . . such that

lim
T →∞

nT

NT
= f

exists and define

rT = inf
�nT

sup
�xT

MpT (tT ).

Now, imposing suitable conditions on GT ; T = 1, 2, . . . the
limit of nT · rT for T → ∞ should exist. In fact, let

lim
T →∞

GT (ξ ) = �(ξ )

be a distribution function. Then, as has been shown by
STENGER (1989), weak additional assumptions are sufficient
for the existence of

lim
T →∞

nT rT = ρ(�, f ), say. (6.3)

Hence,
1

nT
ρ

(
GT ,

nT

NT

)
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is an approximation of rT and
1
n
ρ

(
G,

n
N

)

is an approximation of the minimax value of interest

r ∗ = inf
�n

sup
�

Mp(t).

If Eq. (6.3) is taken for granted, ρ(G, n/N )/n may be deter-
mined by the simple procedure described in section 6.2.1.
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Chapter7

Design- and Model-Based
Variance Estimation

In estimating Y by a design-based estimator, a choice among
competing strategies ( p, tp) is made on considerations of the
magnitudes of |Bp(tp)|, V p(tp), and Mp(tp), each required to
be small. Once a choice is made and a sample is drawn and
surveyed, it is customary to report an estimated value vp of
V p(tp) along with the value of tp.

A variance estimator indicates the level of accuracy at-
tained by the estimator actually employed but, more impor-
tantly, it provides a measure of the variability of the esti-
mator over conceptual repeated sampling. Planning of future
surveys is aided by indicating, among other things, a sample
size needed to achieve a desired level of precision by adopt-
ing a similar strategy. Moreover, it helps in making confidence
statements. If vp is an estimator for V p(tp), then the following
standardized error (SZE)

(tp − Y )/
√

vp

is supposed to have STUDENT’s t distribution with a number
of degrees of freedom (df) determined by the sample size n.

133
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This supposition is valid under many usual situations when
the distribution of the SZE is considered over all possible sam-
ples s with p(s) > 0. For large n and N its distribution is often
found close to that of the standardized normal deviate τ .
Writing

Pr (τ > τα) = α, 0 < α < 1,

the interval (tp − τa/2
√vp, tp + τα/2

√vp), or briefly (tp±
τa/2

√vp), is supposed to be a 100(1 − α)% confidence in-
terval for Y . The interpretation here is that for the fixed
Y = (Y1, . . . , Yi, . . . , YN )′ the probability to obtain a sample s
with an interval (tp ± τα/2

√vp) covering Y is 100(1 − α)%.
We have also considered a linear predictive approach

based on least squares that involves treatment of model-based
predictors tm and their biases Bm(tm) = Em(tm − Y ), mean
square errors (MSE) Mm(tm) = Em(tm − Y )2, and variances
Vm = Vm(tm − Y ) = Em[(tm − Y ) − Em(tm − Y )]2. It is also
important to consider estimators vm of Vm for the purposes of
assessing the level of accuracy attained for a predictor tm actu-
ally employed for Y , gaining insight into how a future survey
should be planned for predictions and in making confidence
statements.

In this case it is desirable to have

Bm(vm) = Em(vm − Vm) and
Mm(vm) = Em(vm − Vm)

under control. Here the SZE is taken as

(tm − Y )/
√

vm

which is supposed to have student’s t distribution and approx-
imately the N (0, 1) distribution for large n, N . But here a
100(1−α)% confidence interval (tm ± τα/2

√
vm) or (tm ± tα/2

√
vm)

is constructed with the interpretation that if Y is generated as
hypothesized through a postulated model, then for 100(1−α)%
of Y s so generated, the intervals will cover the unknown Y
with the sample actually drawn held fixed.

In this context the main problem is robustness. Both the
actual sample drawn and the estimation procedures are re-
quired to be so chosen that tm may continue to predict Y well,
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vm may estimate Vm(tm − Y ) well, and the SZE above may
continue to yield confidence intervals with coverage probabili-
ties close to the nominal value 1−α even if the model on which
tm, vm are based may be wrong, that is, some other model may
underlie the process that generates Y . Keeping this in mind,
it is often necessary to examine several alternative but plausi-
ble formulae for vm for a given tm with respect to their biases,
MSEs, that is, Em(vm −Vm)2, and coverage probabilities of the
confidence intervals they lead to. In this context, also, asymp-
totic analyses are necessary, and discussion of rigorous treat-
ment of asymptotic studies here is again beyond our scope and
aim. But we shall illustrate a few developments in a somewhat
simplistic manner.

Innumerable strategies for estimating Y or Ȳ are avail-
able. RAO and RAO (1971), WOLTER (1985), CHAUDHURI and
VOS (1988), J. N. K. RAO (1986, 1988), P. S. R. S. RAO (1988),
and ROY ALL (1988) give accounts of many such along with
variance estimators. But we shall cover only a few, our own
interest drawing especially on the works mainly of ROY ALL
and EBERHARDT (1975), ROY ALL and CUMBERLAND (1978a,
1978b, 1981a, 1981b, 1985), CUMBERLAND and ROY ALL
(1988), WU (1982), WU and DENG (1983), DENG and WU (1987),
SÄRNDAL (1982, 1984), and, only in passing, SÄRNDAL and
HIDIROGLOU (1989), SÄRNDAL, SWENSSON and WRETMAN
(1992), and KOTT (1990), among others.

7.1 RATIO ESTIMATOR

The ratio estimators for Y , Ȳ , R = Y
X = Ȳ

X̄ , respectively, are

tR = X
ȳ
x̄

, t̄R = X̄
ȳ
x̄

and r = ȳ
x̄
.

When based on the LMS scheme (cf. section 2.4.5) tR is p unbi-
ased for Y, but it is more popularly based on SRSWOR. Then it
is biased, but its design bias is considered negligible for large
n because the coefficient of variation (CV) of N x̄ is small for
large n and

|Bp(tR)/σp(tR) ≤ CV (N x̄)

(cf. RAO, 1986).
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7.1.1 Ratio- and Regression-Adjusted Estimators

Although an exact formula for Vp(t̄R) based on SRSWOR, along
with one for its unbiased estimator, is given in section 2.4.1, it
is traditional to turn to their respective approximations

M̄ ′ = 1 − f
n

1
N − 1

N∑
1

(Yi − RXi)2

v0 = 1 − f
n

1
n − 1

∑
s

(Yi − r Xi)2.

J. N. K. RAO (1968, 1969) found empirically for n ≤ 12 that
	 = M̄ ′ − V p(t̄R) < 0 for many actual populations, but later,
WU and DENG (1983) found both positive and negative values
of 	 for n = 32, but none appreciably high in magnitude with
more extensive empirical investigations. So it is considered ad-
equate in practice to estimate M̄ ′ rather than V p (t̄R) if n is not
too small.

Since M̄ ′
/X̄ 2 is an approximation for V p(r ) an estimator

for it, in case X̄ is unknown, is usually taken as

v0/x̄2.

In case X̄ is known, an alternative customary estimator for M̄ ′

is therefore

v2 =
(

X̄
x̄

)2

v0.

WU (1982) suggests instead a ratio adjustment to v0 to propose
another alternative estimator for M̄ ′ as

v1 =
(

X̄
x̄

)
v0

and goes a step further to propose a class of estimators

vg =
(

X̄
x̄

)g

vo

and recommends choosing a suitable g in the following way:
Let Ei = Yi − RXi with

∑
Ei = 0 be the residual in fitting

a straight line through the origin and the point ( X̄ , Ȳ ) in the
scatter diagram of (Xi, Yi), i = 1, . . . , N and let ei = Yi − r Xi
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be taken as estimated residuals. Let

Zi = E2
i − 2 Ei

N∑
1

X j E j /X , Z̄ = 1
N

N∑
1

Zi .

Then, WU (1982) recommends (a) the optimal choice of g as

gopt = the regression coeffizient of Zi/Z̄ on
Xi/X̄ , based on (Xi, Yi), i = 1, . . . , N

and (b), because it is unavailable, replacing gopt by

ĝ = the sample analogue of gopt based on (Xi, Yi, ei), i ∈ s.

To arrive at these recommendations WU (1982) carried out an
asymptotic analysis to evaluate V p(vg) using TAY LOR series
expansion. They found it expedient to omit terms too small for
large n and N and showed the term retained in the expansion
of V p(vg), called the leading term, to be minimum if g is taken
as gopt .

Another choice of g suggested by WU (1982) is g̃, which is
the sample analogue of the regression coefficient of E2

i/
1
N
∑N

1 E2
i

on Xi/X̄ . This is intended only to find a simpler substitute
for ĝ.

Just as v1 is a ratio adjustment on vo, FULLER (1981) pro-
posed a regression adjustment to propose another alternative
estimator for M̄ ′ as

vr eg = vo + 1 − f
n

b̂( X̄ − x̄).

Here b̂ is the regression coefficient of e2
i on Xi evaluated from

(Xi, Yi); i ∈ s.
Although vgopt is asymptotically optimal, it is not known

how it may fare compared to vo, v1, v2 in specific situations
with given N , n and it is more important to examine the per-
formance of vĝ, vg̃, and vreg vis-à-vis vo, v1, v2 using empirical
data at hand. Also, if one restricts g for simplicity to 0, 1, 2,
one should be curious about how in practice to choose among
these three competitors.

Even with the design-based approach it is known that one
will be well off to use t̄R based on SRSWOR to estimate Ȳ if
from the sample observations (Xi, Yi), i ∈ s one is justified to
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believe that a straight line passing closely through the origin
gives an adequate fit to the scatter of all (x, y) values in the
population to which the values (Xi, Yi), i = 1, . . . , N belong.

In fact, the use of t̄R to estimate Ȳ is well known to be
appropriate if a model M1γ

(cf. section 4.1.2) may be correctly
postulated for the (Xi, Yi), i = 1, . . . , N under investigation,
for which

Em(Yi) = β Xi, Vm(Yi) = σ 2 X γ

i , Cm(Yi, Y j ) = 0, i �= j

and more specifically, if γ = 1.
By dint of his asymptotic analysis without model postula-

tions, WU (1982) concludes that among v0, v1, v2 as estimators
of M̄ ′

v0 is the best if gopt ≤ 0.5
v1 is the best if 0.5 ≤ gopt ≤ 1.5
v2 is the best if gopt ≥ 1.5 .

But postulating the model M1γ he concludes that among vg

v0 is optimal if γ = 0
v1 is optimal if γ = 1
v1, v2 are better than v0 if γ ≥ 1

as estimator of M ′. He further observed that for large n the
squared p bias of vg is inconsequential relative to M̄ ′ and
so one need not bother about the p bias in employing a vg.
But for sample size actually at hand, correcting for the bias
may be useful, and a large-sample approximation formula for
Ep(vg − M̄ ′) has been given by WU (1982), who suggests using
an estimator for it to correct for the p bias of vg.

Incidentally, if the model M21 is postulated instead (cf.
section 4.1.2), demanding independence of estimating equa-
tions (cf. section 3.3) to the multiparameter cases, GODAMBE
and THOMPSON (1988a, 1988b) lay down estimating equations
for β and γ 2 in this case as

N∑
1

(Yi − β Xi) = 0 and
N∑
1

{
(Yi − β Xi)2 − σ 2 Xi

} = 0.
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From these the solutions are

β0 = Y
X

and σ 2
o = 1

X

N∑
1

(
Yi − Y

X
Xi

)2

and their estimators based on SRSWOR are

β̂ =
∑

s
Yi/

∑
s

Xi = r and σ̂ 2 =
∑

s
(Yi − r Xi)

2
/
∑

s
Xi.

So they propose

X∑
s Xi

∑
s

(Yi − r Xi)
2

as an estimator for
N∑
1

(
Yi − Y

X
Xi

)2

and hence
N

n (N − 1)
1 − f

N
X
x̄

∑
s

(Yi − r Xi)
2

as an estimator for M̄ ′. This variance estimator is obviously
quite close to v1.

7.1.2 Model-Derived and Jackknife Estimators

For a decisive choice among the estimators of M̄ ′ keeping in
mind their p biases, design MSEs (often called measures of sta-
bility of variance estimators), and efficacy in yielding
design-based confidence intervals one recognized approach is
to examine empirical evidences of their relative performances.
Before briefly narrating some such exercises reported in the
literature, let us mention some more competitive variance esti-
mators that have emerged through the model-based predictive
approach in the context of applicability of ratio predictor.

If the modelM11 (cf. section 4.1.2) is true, t̄R is the BLUP
for Ȳ with

Bm(t̄R) = Em (t̄R − Ȳ ) = 0

Vm = Vm(t̄R − Ȳ ) = 1 − f
n

X̄ x̄r

x̄
σ 2 = g(s)σ 2, say.

Since

σ̂ 2 = 1
n − 1

∑
s

[
e2

i

Xi

]
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has

Em(σ̂ 2) = σ 2

underM11,

vL = g(s)σ̂ 2

is an m-unbiased estimator for Vm, no matter how a sample s
of size n is drawn.

A sample of size n containing the largest Xi ’s, a so-called
extreme sample, yields the minimal value of Vm and hence is
the optimal.

SupposeM11 is incorrect butM′
11 holds, that is,

Em(Yi) = α + βXi, α �= 0
Vm(Yi) = σ 2 Xi.

Then t̄R is still m unbiased if based on a balanced sample for
which x̄ = X̄ = x̄r and vL is m unbiased for Vm. Since from a
study of the sample α may not be conclusively ignored, a bal-
anced rather than an extreme sample is preferred in practice
in using t̄R and vL.

But ifM12 is true, that is, Em(Yi) = βXi and

(a) Vm(Yi) = σ 2 X 2
i ,

then

Vm(t R − Y ) = σ 2

[(1 − f
n

)2 (xr

x

)2∑
s

X 2
i + 1

N 2

∑
r

X 2
i

]

while

Em(vL) = 1 − f
n

X xr

x2

σ 2

n − 1

(
nx2 − 1

n

∑
s

X 2
i

)

and the relative bias

Em(vL − Vm)
Vm

is approximately −
∑

s(Xi − x)2∑
s X 2

i
.

If we haveM10, i.e., Em(Yi) = βXi and

(b) Vm(Yi) = σ 2,
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then the relative bias of vL is approximately
x
n

∑[ 1
Xi

− 1
]
.

These biases cannot be neglected in practice whether a sample
is balanced, extreme, or random. The actual coverage proba-
bility for a model-based confidence interval (t R ±τα/2

√
vL) will

be less than or greater than the nominal value if Bm(vL) is neg-
ative or positive, respectively. So, variance estimation using vL
is not a robust procedure.

IfM11 is true and v0 is used as a variance estimator for
t̄R, then

Bm(v0) − Vm(t̄R − Ȳ )
Vm(t̄R − Ȳ )

= x̄2

X̄ x̄r

(
1 − C2

s

n

)
− 1

writing

C2
s = 1

n

∑
s

(
Xi − x̄)2/x̄2 = (CV of Xi, i ∈ s

)2
.

Observing this, ROY ALL and EBERHARDT (1975) propose the
alternative variance estimator

vH = v0
X̄ xr

x̄2

/(
1 − C2

s

n

)

and they find its m bias negligible in samples balanced or not
even if the condition

Vm(Yi) ∝ Xi

is violated.
Keeping the prerequisite of robustness in mind, ROY ALL

and CUMBERLAND (1978a) proposed another variance estima-
tor, namely,

vD = 1 − f
n

[
X̄ xr

x̄

]∑
s

e2
i /(nx̄ − Xi).

Another competitor receiving attention, although not from the
predictive approach, is the jackknife estimator (cf. section 9.2)

vJ = 1 − f
n

X 2 ∑
j ∈s

D2( j ).
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Here

D( j ) = r ( j ) − 1
n

∑
i∈s

r (i)

r ( j ) = nȳ − Y j

nx̄ − X j

and j is a unit in s.
ROY ALL and CUMBERLAND (1978a) presented results

based on asymptotic analyses relating to the comparative per-
formances of vL, vH , vD, and vJ with respect to their model-
based biases, MSEs, and the convergence in law of the as-
sociated SZEs in examining the efficacy of the corresponding
confidence intervals. In this context the questions of robust-
ness and efficacy of balanced sampling and the role of large
SRSWORs in achieving balance have also been taken up by
them. Their main findings are that

(a) vL is unsuitable because of its lack of robustness even
if the sample is balanced.

(b) It is difficult to choose from vH , vD, and vJ , each of
which seems serviceable.

CUMBERLAND and ROY ALL (1988), however, have cast doubt
on the efficacy of large SRSWORs in achieving rapid conver-
gence to normality of SZEs even if balance is preserved for an
increasing proportion of sample with increasing sizes.

7.1.3 Global Empirical Studies

Fortunately, considerable empirical studies have been reported
by ROY ALL and CUMBERLAND (1978b, 1981a, 1981b, 1985)
and also by WU and DENG (1983), in light of which the following
brief comments seem useful concerning comparative perfor-
mances of v0, v1, v2, vĝ, vg̃, vreg , vH , vD, vJ , and vgopt leaving
out vL, which is generally disapproved as a viable competitor.

Keeping in mind three key features namely, (1) linear
trend, (2) zero intercept, and (3) increasing squared residu-
als with x in the scatter diagram of (x, y), ROY ALL et al. stud-
ied appropriate actual populations including one with N = 393
hospitals with x as the number of beds and y as the number of

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch07 January 27, 2005 16:9

Design- and Model-Based Variance Estimation 143

patients discharged in a particular month. They took n = 32 for
(1) extreme samples, (2) balanced samples with

∣∣x̄ − X̄
∣∣ suit-

ably bounded above, (3) SRSWOR samples, (4) best fit samples
with a minimal discrepancy among sample- and population-
based cumulative distribution functions. WU and DENG (1983),
however, considered only SRSWORs with n = 32 from the same
populations and also from a few others, purposely violating one
or the other of the above three characteristics.

Two types of studies have been made. Simulating 1000
SRSWORs of n = 32 from each population the values of t̄R and
the above 10 variance estimators v, in general, are calculated.
The MSE of t̄R is taken as

M = 1
1000

∑ ′(t̄R − Ȳ )2.

and the bias of v is taken as

B = 1
1000

∑ ′ v − M

and the root MSE of v is taken as

RM =
[ 1

1000

∑ ′(v − M)2
]1/2

.

Each sum �′ is over the 1000 simulated samples. Also, for each
of the 1000 simulated samples the SZEs τ = (t̄R − Ȳ )/

√
v and

the intervals t̄R ± τα/2
√

v are calculated to examine the close-
ness of t to τ in terms of mean, standard deviation, skewness,
and kurtosis. The df of t is taken as n − 1 = 31.

With respect to RM,

(a) vgopt is found the best, with vĝ, vg̃, vreg closely behind.
(b) Among v0, v1, v2 the one closest to vgopt is found the

best.
(c) vH is found to be close to v2 and fairly good, but vD is

found to be poor, and vJ is found to be the worst.

The biases of v0, v1, v2, vĝ, vg̃, and vreg are negative, but vJ is
positively biased, and the biases of vH , vD are erratic; among
v0, v1, and v2, those with small RM are more biased.

The intervals t̄R±τα/2
√

v are wider for vJ but narrower for
v0, v1, v2, vĝ, vg̃, and vreg , and those for vH , vD are in between.
The actual coverage probabilities are mostly less than the
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nominal (1 − α), and pronouncedly so for v0. In this respect vJ
is the best, with vD closely behind; vH does not lag far behind.
Among v0, v1, and v2 the best is v2 and v0 is the worst. But v1, v2,
vĝ, vg̃, and vreg are close to each other, and each is behind vH .

7.1.4 Conditional Empirical Studies

From these global studies, where the averages are taken over
all of the 1000 simulated samples, it is apparent that different
variance estimators may suit different purposes. For example,
one with a small MSE may yield a poor coverage probabil-
ity, while one with a coverage probability close to the nominal
value may not be stable, bearing an unacceptably high MSE. To
get over this anomaly, these investigators adopt a conditional
approach, which seems to be promising.

In a variance estimator alternative to v0 the term x̄ occurs
as a prominent factor and its closeness to or deviation from X̄
seems to be a crucial factor in determining its performance
characteristics. This x̄ is an ancillary statistic, that is, the dis-
tribution of x̄ is free of Y , and it seems proper to examine how
each v performs for a given value of x̄ or over several disjoint
intervals of values of x̄. In other words, for conditional biases,
conditional MSEs, and conditional confidence intervals, given
x̄ may be treated as suitable criteria for judging the relative
performances of these variance estimators.

With this end in view, in their empirical studies ROY ALL
and CUMBERLAND (1978b, 1981a, 1981b, 1985) and WU and
DENG (1983) divided the 1000 simulated samples each of size
n = 32 into 20 groups of 50 each in increasing order of x̄ values
for the samples. Thus, the first 50 smallest x̄ values are placed
in the first group, the next 50 larger x̄ values are taken in the
second group, and so on. Then they calculate

(a) the average of x̄, Ax̄ = 1
50�′ x̄ for respective groups

(b) the conditional MSE of t̄R within respective groups
as Mx̄ = 1

50�′′ (t̄R − Ȳ )2

(c) averages vx̄ = 1
50�′v of each of the v’s within re-

spective groups where �′ denotes summation over
50 samples within respective groups.

Graphs are then plotted for
√

vx̄/
√

Mx̄ against Ax̄ to see how
closely the trajectories for respective v’s track the one for the
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MSEs, that is, for Mx̄ across the groups. For an overall com-
parison WU and DENG (1983) propose the distance measure

dv =
[ 1

20
�′′′(

√
vx̄ −√

Mx̄)2
]1/2

the sum �
′′′

being over the 20 groups. A variance estimator
with a small dv value is regarded to be close to the conditional
MSE.

In terms of this criterion for performance, the variance
estimators rank as follows in decreasing order. Those within
parentheses are tied in rank and vgopt is excluded:

(vH , vD), (vJ , v2, vg̃), (vĝ, vreg ), v1, v0.

With this conditional approach, it is remarkable that they find
that the variance estimators that are good point estimators for
conditional (given x̄) MSE of tR also yield good interval esti-
mates in terms of achieving conditional coverage probabilities
close to the nominal values respectively for each group of x̄
values.

An important message from these empirical evidences
with both global and conditional approaches is that, in spite of
recommendations in many textbooks, v0 does not fare well with
respect to its bias, MSE, and coverage probabilities associated
with the confidence interval based on it.

Behaviors of some of the variance estimators when based
on simulated balanced, best fit, or extreme samples rather
than random samples are also reported in the literature.

Many modifications of the ratio estimator based on
SRSWOR and variance estimators for the latter also occur in
the literature. An interested reader may consult RAO (1986),
CHAUDHURI and VOS (1988), and the references cited therein.

7.1.5 Further Measures of Error
in Ratio Estimation

CHAUDHURI and MITRA (1996) introduced additional estima-
tors for the measures of error of the ratio estimator

t R = X
y
x

based on SRSWOR utilizing models and asymptotics.
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They considered the standard model (a)M for which

Yi = βXi + εi

εi ’s independent with

Em(εi) = 0
Vm(εi) = σ 2 Xi

i ∈ U , its modifications (b)M′ with

Vm(εi) = σ 2
i

and a second modification (c)Mθ for which

Yi = θ + βXi + εi

without changes for εi ’s inM.
For the TAY LOR approximation-based variance of t R,

namely

VT = 1 − f
n(N − 1)

∑
(Yi − RXi)2

they calculated

MT = Em(VT ) under M.

They also calculated

M ′ = lim Ep Em(t R − Y )2 under M and

M
′′ = lim Ep Em(t R − Y )2 under M′.

In order to work out estimators υ and

υ(α) =
∑
i∈s

αi


Yi

Xi
− 1

n

∑
i∈s

Yi

Xi




2

=
∑
i∈s

αi(ri − r )2, say,

with suitable coefficients αi (i ∈ s), they equated

(a) Em(υ) to MT
(b) lim Ep Em(υ) to MT and M ′ with a suitable initial

function υ of (Yi, Xi, i ∈ s), x
(c) Emυ(α) to M

′′

(d) lim Ep Emυ(α) to M
′′
.

The approaches in mean square error (MSE) estimation by
BREWER (1999a) and SUNDBERG (1994) are also worthy of
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attention in this context. Writing

S2
x = 1

N − 1

∑
(Xi − X )2

C2
0 = S2

x/X 2

s2
x = 1

n − 1

∑
i∈s

(Xi − X )2

c2
x = s2

x/x2

some of the MSE estimators for t R introduced by CHAUDHURI
and MITRA (1996) are

υ01 = 1 − C2
0/N

1 − C2
0/n

υ0, υ21 =
(

X
x

)2

υ01

υ02 = X
x

1 − C2
0/N

1 − c2
x/n

υ0,

υ03 = υ0

1 − C2
0/n

, υ23 =
(

X
x

)2

υ03

υ04 = xr

x
υH

m1 = 1 − f
n(n − 2)

∑
i∈s

(ri − r )2

(
X 2

i −
∑

X 2
i

N (n − 1)

)

m2 = 1 − f
n(n − 2)

∑
i∈s

(ri − r )2

(
X 2

i −
∑

i∈s X 2
i

n(n − 1)

)

m3 = n(n − 2)
N (n − 1)

∑
X 2

i∑
i∈s X 2

i − n
N (n−1)

∑
X 2

i
m1

m4 = f
∑

X 2
i∑

i∈s X 2
i

m2.

Drawing samples from artificial populations conforming to the
modelsM,M′,Mθ with various choices of N , n, β, σ 2, σ 2

i , θ ,
CHAUDHURI and MITRA (1996) studied numerical data, giving
the relative performances of the confidence intervals (CI) for Y
both conditionally, as in section 7.1.4, and unconditionally, as
in section 7.1.3, based on t R and these MSE estimators, along
with the others like υ0, υ1, υ2, υL, υH , υJ , and υD. Many of the
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newly proposed ones, especially m1 and m2, were illustrated
to yield better CIs.

7.2 REGRESSION ESTIMATOR

7.2.1 Design-Based Variance Estimation

When (Xi, Yi) values are available for SRSWOR of size n
an alternative to the ratio estimator for Ȳ is the regression
estimator

tr = ȳ + b ( X̄ − x̄).

Here b is the sample regression coefficient of y on x. Its variance
V p(tr ) and mean square error Mp(tr ) are both approximated
by

V = 1 − f
n

1
N − 1

N∑
1

D2
i

where

Di = (Yi − Ȳ ) − B(Xi − X̄ )

B =
N∑
1

(
Yi − Ȳ

) (
Xi − X̄

)/ N∑
1

(
Xi − X̄

)2
.

The errors in these approximations are neglected for large n
and N although for n, N , and X at hand it is difficult to guess
the magnitudes of these errors. However, there exists evidence
that tr may be more efficient than the ratio estimator t̄R in
many situations in terms of mean square error (cf. DENG and
WU, 1987).

Writing

di = (Yi − ȳ) − b(Xi − x̄),

vlr = 1 − f
n(n − 2)

∑
s

d 2
i

is traditionally taken as an estimator for V . DENG and WU
(1987) consider a class of generalized estimators

vg =
[

X̄
x̄

]g

vlr
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They work out an asymptotic formula for V p(vg) using TAY LOR
series expansions and neglecting terms therein supposed to be
small for large n relative to the term they retain, called the
leading term. They find the leading term to be minimal if
one chooses g equal to

gopt = regression coefficient of D2
i

/[
1
N

N∑
1

D2
i

]

on Xi/X̄ , i = 1, 2, . . . , N .

Since gopt is unavailable they recommend the variance
estimator vĝ with ĝ as the sample analogue of gopt calculated
using (Yi, Xi, di), i ∈ s.

7.2.2 Model-Based Variance Estimation

Besides these ad hoc variance estimators, hardly any others
are known to have been proposed as estimators for V with a
design-based approach. However, some rivals have emerged
from the least squares linear predictive approach.

Suppose Y , X are conformable to the modelM′
10 (cf. sec-

tion 4.1.2) for which the following is tenable:

Em(Yi) = α + β Xi, α �= 0, Vm(Yi) = σ 2,
Cm(Yi, Y j ) = 0, i �= j .

Then the BLUP for Ȳ is tr and

Bm(tr ) = Em(tr − Ȳ ) = 0

Vm(tr − Ȳ ) = 1 − f
n


1 +

(
X̄ − x̄

)2(
1 − f

)
g(s)


 σ 2 = φ(s) σ 2, say,

writing

g(s) = 1
n

∑
s

(Xi − x̄)
2
.

Then, for

σ̂ 2 = 1
(n − 2)

∑
s

d 2
i

we have

Em(σ̂ 2) = σ 2.
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Consequently,

vL = φ(s) σ̂ 2 = 1 − f
n(n − 2)

[
1 + ( X̄ − x̄)2(

1 − f
)

g (s)

]∑
s

d 2
i

is an m-unbiased estimator for Vm(tr − Ȳ ) under M′
10. The

term

h(s) = ( X̄ − x̄)2(
1 − f

)
g (s)

in vL vanishes if the sample is balanced, that is, x̄ = X̄ , and
for a balanced sample Vm(tr − Ȳ ) is the minimal underM′

10.
In general,

vL = (1 + h(s)) vlr ≥ vlr

with equality only for a balanced sample. If a balanced sample
is drawn, then the classical design-based estimator vlr based
on it becomes m-unbiased for Vm(tr − Ȳ ).

As usual with the predictive approach, the main problem
is robustness. If the model M′

10 is not correctly applicable to
the X , Y at hand, for example, if

Em(Yi) �= α + β Xi,

then Bm(tr ) may not vanish for a realized sample and if
Vm(Yi) �= σ 2, then Vm(tr − Ȳ ) does not equal φ(s)σ 2 and one
does not know the quantity that vL may m-unbiasedly esti-
mate. Consequently, the SZE, which is here

(tr − Ȳ )/
√

vL

may not have a distribution close to that of a standardized
normal variate as it may be supposed to be for large n, N ifM′

10
is correct. So, in fact one may not know to what extent the true
coverage probability for the confidence interval

(
tr ± τα/2

√
vL
)

matches the nominal value (1 − α).
For example, if the correct model isM′

11 (cf. section 4.1.2)
for which Vm(Yi) = σ 2 Xi, then

Vm(tr − Ȳ ) = σ 2

n
[(2 − f ) X̄ − x̄ + ( X̄ − x̄)2C(s)]
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where

C(s) =
(∑

x
X 3

i − 2 x̄
∑

s
X 2

i + nx̄3

)/
ng2(s) .

But in this case

Em(vL) = 1 − f
n

σ 2(1 + h (s))[x̄ + {x̄ − C(s)g(s)}/(n − 2)]

and
Bm(vL) = Em(vL) − Vm(tr − Ȳ )

may not be negligible in general.
This only illustrates how vL may not legitimately be

treated as a robust estimator for Vm(tr − Y ).
If one uses vlr to estimate Vm(tr − Y ) in this case, then

obviously
Bm(vlr ) �= 0

as one may check on noting that
Em(vlr ) = Em(vL)

with h(s) = 0 in the latter.
So, even for a balanced sample vlr is not m-unbiased for

Vm(tr − Ȳ ) ifM10 is inapplicable, that is, it is not robust.
However, ROY ALL and CUMBERLAND (1978a) have pro-

posed the following alternative estimators for Vm(tr − Ȳ ):

vH = 1 − f
n2 � d 2

i
[
1 + (Xi − x̄) (x̄r − x̄)/g(s)

]2
/(

1 − 1
n

∑
s

Wi Ki

)
+ (N − n)σ̂ 2

where

Wi = [g(s) + (Xi − x̄) (x̄r − x̄)]2
/[∑

s
{g(s) + (Xi − x̄) (x̄r − x̄)}2

]

Ki = 1 + (Xi − x̄)2/g(s)
and

vD = (1 − f )2

n(n − 1)

∑
s

d 2
i



[
1 + (Xi − x̄) (x̄r − x̄)/g(s)

]2 + 1− f
f[

1 − {
(Xi − x̄)2/(n − 1)g(s)

}]



vJ = (1 − f )
[n − 1

n

] ∑
j ∈s

(T̂ j − T̂ )2.
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In vJ , T̂ j is tr calculated from s omitting (Y j , X j ) and T̂ =
1
n
∑

j ∈s T̂ j .
These authors have noted that

(a) Em(vH ) = Em(vD) = Em(vJ ) = Vm(tr − Ȳ ) ifM′
10 is

true
(b) Bm(v) is negligible if Vm(Yi) is not a constant for each

i but N
n is large provided Em(tr − Ȳ ) = 0 for a sample

at hand
(c) |Bm(v)| is not negligible even for large n in case

|Em(tr − Ȳ )| is not close to zero, when v is one of
vH , vD, or vJ above.

7.2.3 Empirical Studies

ROY ALL and CUMBERLAND (1981b, 1985) therefore made em-
pirical studies in an effort to make a right choice of an esti-
mator for Vm(tr − Ȳ ) because a model cannot be correctly pos-
tulated in practice. DENG and WU (1987) also pursued with
an empirical investigation to rightly choose from these several
variance estimators. But they also examined the design biases
and design MSEs of all the above-noted estimators v, each
taken by them as an estimator for V , considering SRSWOR
only. The theoretical study concerning them is design based,
and because of the complicated nature of the estimators their
analysis is asymptotic. From their theoretical results vD seems
to be the most promising variance estimator from the design-
based considerations and vL and vlr are both poor.

In the empirical studies undertaken by ROY ALL and
CUMBERLAND (1981b, 1985) and DENG and WU (1987) 1000
simple random samples of size n = 32 each are simulated from
several populations including one of size N = 393. For each of
these 1000 SRSWORs values of tr , x̄, v0, v1, v2, vĝ, vL, vH , vD,
and vJ are calculated. The estimator vlr is found too poor to be
admitted as a viable competitor and is discarded by the authors
mentioned. For each sample again for each of these variance
estimators v, as above, the SZEs and confidence intervals are
also calculated

τ = (tr − Ȳ )/
√

v and tr ± τα/2
√

v
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with τα/2 as the 100α/2 % point in the upper tail of the
STUDENT’s t distribution with d f = n − 2 = 30 in this case.

First, from the study of the entire sample the uncondi-
tional behavior is reviewed using the overall averages to de-
note respectively by

M̄ = 1
1000

�′(tr − Ȳ )2, the MSE

B = 1
1000

�′ v − M̄, the bias,

�′ denoting the sum over the 1000 simulated samples. Again,
taking x̄ as the ancillary statistic conditional (given x̄) behav-
ior is examined on dividing the 1000 simulated samples into
10 groups, each consisting of 100 samples with the closest val-
ues of x̄ within each, the groups being separated according to
changes in the values of x̄. For each group

1
100

�′ x̄,
1

100
�′ v,

are separately calculated, �′ denoting the sum over the 100
samples in respective groups and the estimated coverage prob-
abilities associated with the confidence intervals. Thus, the
unconditional and the conditional behavior of variance esti-
mators related to tr are investigated, following the same two
approaches as with variance estimation related to the ratio
estimator t̄R discussed in section 7.1. The estimators are com-
pared with respect to MSE, bias, and associated conditional
and unconditional coverage probabilities.

Empirical findings essentially show the following:
With respect to MSE:

(a) vĝ is the best and vJ is the worst
(b) among v0, v1, and v2 the one closest to vĝ is the best
(c) between vH , and vD, the former is better but vH is

worse than v0, v1, v2, vg, vĝ and vL.

With respect to bias, vJ is positively biased, vD has the least
absolute bias, and vL has less bias than v0, v1, v2, and vĝ.

In terms of unconditional coverage probabilities:

(a) each coverage probability is less than the nominal
value, v0 giving the lowest but vJ the closest to it
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(b) v0, v1, and v2 rank in improving order
(c) vH is worse than vD.

In terms of conditional coverage probabilities:

(a) vJ is the most excellent and its associated coverage
probabilities remain stable over variations of x̄; those
with vH and vD are also pretty stable but those with
v0, vL, and vĝ increase with x̄

(b) among v0, v1, and v2, the one with the most stable
coverage probability across x̄ is v2

(c) vD is better than vH .

For nearly balanced samples all estimators perform similarly.
One important message is that the traditional estimator vlr is
outperformed by each new competitor and the least squares es-
timator vL is also inferior to the other alternatives from overall
considerations.

7.3 HT ESTIMATOR

In section 2.4.4 we presented the formula for the variance of
the HTE t̄ = ∑

i∈s
Yi
πi

based on a fixed sample size design avail-
able due to YATES and GRUNDY (1953) and SEN (1953), along
with an unbiased estimator vY G thereof. For designs without
restriction on sample size the corresponding formulae given by
HORVITZ and THOMPSON (1952) themselves were also noted
as

V p(t̄) =
∑

i

Y 2
i

πi
+
∑
i �= j

YiY j
πi j

πi π j
− Y 2

vp(t̄) =
∑

s
Y 2

i
1 − πi

π2
i

+
∑∑

Yi
i �= j ∈s

Y j
πi j − πiπ j

πiπ j πi j
.

It is well known that vp(t̄) has the defect of bearing negative
values for samples with high selection probabilities. The esti-
mator vY G may also turn out negative for designs not subject
to the constraints

πiπ j ≥ πi j for all i �= j
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as may be seen in BIY ANI’s (1980) work. To get rid of this prob-
lem of negative variance estimators, JESSEN (1969) proposed
the following variance estimator

vJ = W̄
∑∑

i< j ∈s

[
Yi

πi
− Y j

π j

]2

where

W̄ = n −∑
π2

i

N (N − 1)
,

with n as the fixed sample size.
This is uniformly non-negative and is free of πi j and very

simple in form.
KUMAR, GUPTA and AGARWAL (1985), following JESSEN

(1969), suggest the following uniformly non-negative variance
estimator for V p(t̄), namely,

v0(t̄) = K
∑∑
i< j ∈s

(
Yi

πi
− Y j

π j

)2

.

Their choice of K is

K = 1
(n − 1)

∑N
1 pγ−1

i (1 − npi)∑
pγ−1

i

from considerations of a fixed sample size nand the modelM1γ

for which

Yi = βpi + εi

with 0 < pi < 1, n pi = πi,
∑N

1 pi = 1, and

Em(εi) = 0, Vm = (εi) = σ 2 pγ

i , Cm(εi, ε j ) = 0 for i �= j

with γ ≥ 0, σ < 0. Under this model

Em V p(t̄) = σ 2

n

N∑
1

pγ

i (1 − npi)

to which Emv0(t̄) agrees with the above choice of K . Thus,
v0(t̄) is an m-unbiased estimator of V p(t̄). But since t̄ is
predominantly a p-based estimator, they also consider the
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magnitude of

	 =
[

Ep v0(t̄)
V p(t̄)

− 1

]
× 100

and also of

δ = V p(v0(t̄))[
Ep(v0(t̄)

]
2 .

They also undertake a comparative study for the performances
of vJ and vY G in terms of criteria similar to 	 and δ for the
latter. Their empirical study demonstrates that v0(t̄) may be
quite useful in practice. BREWER (1990) recommends it from
additional considerations we omit to save space.

SÄRNDAL (1996) mentioned two crucial shortcomings in
the unbiased estimators υH T and υY G for V p(tH T ) = V p(tH ),
namely that (1) computation of πi j is very difficult for many
standard schemes of sampling, and for systematic sampling
with a single random start it is often zero, and (2) for large-
scale surveys the variation in

πiπ j − πi j

πi j
and

πi j − πiπ j

πiπ j πi j

involved in the numerous cross-product terms of υY G and vH T ,
respectively, is so glaring that these variance estimators
achieve little stability.

Motivated by this, DEVILLE (1999) and BREWER (1999a,
2000) are inclined to offer the following approximations by
way of getting rid of the cross-product terms in V p(tH ) and in
estimators thereof.

Confirming the sampling schemes for which ν(s), the ef-
fective size of a sample s, that is, the number of the distinct
units in it, is kept fixed at an integer n (2 ≤ n < N ), BREWER
(2000) gives the formula for V p(tH ) as

V Br (tH ) =
∑

πi(1 − πi)
(Yi

πi
− Y

n

)2

+
∑∑

i �= j

(πi j − πiπ j )
(Yi

πi
− Y

n

)(Y j

π j
− Y

n

)
.
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He then recommends approximating πi j by

π∗
i j = πiπ j

ci + c j

2
choosing ci as one of

(a) ci = n−1
n−πi

(b) ci = n−1

n−2πi+
∑

π2
i

n

(c) ci = n−1
n− 1

n

∑
π2

i

from certain well-accounted-for considerations that we omit.
The resulting approximate variance formula for tH is then

V ∗
Br (tH ) =

∑
πi(1 − ciπi)

(Yi

πi
− Y

n

)2

and BREWER (2000) calls it the natural variance of tH free
of πi j ’s. He proposes the approximately unbiased formula for
an estimator of V p(tH ) as

υ4 =
∑
i∈s

( 1
ci

− πi

)(Yi

πi
− tH

n

)2
= υB R.

For V4(tH ), DEVILLE’s (1999) recommended estimator is

υ5 = 1
1 −∑

i∈s a2
i

∑
i∈s

(
1 − πi

) (Yi

πi
− As

)2
= υDE , say,

on writing

ai = 1 − πi∑
i∈s(1 − πi)

, As =
∑
i∈s

ai
Yi

πi

also to get rid of πi j ’s.
STEHMAN and OVERTON (1994) recommended approxi-

mating πi j by

(a) π
(1)
i j = (n−1)πiπ j

n− 1
2 (πi+π j )

and

(b) π
(2)
i j = (n−1)πiπ j

n−πi−π j + 1
n

∑N
i π2

i

for the fixed sample size (n) scheme of HARTLEY and RAO
(1962), which is a systematic sampling scheme with unequal
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selection probabilities with a prior random arrangement of the
units in the population.

They empirically demonstrated these choices to be useful
in retaining high efficiency even on getting rid of the cross-
product terms in variance estimators.

HÁJEK’s (1964, 1981) Poisson sampling scheme, however,
is very handy to accommodate SÄRNDAL’s (1996) viewpoint.
To draw a sample s from U = (1, 2, . . . , N ) by this scheme one
has to choose N suitable numbers πi (0 < πi < 1, i ∈ U), as-
sociate them with i in U , implement N independent Bernoul-
lian trials with πi as the probability of success for the ith trial
(i = 1, 2, . . . , N ), and take into s those units for which suc-
cesses were achieved. For this scheme, of course, 0 < ν(s) ≤ N ,
πi is the inclusion probability of i,

Ep(ν(s)) =
∑

πi

and πi j = πiπ j for every i �= j (= 1, 2, . . . , N ).
Consequently,

V p(tH ) =
∑

Y 2
i

1 − πi

πi
and

vp =
∑
i∈s

Y 2
i

1 − πi

π2
i

is an unbiased estimator for V p(tH ).
The most unpleasant feature here is that there is little

control on the magnitude of ν(s) and hence it is difficult to
plan a survey within a budget and aimed at efficiency level.

This topic is widely studied in the literature, especially
because of its uses in achieving coordination and control on the
choice of units over a number of time points when, for the sake
of comparability, it is desired to partially rotate some fractions
of the units over certain time intervals.

BREWER, EARLY and JOY CE (1972), BREWER, EARLY and
HANIF (1984), and OHLSSON (1995) are among the researchers
who explored its possibilities, especially by introducing the
concept of permanent random numbers (PRN) to be associ-
ated with the take-some units of a survey population, namely
those units with selection probabilities pi (0 < pi < 1, i ∈ U)
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contrasted with the take-all units for which selection proba-
bilities are qi (=1 for i ∈ Uc) when U is the union of Us and Uc,
which are disjoint, and also with the units that are to be added
on subsequent occasions, omitting the units that may be found
irrelevant later.

These researchers also modified the Poisson scheme, al-
lowing repeated drawing until ν(s) turns out positive, and also
studied collocated sampling, which uses the PRNs effectively
to keep the selection confined to desirable ranges of the units
of Us.

The inclusion probabilities of units i and pairs of units
(i, j ) of course deviates for the modified Poisson and collocated
Poisson schemes from those of the Poisson scheme, and they
do not retain the requirements of SÄRNDAL (1996).

BREWER, EARLY and JOY CE (1972) and BREWER, EARLY
and HANIF (1984) considered the ratio version of tH based on
the Poisson scheme, that is,

tH R =
∑

πi

ν(s)

∑
i∈s

Yi

πi
if ν(s) > 0

= 0 otherwise.

Writing

P0 = Prob(ν(s) = 0) =
N∏
1

(1 − πi)

BREWER et al. (1972) approximated V p(tH R) by

V B E J =
N∑
1

πi(1 − πi)
(Yi

πi
− Y

n

)2
+ P0Y 2

writing n = �πi, and gave two estimators for it as

υ1B =
∑
i∈s

(1 − πi)
(Yi

πi
− tH R

n

)2
+ P0 t2

H R

υ2B =
∑

πi

ν(s)


∑

i∈s

(1 − πi)
(Yi

πi
− tH R

n

)2
+ P0 t2

H R


 .
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Observing that ν(s) = �Isi and �πi = Ep(�Isi) and hence∑
πi

ν(s)

∑
i∈s

Yi

πi

may be treated as a ratio estimator for �Yi, the first terms of
υ1B and υ2B are analogous to υ0 and υ1 of subsection 7.1.1.

BREWER et al. (1984), on the other hand, approximated
V (tH R) for this Poisson sampling scheme by

V BEH = (1 − P0)
∑

πi(1 − πi)
(Yi

πi
− Y

n

)2
+ P0Y 2

and proposed for it the estimator

υBEH = 1 − P0

1 + P0

n
ν(s)

∑
i∈s

(1 − πi)
(Yi

πi
− tH R

n

)2
+ P0Y 2.

Incidentally, SÄRNDAL (1996) also considered tH R based on the
Poisson scheme, but, in examining its variance on MSE and in
proposing estimators thereof, did not care to take account of
the possibility of ν(s) being zero, and simply considered tH R as

tH R =
∑

πi

ν(s)

∑
i∈s

Yi

πi
.

In the next section we shall treat this case.

7.4 GREG PREDICTOR

Let y be the variable of interest and x1, . . . , xk be k auxil-
iary variables correlated with y. Let Yi and Xij be the val-
ues of y and xj on the ith unit of U = (1, . . . , i, . . . , N ), i =
1, . . . , N , j = 1, . . . , k. Let β = (β1, . . . , βk)′ be a k × 1 vector of
unknown parameters, xi = (Xi1, . . . , Xik)′, Y = (Y1, . . . , YN )′,
X = (x1, . . . , xN )′ and µi = x′

iβ, i = 1, . . . , N .
Let there be a model for which we may write

Yi = µi + εi,

with Em(εi) = 0, Vm(εi) = σ 2
i , εi ’s independent. Let Q be an

N × N diagonal matrix with non-zero diagonal entries Qi, i =
1, . . . , and s a sample of n units of U chosen according to a
design p with positive inclusion probabilities πi, i = 1, . . . , N .
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Let

B = (X Q X ′)−1 (X Q Y )
E ′

i = Yi − x′
i B

B̂s =

∑

i∈s

Qi

πi
xi x′

i




−1 
∑

i∈s

Qi

πi
xi Yi




µ̂i = x′
i B̂ s, ei = Yi − µ̂i.

Then the GREG predictor for Y = ∑N
1 Yi is

tG =
N∑
1

µ̂i +
∑
i∈s

ei

πi
.

With

πi j =
∑

s�i, j

p(s), 	i j = πiπ j − πi j

Bπ =
( N∑

1

Qixix
′
iπi

)−1( N∑
1

QixiYiπi

)

and

Ei = Yi − x′
i Bπ

an asymptotic formula for the variance of tG is given by
SÄRNDAL (1982) as

VG =
∑∑

i< j

	i j

[
Ei

πi
− E j

π j

]2

and an approximately design-unbiased estimator for VG as

vG =
∑∑

i< j ∈s

	i j

πi j

[
ei

πi
− e j

π j

]2

provided πi j > 0 for all i, j .
SÄRNDAL (1984) and SÄRNDAL and HIDIROGLOU (1989)

give details about its performances which we omit. The simple
projection (SPRO) estimator for Y given by tsp = ∑N

1 x′
i B̂ s can

be expressed in the form

tsp =
∑

s
gsi

Yi

πi
,
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writing Qi = 1/Ci πi, for Ci �= 0 and

gsi =
[ N∑

1

x′
i

] [∑
s

xix
′
i/Ciπi

]−1

(xi/Ci).

SÄRNDAL, SWENSSON and WRETMAN (1989) propose

vsp =
∑∑

i< j

	i j

πi j

[
gsiei

πi
− gsj e j

π j

]2

as an approximately unbiased estimator for V p(tsp) and exam-
ine its properties valid for large samples.

KOTT (1990), on the other hand, proposes the estimator

tK =
∑

s

Yi

πi
+

 N∑

1

xi −
∑
i∈s

xi/πi




′

b

where b = (b1, . . . , bk)′ is a suitable estimator of β. Writing

T1 =
∑∑

i< j ∈s

�i j

πi j

[
ei

πi
− e j

π j

]2

T2 = Vm(tK − Y )
T3 = Em(T1)

KOTT (1990) proposes

vK = T1 T2

T3

as an estimator for V p(tK ).
Letting k = 2, x′

i = (1, Xi), β ′ = (β1, β2) and b the least
squares estimator for β and postulating the appropriate model
M′

10 for the use of the regression estimator tr = N t̄r based on
SRSWOR for Y , it is easy to check that tsp and tK both coincide
with tr . CHAUDHURI (1992) noted that in this particular case
(a) vG closely approximates vD and (b) vK coincides with vL
considered in section 7.2. Since from DENG and WU (1987) we
know that vD is better than vL, at least in this particular case
we may conclude that vG is better than vK , although in general
it is not easy to compare them.

With a single auxiliary variable x for which the values Xi
are positive and known for every i in U with a total X , it is of
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interest to pursue with a narration of some aspects of the
GREG predictor tG because of the attention it is receiving,
especially since the publication of the celebrated text Model
Assisted Survey Sampling by SÄRNDAL, SWENSSON and
WRETMAN (SSW, 1992).

In this context it is common to write tG as

tG =
∑
i∈s

Yi

πi
+

X −

∑
i∈s

Xi

πi


bQ =

∑
i∈s

Yi

πi
gsi

where

bQ =
∑

i∈s Yi Xi Qi∑
i∈s X 2

i Qi

with Qi(>0) arbitrarily assignable constants free of Y =
(Y1, . . . , YN )′ but usually as

1
Xi

,
1

X 2
i

,
1 − πi

πi Xi
,

1
πi Xi

,
1

X g
i

, (0 < g < 2) etc.

and

gsi = 1 +

X −

∑
i∈s

Xi

πi


 Xi Qiπi∑

i∈s X 2
i Qi

.

Letting

BQ =
∑

Yi Xi Qiπi∑
X 2

i Qiπi

Ei = Yi − Xi BQ

ei = Yi − XibQ

SÄRNDAL (1982), essentially employing first-order TAY LOR se-
ries expansion, gave the following two approximate formulae
for the MSE of tG about Y as

M1(tG) =
∑

i

1 − πi

πi
E2

i +
∑∑

i �= j

πi j − πiπ j

πiπ j
Ei E j

for general designs and

M2(tG) =
∑∑

i< j

(πiπ j − πi j )

(
Ei

πi
− E j

π j

)2

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch07 January 27, 2005 16:9

164 Chaudhuri and Stenger

for a design of fixed size ν(s). To these CHAUDHURI and PAL
(2002) add a third as

M3(tG) = M2(tG) +
∑

αi
E2

i

πi

for a general design where

αi = 1 + 1
πi

∑
j �=i

πi j −
∑

πi.

For M1(tG), recommended estimators are, writing a1i = 1, a2i =
gsi,

m1k(tG) =
∑
i∈s

a2
ki

1 − πi

πi

e2
i

πi

+
∑∑

i �= j ∈s

akiakj
πi j − πiπ j

πiπ j πi j
eie j ; k = 1, 2

and for M2(tG) estimators are

m2k(tG) =
∑∑

i< j ∈s

πiπ j − πi j

πi j

(
akiei

πi
− akj e j

π j

)2

; k = 1, 2

as given by SÄRNDAL (1982). For M3(tG) the estimators as
proposed by CHAUDHURI and PAL (2002) are

m3k(tG) = m2k +
∑
i∈s

αi

πi
(akiei)2; k = 1, 2.

In order to avoid instability in mj k(tG); j = 1, 2, 3; k = 1, 2
due to (a) the preponderance of numerous cross-product terms
involving exorbitantly volatile terms

πi j − πiπ j

πiπ j πi j
,

πiπ j − πi j

πi j

in them and (b) the terms πi j , which are hard to spell out and
compute accurately for many sampling schemes, SÄRNDAL
(1996) recommends approximating MSE(tG) by

MS (tG) =
∑ 1 − πi

πi
E2

i
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and estimating it by

mSk(tG) =
∑
i∈s

1 − πi

πi
(akiei)2; k = 1, 2

possibly with a slight change in the coefficient of E2
i in MS (tG)

when �Ei equals zero at least approximately.
He illustrated the two specific sampling schemes, namely

(1) stratified simple random sampling without replacement,
STSRS in brief, and (2) stratified sampling with sampling from
each stratum by the special case of the Poisson sampling
scheme for which πi is a constant for every unit within the
respective strata. He showed mSk(tG) for these two schemes
composed with variance estimators for certain unequal prob-
ability sampling schemes illustratively chosen by them as the
RAO, HARTLEY and COCHRAN (RHC) scheme.

Incidentally, choosing (1) Qi = 1/πi Xi and (2) Xi = πi the
estimator tG takes the form

tG =
∑

πi

ν(s)

∑
i∈s

Yi

πi
.

Let this be based on a Poisson scheme and ignore the possibility
of ν(s) equalling 0. Then

m11(tG) =
∑
i∈s

1 − πi

π2
i


Yi −

∑
i∈s

Yi
πi

ν(s)
πi




2

m12(tG) =
(∑

πi

ν(s)

)2

m11(tG)

consistently with the formulae for υ0 and υ2 of section 7.1.
CHAUDHURI and MAITI (1995) and CHAUDHURI, ROY and

MAITI (1996) considered a generalized regression version of
the RAO, HARTLEY, COCHRAN (RHC) estimator as

tGR =
n∑

i=1

Yi
Qi

Pi
+

X −

n∑
i=1

Xi
Qi

Pi


bR =

n∑
i=1

Yi
Qi

Pi
hsi

where Ri(> 0) is a suitably assignable constant like

Ri = 1
Xi

,
1

X 2
i

,
1

X g
i

,
Qi

Pi Xi
,

1 − Pi/Qi

Xi Pi/Qi
etc. (0 < g < 2)
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and

bR =
∑n

i=1 Yi Xi Ri∑n
i=1 X 2

i Ri

hsi = 1 +

X −

n∑
i=1

Xi
Qi

Pi


 Xi Ri

Pi
Qi∑n

i=1 X 2
i Ri

.

Clearly, here Ri corresponds to Qi, Pi/Qi to πi, and bR to bQ
in tG.

Accordingly, writing

BR =
∑

Yi Xi Ri
Pi
Qi∑

X 2
i Ri

Pi
Qi

that parallels BQ

Fi = Yi − Xi BR

f i = Yi − XibR

and using first-order TAY LOR series expansion we may write
the approximate MSE of tGR about Y as

M(tGR) = c
∑ ∑
1≤i< j ≤n

Pi P j

(
Fi

Pi
− Fi

P j

)2

where

c =
∑n

1 N 2
i − N

N (N − 1)
and two reasonable estimators for it as

mk(tGR) = D
∑ ∑
1≤i< j ≤n

Qi Q j

(
bki f i

Pi
− bkj f j

P j

)2

; k = 1, 2

all analogous to M1(tG), M2(tG), m1k(tG), m2k(tG); here

b1i = 1; b2i = hsi

D =
∑n

1 N 2
i − N

N 2 −∑
N 2

i
.

We emphasize the importance of this tGR, especially because
SÄRNDAL (1996) compared tG based on STSRS and STBE with
tRHC , but it would have been fairer if, instead of tRHC , tGR was
brought under a comparison to keep the contestants under a
common footing.
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Finally, remember that DEVILLE and SÄRNDAL (1992) de-
rived tG as a calibration estimator on modifying the sample
weight ak = 1/πk(> 0) in

H T E =
∑
k∈s

akYk

into wk so as to (a) keep the revised weight wk close to ak, (b)
taking account of the calibration constraint (CE)

∑
k∈s

wk Xk =
N∑

k=1

Xk

by minimizing the distance function∑
k∈s

ak(wk − ak)2/Qk, with Qk > 0

subject to the above CE. By the same approach one may derive
tGR as a calibration estimator by modifying tRHC as well.

7.5 SYSTEMATIC SAMPLING

Next we consider variance estimation in systematic sampling
where we have a special problem of unbiased variance esti-
mation because a necessary and sufficient condition for the
existence of a p-unbiased estimator for a quadratic form with
at least one product term Xi X j is that the corresponding pair
of units (i, j ) has a positive inclusion probability πi j . But sys-
tematic sampling is a cluster sampling where the population
is divided into a number of disjoint clusters, one of which is se-
lected with a given probability. Thus a pair of units belonging to
different clusters has a zero probability of appearing together
in a sample. Hence the problem of p-unbiased estimation of
variance. Let us turn to it.

Let us consider the simplest case of linear systematic
sampling with equal probabilities where in choosing a sample
of size n from the population of N units it is supposed that N

n is
an integer K . Then, the population is divided into K mutually
exclusive clusters of n units each and one of them is selected at
random, that is, with probability 1

K . If the ith cluster is selected
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then one takes ȳi, the mean of the n units of the ith cluster,
i = 1, . . . , K as the unbiased estimator for the population mean
Y . Then,

V ( ȳi) = 1
K

K∑
i=1

(
ȳi − Ȳ

)2 = S2

n
{
1 + (

n − 1
)
ρ
}

writing S2 = 1
nK
∑K

1
∑n

j =1
(
Yij − Ȳ

)2, Yij = the value of y for
the j th member of ith cluster and

ρ = 1
K n (n − 1) S2

K∑
1

∑∑
j �= j ′

(Yij − Ȳ ) (Yij ′ − Ȳ ).

For the reasons mentioned above one cannot have a p-unbiased
estimator for V ( ȳi) for the sampling scheme employed as
above. However, there are several approaches to bypass this
problem.

One procedure is to postulate a model characterizing the
nature of the yij values when they are arranged in K clus-
ters as narrated above and then work out an estimator based
on the sample, for example, v such that Em(v) equals EmV ( ȳi),
which therefore becomes a DM approach (cf. SÄRNDAL,
1981).

Second, the N elements are arranged in order, a num-
ber r is found out so that n

r is an integer m. Then, Kr = L,
clusters are formed, and an SRSWOR of r clusters is chosen.
Each of these L clusters has m units and so a required sam-
ple of size n = mr is thus realized. This is distinct from the
original systematic sampling. To distinguish between the two
they are respectively called single-start and multiple-start
systematic sampling schemes. For the latter, one may suppose
to have drawn r different systematic samples each of size m
and the sample mean of each provides an unbiased estima-
tor for the population mean. Denoting them by ȳ1, ȳ2, . . . , ȳr
one may use ¯̄y = 1

r
∑r

1 ȳi as an unbiased estimator for Ȳ and
1

r (r −1)
∑r

1 ( ȳ − ¯̄y)2 as an unbiased estimator for V p( ¯̄y). Two vari-
ations of this procedure are (a) to choose by SRSWOR method
2 or more clusters out of the K original clusters or (b) to divide
the chosen cluster into a number of subsamples, and in either
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case obtain several unbiased estimators for Ȳ and from them
get an unbiased estimator of the variance of the pooled mean
of these unbiased estimators.

A third approach is to first choose a systematic sample
from the population and supplement it with an additional
SRSWOR or another systematic sample from the remainder
of the population. A variation of this is given by SINGH and
SINGH (1977), who first make a random start out of all the N
units arranged in a certain order, select a few successive units,
and then follow up by choosing later units at a constant inter-
val in a circular order until a required effective sample size
is realized. They call it new systematic sampling, derive
certain conditions on its applicability, show that πi j > 0 for ev-
ery i, j for this scheme and hence derive a Yates–Grundy-type
variance estimator.

COCHRAN’s (1977) standard text gives several estimators
following the first model-based approach. GAUTSCHI (1957),
TORNQVIST (1963), and KOOP (1971) applied the second ap-
proach. HEILBRON (1978) also gives model-based optimal es-
timators of Var (systematic sample mean) as the conditional
expectations of this variance given a systematic sample un-
der various models postulated on the observations arranged
in certain orders.

ZINGER (1980) and WU (1984) follow the third approach,
taking a weighted combination of the unbiased estimators of
Ȳ based on the two samples and choosing the weights, keeping
in mind the twin requirements of resulting efficiency and non-
negativity of the variance estimators. For a review one may
refer to BELLHOUSE (1988) and IACHAN (1982).

Finally, we present below a number of estimators for V ( ȳi)
based on the single-start simple linear systematic sample as
given by WOLTER (1984).

We consider first the following notations: For the ith (i =
1, . . . , K ) systematic sample supposed to have been chosen con-
taining nunits, let Yij be the sample values, j = 1, . . . , n. Then,

ȳi = 1
n

n∑
j =1

Yij .
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Let further

aij = Yij − Yi, j −1, j = 2, . . . , n
bij = Yij − 2Yi, j −1 + Yi, j −2

cij = 1
2

Yij − Yi, j −1 + Yi, j −2 − Yi, j −3 + 1
2

Yi, j −4

dij = 1
2

Yij − Yi, j −1 + . . . + 1
2

Yi, j −8

and

s2 = 1
(n − 1)

n∑
1

(yij − ȳi)2.

Then WOLTER (1984) proposed the following estimators for
V ( ȳi).

v1 = (1 − f )
s2

n

v2 = 1 − f
2 n(N − 1)

n∑
j =2

a2
i j

v3 = 1 − f
n

1
n

n/2∑
1

a2
i, 2 j

v4 = 1 − f
n

1
6(n − 2)

n∑
j =3

b2
i j

v5 = 1 − f
n

1
3 × 5 (n − 4)

n∑
j =5

c2
i j

v6 = 1 − f
n

1
7 × 5 (n − 8)

n∑
j =9

d 2
i j .

For a multiple-start systematic sample with r starts, let ȳα

denote the sample mean based on the αth replicate and

ȳ = 1
r

r∑
α=1

ȳα.
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Then for V ( ȳ) the estimator is taken as

v7 = 1 − f
r (r − 1)

r∑
α=1

( ȳα − ȳ)2.

This is also applicable if the ith systematic sample is split up
into r random subsamples (cf. KOOP, 1971). Writing

ρ̂K = 1
(n − 1)s2

n∑
j =2

(Yij − ȳi) (Yi, j −1 − ȳi)

another estimator for V ( ȳi) is

v8 = 1
(n − 1)s2

n∑
j =2

(
Yij − ȳi) (Yi, j −1 − ȳi

)
.

WOLTER (1984) examined relative performances of these es-
timators considering Bm(v) = Em[Ep(v) − V ( ȳ)] and Bm(v)/
EmV ( ȳi) for v as vi, i = 1, . . . , 8 for several models usually
postulated in the context of systematic sampling. He also ex-
amined how good these are in providing confidence intervals
for Ȳ . His recommendations favor v2, and v3, and, to some ex-
tent, v8.

The general varying probability systematic sampling is
known as circular systematic sampling (CSS) with probabil-
ities proportional to sizes (PPS). From MURTHY (1967) we
may describe it as follows. Suppose positive integers Xi(i =
1, . . . N ) with a total X are available as size measures and a
sample of n units is required to be drawn from U = (1, . . . , N ).
Then a member K is fixed as the integer nearest to X/n.

A random positive integer R is chosen between 1 and X .
Then, let

ar = (R + r K ) mod (X ), r = 0, . . . , n − 1

and

C0 = 0 , Ci =
i∑

j =1

X j , i = 1, . . . , N .

Then, a CSSPPS sample s is formed of the units i for which

Ci−1 < ar ≤ Ci for r = 0, 1, . . . , n − 1

and the unit N if ar = 0.
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If ν(s) happens to equal n, the intended sample size (in
practice it often falls short by 1, 2, or even more for arbitrary
values of Pi = Xi/X ), then for this scheme

πi equals nPi

provided nPi < 1∀i ∈ U , a condition that also often fails.
If nPi > 1, then calculation of πi becomes a formidable

task, especially if X is large and n is not too small. For many
pairs (i, j ), i �= j , πi j for CSSPPS scheme turns out to be zero
and is also difficult to compute even if found positive.

Following DAS (1982) and RAY and DAS (1997) one may
modify the scheme CSSPPS and (a) choose K above as a posi-
tive integer at random from 1 to X −1 instead of (b) keeping it
fixed as earlier. It is easy to check that for this scheme, CSSPPS
(n),

πi j > 0 ∀i �= j .

However, ν(s) need not then equal nnor may πi equal nPi. Nev-
ertheless, the HT estimator may be calculated for this scheme.
Importantly, CHAUDHURI’s (2000a) unbiased estimator for its
variance is available as

υc =
∑∑

i< j

πiπ j − πi j

πi j

(
Yi

πi
− Y j

π j

)2

+
∑
i∈s

Y 2
i

π2
i

αi

where

αi = 1 + 1
πi

∑
j �=i

πi j −
∑

πi, i ∈ U .

This is a vindication of the utility of υc in practice.
If one heeds the recommodation of SÄRNDAL (1996) to

get rid of any situation when one encounters (a) difficulty in
calculating πi ’s and (b) instability in

πiπ j − πi j

πi j
or

πi j − πiπ j

πiπ j πi j

involved in numerous cross-product terms in V̂(HTE), by em-
ploying the generalized regression estimator with its variance
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approximated by

V AP P =
∑ 1 − πi

πi
E2

i

and taking its estimator as

υR =
∑
i∈s

1 − πi

πi
(akiei)2,

then there is no problem with either the CSSPPS or
CSSPPS(n) schemes except that computation of πi is also not
easy if πi �= nPi(< 1) or if X is large.
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Chapter8

Multistage, Multiphase, and
Repetitive Sampling

8.1 VARIANCE ESTIMATORS DUE TO RAJ AND
RAO IN MULTISTAGE SAMPLING: MORE
RECENT DEVELOPMENTS

Suppose each unit of the population U = (1, . . . , i . . . , N ) con-
sists of a number of subunits and hence may be regarded as
a cluster, the ith unit forming cluster of Mi subunits with a
total Yi for the variable y of interest; i = 1, . . . , N . For exam-
ple, we may consider districts as clusters and villages in them
as subunits or cluster elements. Then quantity of interest is
Y = �N

1 Yi or

Y =
∑N

1 Yi∑N
1 Mi

=
∑N

1 MiY i∑N
1 Mi

,

where Yij is the value of the j th element of the ith cluster and

Y i = Yi

Mi
=

Mi∑
j =1

Yij

Mi

is the ith cluster mean of y. Now, often it is not feasible to
survey all the Mi elements of the ith cluster to ascertain Yi.

175
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Instead, a policy that may be implemented is to first take a
sample s of n clusters out of U according to a suitable design p
and then from each selected cluster, i, take a further sample, of
mi elements out of the Mi elements in it following another suit-
able scheme of selection of these elements; the selection proce-
dures in all selected clusters have to be independent from each
other. Then one may derive suitable unbiased estimators, say,
Ti of Yi for i ∈ s and derive a final estimator for Y or Y . This
is two-stage sampling, the clusters forming the primary or
first-stage units (psu or fsu) and the elements within the fsus
being called the second stage units (ssu). Further stages may
be added allowing the elements to consist of subelements, the
third-stage units to be subsampled and so on, leading, in gen-
eral, to multistage sampling. We will now discuss estimation
of totals, or means and estimation of variances of estimators
of totals, or means in multistage sampling.

8.1.1 Unbiased Estimation of Y

Let E1, V1 denote expectation variance operators for the sam-
pling design in the first stage and EL, V L those in the later
stages. Let Ri be independent variables satisfying

(a) EL(Ri) = Yi,
(b) V L(Ri) = Vi or
(c) V L(Ri) = Vsi

and let there exist (b)′ random variables vi such that EL(vi) =
Vi or (c)′ random variables vsi such that EL(vsi) = Vsi.

Let E = E1EL = ELE1 be the overall expectation and V =
E1V L + V1EL = ELV1 + V LE1 the overall variance operators.
CHAUDHURI, ADHIKARI and DIHIDAR (2000a, 2000b) have il-
lustrated how these commutativity assumptions may be valid
in the context of survey sampling.

Let

tb =
∑

bsi IsiYi,

M1(tb) = E1(tb − Y )2 =
∑∑

dij yi yj ,

dij = E1(bsi Isi − 1)(bsj Isj − 1),

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch08 January 17, 2005 10:55

Multistage, Multiphase, and Repetitive Sampling 177

dsij be constants free of Y such that

E1(dsij Isij ) = dij ∀i, j in U .

Let wi ’s be certain non-zero constants. Then, one gets

M1(tb) = −
∑∑

i< j

dij wiwj

(
Yi

wi
− Y j

wj

)2

+
∑

βi
Y 2

i

wi
when βi =

N∑
j =1

dij wj .

Let

m1(tb) = −
∑∑

i< j

dsij Isij wiwj

(
Yi

wi
− Y j

wj

)2

+
∑

βi
Isi

πi

Y 2
i

wi
.

Then, we have already seen that

E1m1(tb) = M1(tb),

Let

eb = tb|Y =R = �bsi Isi Ri,

writing

Y = (Y1, . . . , Yi, . . . , YN )

and

R = (R1, . . . , Ri, . . . , RN ).

Then, it follows that (1) EL(eb) = tb, (2) E1(eb) = �Ri = R in
case we assume that E1(tb) = Y , which means

E1(bsi Isi) = 1∀i in U (8.1)

So,

E(eb) = E1(tb) = Y = EL(R)

if Eq. (8.1) is assumed.

M1(tb)|Y =R = E1(eb − R)2.

Now, writing

M(eb) = E1EL(eb − Y )2 = ELE1(eb − Y )2,
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the overall mean square error of eb about Y and m1(eb) =
m1(tb)|Y =R we intend to find m(eb) such that

Em(eb) = E1ELm(eb) = ELE1m(eb)

may equal M(eb).
First let us note that

E1m1(eb) = E1


−
∑∑

i< j

dsij Isij wiwj

(
Ri

wi
− R j

wj

)2

+ �βi
Isi

πi

R2
i

wi




= −
∑∑

i< j

dij wiwj

(
Ri

wi
− R j

wj

)2

+ �βi
R2

i

wi

= E1(eb − R)2 = M1(eb)

Now,

M(eb) = ELE1(eb − Y )2

= ELE1 [(eb − R) + (R − Y )]2

= ELE1(eb − R)2 + EL(R − Y )2

= ELM1(eb) + �Vi

if (b) holds.
So,

m(eb) = m1(eb) + �bsi Isivi

satisfies Em(eb) = M(eb) if in addition to (b), Eq. (8.1) also
holds.

Thus, treating Ri ’s as estimators of Yi obtained through
later stages of sampling and vi ’s as their unbiased variance
estimators, it follows that under the specified conditions we
may state the following result.

RESULT 8.1 m(eb) is an unbiased estimator for M(eb).

REMARK 8.1 This is a generalization of RAJ’s (1968) result,
which demands that M1(tb) be expressed as a quadratic form
in Y with m1(tb) also expressed as a quadratic form in Yi’s
for i ∈ s.

But we know from the previous chapters that often variances
of estimators for Y in a single stage of sampling and their
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unbiased estimators, for example, those for RHC (1962),
MURTHY (1957) or RAJ’s (1956) estimators, are not so
expressed. Our Result (8.1) avoids the tedious steps of first
re-expressing the variances of these estimators as quadratic
forms in seeking their estimators. Second, we may observe that

ELm1(eb) =

−
∑∑

i< j

dsij wiwj

(
Yi

wi
− Y j

wj

)2

+ �βi
Isi

πi

Y 2
i

wi




−
∑∑

i< j

dsij Isij wiwj

(
Wsi

w2
i

+ Wsj

w2
j

)
+ �βi

Isi

πi

Wsi

wi
,

writing Wsi commonly for Vi or Vsi, assuming either (b) or (b)’
to hold:

M1(tb) = −
∑∑

i< j

dsij Isij wiwj

(
Wsi

w2
i

+ Wsj

w2
j

)
+ �βi

Isi

πi

Wsi

wi

But

M(eb) = E1EL(eb − Y )2

= E1EL [(eb − tb) + (tb − Y )]2

= E1V L(�bsi Isi Ri) + M1(tb)
= E1�b2

si IsiWsi + M1(tb)

So, we have

RESULT 8.2

m2(eb) = m1(eb) +
∑∑

i< j

dsij Isij wiwj

(
wsi

w2
i

+ wsj

w2
j

)

+ �

(
b2

si − βi

π2
i

)
Isiwsi

writing wsi commonly for vsi and vi is an unbiased estimator for
M(eb) when either (b) and (c) together or (b)′ and (c)′ together
hold.

Here the condition (8.1) is not required.

REMARK 8.2 Result 8.2 is somewhat similar to RAO’s (1975a)
result, which is also constrained by the quadratic form expres-
sions for the variances of estimators t for Y .
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It is appropriate to briefly state below RAJ’s (1968) and RAO’s
(1975a) results in this context to appreciate the roles for these
changes. Relevant references are CHAUDHURI (2000) and
CHAUDHURI, ADHIKARI and DIHIDAR (2000a, 2000b).

For tb = �bsi IsiYi subject to E1(bsi Isi) = 1 ∀i in U so that
E1(tb) = Y and its variance is

V1(tb) = �CiY 2
i +

∑∑
i 	= j

Cij YiY j

where

Ci = E1
(
b2

si Isi
)− 1

and

Cij = E1(bsibsj Isij ) − 1

if there exist Csi, Csij free of Y such that E1(Csi Isi) = Ci and
E1(Csij Isij ) = Cij , it follows that eb = �bsi Isi Ri satisfies, as-
suming (a), (b), and (c) above,

E(eb) = Y , V (eb) = V1(tb) + E1
(
�b2

si IsiVi
) = V ,

and noting

v1(tb) = �Csi IsiY 2
i +

∑∑
i 	= j

Csij Isij YiY j

satisfies E1v1(tb) = V1(tb), it follows on writing

v1(eb) = v1(tb)|Y =R = �Csi Isi R2
i +

∑∑
i 	= j

Csij Isij Ri R j

that one has for

v(eb) = v1(eb) + �bsi Isivi,
Ev(eb) = V (eb) = V

(8.2)

This is due to RAJ (1968). If, instead of (b) and (c) we have (b)′
and (c)′, then RAO (1975a) has the following modifications to
the above.

V (eb) = V1(tb) + E1
(
�b2

si IsiVsi
) = V ′,

and

v′(eb) = v1(eb) + �
(
b2

si − Csi
)
Isivsi

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch08 January 17, 2005 10:55

Multistage, Multiphase, and Repetitive Sampling 181

satisfies Ev′(eb) = V ′. Thus, v′(eb) is another unbiased esti-
mator for V (eb) as alternative to v(eb).

In particular, if v(s) is a constant for every s with p(s) > 0,
so that SEN (1953) and YATES and GRUNDY ’s (1953) unbiased
estimator vsyg is available for the variance of the HTE in a
single-stage sampling, RAJ (1968) has the following results.
Under (a)–(b),

tH =
∑
i∈P

Yi

πi
, eH =

∑
i∈S

Ri

πi
, E(eH ) = Y ,

V (eH ) =
∑∑

i< j

(πiπ j − πi j )

(
Yi

πi
− Yi

π j

)2

+
∑

i

Vi

πi
= V ′,

For

v′(eH ) =
∑∑
i< j ∈s

(
πiπ j − πi j

πi j

(
Ri

πi
− R j

π j

)2

+
∑
i∈s

vi

πi

one has

Ev′(eH ) = V (eH ) = V ′.

In case, instead, (b)′ and (c)′ hold, then the above results change
into less elegant results.

If (a), (b)′ and (c)′ hold, then

V (eH ) =
∑∑

i< j

(
πiπ j − πi j

πi j

)(
Yi

πi
− Y j

π j

)2

+ E1


∑

i∈s

Vsi

π2
i


= V ′′,

and

v′′(eH ) =
∑∑
i< j ∈s

(
πiπ j − πi j

πi j

)(
Ri

πi
− R j

π j

)2

+
∑
i∈s

vsi

π2
i

+
∑∑
i< j ∈s

(
πiπ j − πi j

πi j

)(
vsi

π2
i

+ vsj

π2
j

)

satisfies

Ev′′(eH ) = V ′′.

If, in the single-stage sampling, one is satisfied to employ a
biased estimator for Y like the generalized regression (GREG)
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estimator tG or a version of it like tGR, and is also satisfied to
employ a not-unbiased estimator like mk(tG) or mk(tGR) for the
TAY LOR version of an approximate MSE for tG or for tGR as
MG or MGR, then supposing that Yi is not ascertainable but is
required to be unbiasedly estimated by Ri, through sampling
at later stages while Xi, an auxiliary positive value with total
X , is available for every i in U , we may be satisfied with the
results of the following types.

Let

eG = tG|Y =R =
∑
i∈s

Ri

πi
gsi.

Then,

M(eG) = E1EL [eG − Y ]2

= ELE1 [(eG − R) + (R − Y )]2

= EL
[
M(tG)|Y =R

]+
∑

Vi

assuming (a)–(c) to hold.
Then,

mk(tG)|Y =R +
∑
i∈s

bsi Isivi = vk(eG), k = 1, 2

provides a desirable estimator for M(eG) with a suitable choice
of bsi, which may be subject to E1(bsi Isi) = 1 ∀i.

If instead of (b) and (c), only (b)′ and (c)′ are supposed to
hold, elegant results are hard to come by.

An analogous treatment is recommended starting with
tGR. Suppose one needs to estimate instead of Y , the mean

Y =
∑N

1 Yi∑N
1 Mi

=
∑N

1
∑Mi

j =1 Yij∑N
1
∑Mi

1 1i j
=
∑N

1
∑Mi

1
∑Tij

1
∑Lij k

1
∑Rij kl

1 Yij klu∑N
1
∑Mi

1
∑Tij

1
∑Lij k

1
∑Rij kl

1 1i j klu

writing 1i j klu = 1 if uth 5th-stage unit of lth 4th-stage unit of
kth 3rd-stage unit of j th 2nd-stage unit of ith first stage unit
has a y value, for example, with a 5-stage sampling.

Here both
∑N

1 Yi and
∑N

1 Mi are unknown and both are
to be estimated, and Y is to be estimated by the ratio of an
estimator Ŷ N for Y = ∑N

1 Yi to the estimator M̂, for M =∑M
1 Mi. Then, R̂ = Ŷ

M̂
is clearly a ratio estimator for the ratio
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Y = Y
M . Then, supposing a suitable estimator V̂(Ŷ ) for the

variance or MSE of Ŷ is employed, then V̂(R̂) is to be taken as

V̂(R̂) = 1

(M̂)2


V̂(Ŷ )|

yij klu=yij klu−R̂Iij klu
+
∑
i∈s

b2
siwsi


 , (8.3)

applying the usual procedure involved for ratio estimation.
This is because writing ŷi as an unbiased estimator for

yi = ∑Mi
j
∑Tij

k
∑Lij k

l
∑Rij kl

k yij klu and wsi as an estimator for
Var ( ŷi) = V L( ŷi)

Ŷ =
∑
i∈s

bsi ŷi, M̂ =
∑
i∈s

bsi Mi, Ŷ = Ŷ

M̂
,

E1EL(Ŷ − Y )2 
 E1


∑

i∈s

b2
siV L( ŷi)/(M̂)2




+ E1

[ ∑
i∈s bsi yi∑

i∈s bsi Mi
− Y

M

]2


 E1EL

[∑
i∈s b2

siwsi

(M̂)2

]

+ 1
M2 V


∑

i∈s

bsi

(
yi − Y

M
Mi

)
An estimator for this may therefore be taken as Eq. (8.3) above.

It may be in order at this stage to elaborate on the con-
cept of Rao-Blackwellization, relevant in the context of survey
sampling.

Let from a survey population U = (1, . . . , i, . . . , N ) a sam-
ple sequence s = (i1, . . . , i j , . . . , in) of nunits of U be drawn that
are not necessarily distinct and where the order in which the
units are drawn is maintained as the 1st, 2nd, . . . , nth.

Let s∗ = { j1, . . . , ji, . . . , jk} be the set of distinct elements
(1 ≤ k ≤ n) in s ignoring the order of their occurrence with
no repetition of the elements in s∗. Let

∑
s→s∗ denote the sum

over the sequences s for each of which s∗ is the set of distinct
units with no repetitions therein. Let p(s) be the probability
of selecting s and p(s∗) = ∑

s→s∗ p(s) that of s∗.
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Let t = t(s, Y ) be any estimator for a parameter θ which
is a function of Y = (y1, . . . , yi, . . . , yN ). Then, let

t∗ = t∗(s, Y ) =
∑

s→s∗ t(s, Y ) p(s)∑
s→s∗ p(s)

= t∗(s∗, Y ) for every s to which s∗ corresponds as the set of all
the distinct units therein with no repetitions.

Then,

Ep(t) =
∑

s
p(s)t(s, Y )

=
∑
s∗

∑
s→s∗

p(s)t(s, Y )

=
∑
s∗

[∑
s→s∗ t(s, Y ) p(s)∑

s→s∗ p(s)

]
p(s∗)

=
∑
s∗

t∗(s∗, Y ) p(s∗)

= Ep(t∗)

Also,

Ep(tt∗) =
∑

s
p(s)t(s, Y )t∗(s, Y )

=
∑
s∗

t∗(s∗, Y )

[∑
s→s∗ t(s, Y ) p(s)∑

s→s∗ p(s)

]
p(s∗)

=
∑
s∗

p(s∗)
[
t∗(s∗, Y )

]2 = Ep(t∗)2

So,

0 ≤ Ep(t − t∗)2 = Ep(t2) − Ep(t∗)2

= V p(t) − V p(t∗)

Thus,

V p(t) = V p(t∗) + Ep(t − t∗)2

≥ V p(t∗)

equality holding only in case t(s, Y ) = t∗(s, Y ) for every s with
p(s) > 0.

So, the statistic t∗ free of order and/or repetition of units
in a sample is better than t as an estimator for θ , both having
the same expectation but t∗ having a less variance than t.
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The operation of deriving t∗ from t may be regarded as one
of Rao-Blackwellization, which consists of deriving an estima-
tor based on a sufficient statistic, rather the minimal sufficient
statistic, from another statistic and showing that the former
has the same expectation as the latter, but with a smaller
variance.

In order to further elaborate on this let us write

d = ((i1, yi1), . . . , (in, yin))

to denote survey data on choosing a sample s with probabil-
ity p(s) and observing the values of y as y = (yi1, . . . , yin) for
the respective sampled units (i1, . . . , in) = s. Let 
 = {Y | −
∞ < ai ≤ yi ≤ bi < +∞} be the parametric space, of which Y
is an element and 
d = {Y | − ∞ < ai ≤ yi ≤ bi + ∞ for
i = 1, . . . , N ( 	= i1, . . . , in) but yi1, . . . , yin are as observed, be the
subset of 
 that is consistent with d . It follows that 
d = 
d ∗

where

d ∗ = {( j1, yj 1), . . . ( jk, yj k)}.
Then the probability of observing d is PY (d ) = p(s)IY (d ),
where IY (d ) = 1 if Y ∈ 
d , = 0 otherwise and that of observ-
ing d ∗ is

PY (d ∗) = p(s∗)IY (d ∗)

where

IY (d ∗) = 1 if Y ∈ 
d , = 0 else .

Then, IY (d ) = IY (d ∗) and assuming p(·) as a noninformative
design, it follows that the conditional probability of observing
d , given d ∗ is

PY (d |d ∗) = PY (d ∩ d ∗)
PY (d ∗)

= PY (d )
PY (d ∗)

= p(s)
p(s∗)

As the ratio p(s)
p(s∗) is free of Y , it follows that d ∗ is a sufficient

statistic.
To prove that d ∗ is the minimal sufficient statistic, let

t = t(d ) be another sufficient statistic.
Let d1, d2 be two separate survey data points and d ∗

1, d ∗
2

the corresponding sufficient statistics of the form d ∗ as derived
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from d . We state below that

t(d1) = t(d2) will imply d ∗
1 = d ∗

2

and hence imply that d ∗ is a minimal sufficient statistic.
Letting p be a noninformative design, we may notice that

PY (d1) = PY (d1 ∩ t(d1))
= PY (t(d1))PY (d1|t(d1))
= PY (t(d1))C1,

where C1 is a constant free of Y because t is a sufficient statis-
tic. Similarly,

PY (d2) = PY (t(d2))C2, say,

= PY (t(d1))C2

because t(d1) = t(d2) by hypothesis.
So,

PY (d2) = PY (d1)
C2

C1

or

p(s2)IY (d2) = p(s1)IY (d1)C,

where C is a constant free of Y or

p(s∗
2)IY (d ∗

2) ∝ p(s∗
1)IY (d ∗

1)

and this implies d ∗
2 = d ∗

1 as is required to be shown.

8.1.2 PPSWR Sampling of First-Stage Units

First, from DES RAJ (1968) we note the following. Suppose
a PPSWR sample of fsus is chosen in n draws from U using
normed size measures Pi(0 < Pi < i, �Pi = 1). Writing yr ( pr )
for the Yi( pi) value for the unit chosen on the r th draw, (r =
1, . . . , n) the HANSEN–HURWITZ estimator

tH H = 1
n

n∑
n=1

yr

pr
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might be used to estimate Y because Ep(tH H ) = Y if Yi could
be ascertained. But since Yi ’s are not ascertainable, suppose
that each time an fsu i appears in one of the n independent
draws by PPSWR method, an independent subsample of ele-
ments is selected in subsequent stages in such a manner that
estimators ŷr for yr are available such that EL( ŷr ) = yr and
V L( ŷr ) = σ 2

r with uncorrelated y1, y2, . . . , yn. Then, DAS RAJ’s
(1968) proposed estimator for Y is

eH = 1
n

n∑
r =1

ŷr

pr

for which the variance is

V (eH ) = V p(tH H ) + Ep

[
1
n2

n∑
r =1

σ 2
r

p2
r

]

= 1
n

∑
Pi

(Yi

Pi
− Y

)2
+ 1

n

N∑
1

σ 2
i

Pi

= V H , say.

It follows that

vH = 1
2n2(n − 1)

n∑∑
r = 1 r ′ = 1

r 	= r ′

( ŷr ′

pr ′
− ŷr

pr

)2

is an unbiased estimator for V H because

El(vH ) = 1
2n2(n − 1)

∑∑
r 	=r ′

[
y2

r

p2
r

+ y2
r ′

p2
r ′

+ σ 2
r

p2
r

+ σ 2
r ′

p2
r ′

− 2
yr

pr

yr ′

pr ′

]

E vH = Ep EL(vH ) = 1
n

(∑ Y 2
i

Pi
− Y 2

)
+ 1

n

∑ σ 2
i

Pi

= 1
n

∑
Pi

(Yi

Pi
− Y

)2
+ 1

n

∑ σ 2
i

Pi
= V (eH ).

Thus here an estimator for σ 2
r is not required in estimating

V (eH ).
But it should be noted that

(a) sampling with replacement is not very desirable be-
cause it allows reappearance of the same unit leading
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to estimators that can be improved upon by Rao-
Blackwellization, and

(b) resampling the same sampled cluster may be tedious
and impracticable. So, even if a PPSWR sample
(in n draws) of cluster may be selected, it may be con-
sidered prudent to subsample a chosen cluster only
once irrespective of its frequency of appearance in the
sample.

Thus one may consider the following alternative estimator for
Y , namely,

eA = 1
n

∑
i

Ŷ i

Pi
f si.

Here f si is the frequency of i in s, Ŷ i is an estimator for Yi
based on sampling at later stages of the cluster i in such a way
that

EL(Ŷ i) = Yi, V L(Ŷ i) = σ 2
i

and further, based on sampling of ith cluster at later stages σ̂ 2
i

is available as an estimator for σ 2
i such that

EL
(
σ̂ 2

i
) = σ 2

i .

Then,

EL(eA) = 1
n

∑
i

Yi

Pi
f si = tA, say,

and E(eA) = Ep(tA) = Y because Ep( f si) = nPi. Furthermore

V (eA) = V p(tA) + Ep [V L(eA)]

= 1
n

[∑ Y 2
i

Pi
− Y 2

]
+ 1

n

∑ σ 2
i

Pi
+ n − 1

n

∑
σ 2

i

noting that V p( f si) = nPi(1 − Pi), covp( f si, f sj ) = −nPi P j .
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An unbiased estimator for V (eA) may be taken as

vA = 1
(n − 1)

[
1
n

∑ Ŷ 2
i

p2
i

f si − e2
A + n − 1

n

∑ σ̂ 2
i

Pi
f si

]

EL(vA) = 1
(n − 1)

[
1
n

∑ Ŷ 2
i

p2
i

f si + 1
n

∑ σ 2
i

p2
i

f si − EL
(
e2

A
)

+ n − 1
n

∑ σ 2
i

p2
i

f si

]

E(vA) = 1
(n − 1)

[∑ Ŷ 2
i

Pi
+
∑ σ 2

i

Pi
− V (eA) − Y 2

+ (n − 1)
∑

σ 2
i

]
= V (eA)

Thus, this estimator of variance is not free of σ̂ 2
i and, interest-

ingly, the estimator eA is less efficient than eH . So, if repeated
subsampling is feasible, then DES RAJ’s (1968) procedure is
better than this alternative. However, if repeated subsampling
is to be eschewed from practical considerations, this alterna-
tive may be tried in case, again from practical considerations,
it is considered desirable to choose a sample of fsus by PPSWR
method.

8.1.3 Subsampling of Second-Stage Units
to Simplify Variance Estimation

CHAUDHURI and ARNAB (1982) have shown that if the fsus
are chosen according to any sampling scheme without replace-
ment, or they are selected with replacement but an estima-
tor is based on the distinct units that are each subsampled
only once, then for any homogeneous linear function of esti-
mated fsu totals used to estimate the population total, among
all homogeneous quadratic functions of estimated fsu totals
there does not exist one that is unbiased for the variance of
the estimated population total. For the existence of an unbi-
ased variance estimator one needs necessarily an unbiased
estimator for the variance of the estimated fsu total for such
strategies as noted above.
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SRINATH and HIDIROGLOU (1980) contrived the following
device to bypass the requirement of estimating V L(Ti). They
consider choosing the fsus by SRSWOR scheme, choosing from
each sampled fsu i in the sample s again an SRSWOR si, in
independent manners cluster-wise of size mi from Mi ssus in
it, and using

e = N
n

∑
i∈s

Mi yi

as an estimator for Y . Here yi is the mean of the y values of
the ssus in si for i ∈ s. Then they recommend taking a subsam-
ple s

′
i of size m

′
i out of si again by SRSWOR method, getting y

′
i

as the mean of y based on the ssus in s
′
i. They show that an

unbiased estimator for V (e) is available exclusively in terms
of y

′
i for i ∈ s although not in terms of yi as, ideally, one would

like to have.
ARNAB (1988) argues that restriction to SRSWOR is nei-

ther necessary nor desirable and discarding the ssus in si or s
′
i

is neither desirable nor necessary, and gives further general-
izations of this basic idea of SRINATH and HIDIROGLOU (1980).
Following DES RAJ’s (1968) general strategy, he suggests start-
ing with the estimator

eD =
∑

s
bsi IsiTi

with

V (eD) =
∑

Y 2
i (αi − 1) +

∑∑
i 	= j

YiY j (αi j − 1) +
∑

αiσ
2
i

V L(Ti) = σ 2
i

Let si be a sample of ssus chosen from the ith fsu chosen in
the sample s selected such that ψi, based on s

′
i, is an unbiased

estimator of Yi, that is, EL(ψi) = Yi with V L(ψi) = φ2
i so

chosen that (αi − 1)φ2
i = αiσ

2
i . He shows that the variance of

eAR =
∑

s
IsiTi/πi

then is unbiasedly estimated by

vAR =
∑

s
dsiT 2

i +
∑∑
i 	= j ∈s

dsij �i� j
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where

dsi = αi − 1
πi

, αi = 1
πi

, dsij = αi j − 1
πi j

.

He illustrates various schemes for which this approach is suc-
cessful and also explains how a weighted combination based
on a number of disjoint and exhaustive subsamples s

′
i of si may

also be derived for the same purpose, thereby avoiding loss of
data available from the entire sample by discarding ssus in si
or s

′
i.

8.1.4 Estimation of Y

We have so far restricted ourselves to only unbiased estimators
of Y . But suppose we want to estimate

Y =
N∑
1

Yi

/ N∑
1

Mi

where
∑N

1 Mi may also be unknown like Y = ∑N
1 Yi and we

may know or ascertain only the values of Mi for the clusters
actually selected. In that case, an unbiased estimator is un-
likely to be available for Y . Rather, a biased ratio estimator
tR = �sYi/�sMi may be based on an SRSWOR s of selected
clusters if Yi ’s are ascertainable. If not, one may employ

eR =
∑

s Ti∑
s Mi

,

a biased estimator for Y , using Ti ’s as unbiased estimators for
Yi based on samples taken at later stages of sampling from
the fsu i such that EL(Ti) = Yi with V L(Ti) equal to Vsi or
σ 2

i admitting respectively unbiased estimators V̂si or σ̂ 2
i such

that EL(V̂si) = Vsi or EL(σ̂ 2
i ) = σ 2

i .
In general, following RAO and VIJAY AN (1977) and RAO

(1979), let us start with

t =
∑

s
bsi IsiYi

not necessarily unbiased for Y such that

M = Ep(t − Y )2 =
∑∑

YiY j dij

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch08 January 17, 2005 10:55

192 Chaudhuri and Stenger

with

Ep(bsi Isi − 1)(bsj Isj − 1) = dij .

Let us assume that there exist Wi 	= 0 such that if Zi =
Yi/Wi = c (a non-zero constant) for all i, then M equals zero.
In that case, from chapter 2 we know that we may write

M = −
∑∑

i< j

dij WiW j
(
Zi − Zj

)2

= −
∑∑

i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

.

Assuming that we may find out dsij such that

Ep(dsij Isij ) = dij ,

then

m = −
∑∑

i< j

dsij Isij WiW j

(
Yi

Wi
− Y j

W j

)2

is unbiased for M, that is, Ep(m) = M.
Now, supposing Yi ’s are unascertainable, we replace Yi

by Ti with ELTi = Yi so as to use e = �bsi IsiTi to estimate Y .
Then

Ep EL(e − Y )2 = Ep EL [(e − t) + (t − Y )]2

= Ep EL

[∑
i

bsi Isi(Ti − Yi) +
∑

i

Yi(bsi Isi − 1)

]2

= Ep

[∑
b2

si Isiσ
2
i

]
+ M

=
∑

σ 2
i Ep

(
b2

si Isi
)−

∑∑
i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

=
∑

σiσ
2
i −

∑∑
i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

.
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An unbiased estimator for Ep EL(e − Y )2 is then

∑
b2

si Isiσ̂
2
i −

∑∑
i< j

dsij Isij

(
Ti

Wi
− Tj

W j

)2

+
∑∑

i< j

dsij Isij

(
σ̂ 2

i

W 2
i

+ σ̂ 2
i

W 2
j

)
.

If σ 2
i is not applicable, but Vsi must be used, then

Ep EL(e − Y )2 = Ep
∑

b2
siVsi Isi

−
∑∑

i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

and an unbiased estimator for this is

∑
b2

si V̂si Isi −
∑∑

i< j

dsij Isij WiW j

(
Ti

Wi
− Tj

W j

)2

+
∑∑

i< j

dsij Isij

(
V̂si

W 2
i

+ V̂sj

W 2
j

)
.

Finally, in order to estimate Y = �N
1 Yi/�N

1 Mi when Yi is not
ascertainable and Mi is unknown for i /∈ s we may proceed as
follows:

Take for an SRSWOR s of fsus

e =
∑

s
Ti/

∑
s

Mi

Ep

[ ∑
s Vsi(∑
s Mi

)2
]
+ N 2(1 − f )(∑N

1 Mi

)2

1
n

1
(N − 1)

N∑
1

[
Yi −

∑N
1 Yi∑N
1 Mi

Mi

]2
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and this may be reasonably estimated by∑
s

V̂si/(
∑

s
Mi)2

+ (1 − f )(∑
s Mi

)2 n
(n − 1)

[∑
s

(
Ti −

∑
s Ti∑
Mi

Mi

)2

−
∑

s
V̂si −

∑
s V̂si

∑
s M2

i(∑
s Mi

)2 + 2
∑

s MiV̂si∑
s Mi

]

neglecting the error in replacing �N
1 Mi throughout by its un-

biased estimator

N
n

∑
s

Mi.

For further discussion on multistage sampling, one may
consult RAO (1988) and BELLHOUSE (1985).

8.2 DOUBLE SAMPLING WITH EQUAL
AND VARYING PROBABILITIES:
DESIGN-UNBIASED AND
REGRESSION ESTIMATORS

Assume that positive size measures Wi with a total (mean)
W (W ) are available for the units of a finite population U =
(1, . . . , i, . . . , N ). Suppose that it is difficult and expensive to
measure the values Yi of the variable y of interest and that it is
less expensive to ascertain the values Xi of an auxiliary vari-
able x. Then it seems to be reasonable to take an initial sample
s1, of large size n1, with a probability p1(s1) according to a de-
sign p1 that may depend on W = (W1, . . . , WN ) and to observe
the values Xi for i ∈ s1. Supposing that y is correlated with not
only x but also with w for which the values are Wi, i = 1, . . . N ,
one may now take a subsample s1 of size n2 (< n1, possibly
n2 << n1) with a conditional probability p2(s2/s1) from s1. This
conditional probability sampling design p2(./.) may utilize the
values W j and also X j for j ∈ s1. The overall sample may be
denoted as s = (s1, s2) = [(i, j )|i ∈ si, j ∈ s2] and the overall
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sampling design as p such that

p(s) = p1(s1) p2(s2/s1).

The ascertained survey data may be denoted as d = [(i, j , Xi,
Y j )|i ∈ s1, j ∈ s2]. This procedure is called two-phase or dou-
ble sampling in the literature.

For the time being, we suppose that p2 does not involve
X = (X1, . . . , Xi, . . . , X N )′ but may involve only W = (W1, . . . ,
Wi, . . . , WN )′. In order to estimate Y , RAO and BELLHOUSE
(1978) considered the following class of nonhomogeneous lin-
ear estimators

tb = bs +
∑
j ∈s2

bs j Y j +
∑
i∈s1

bsi Xi.

They assumed that X j are ascertainable free of observational
errors, but the Y j ’s are observable as Ŷ j ’s with unknown ran-
dom errors (Ŷ j − Y j )’s.

In the following, we specialize their model assuming error-
free observation of the y values. Writing

R j = Y j

W j
, R = 1

N

N∑
1

R j , Tj = X j

W j
, T = 1

N

N∑
1

Tj ,

they postulated a model:
Y j

W j
= R + ε j ,

X j

W j
= T + ε

′
j , Em(R) = R, Em(T ) = T ,

Em(ε j ) = Em(ε
′
j ) = 0

Em
(
ε2

j
) = δ1(> 0), Em(ε j ε

′
j ) = γ1, Em

(
ε

′
j
2) = η1 > 0

Em(ε j εk) = δ2( j 	= k), Em(ε j ε
′
k) = γ2, Em(ε

′
j ε

′
k) = η2 ( j 	= k),

where Em is the operator for expectation with respect to the
joint probability distribution of the vectors R = (R1, . . . , RN )′
and T = (T1, . . . , TN )′. From the above, it is apparent that the
pairs of random variables (R j , Tj ) have a joint exchangeable
distribution. For example, this exchangeable distribution may
be a permutation distribution that regards a particular real-
ization [(Ri1 , Ti1), . . . , (RiN , TiN )]

′
for a permutation (i1, . . . , iN )

of (1, . . . , N ) as one of the N ! possible vectors [(R j1 , Tj1), . . . ,
(R jN , TjN )]

′
chosen with a common probability 1/N !, there
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being N ! such vectors corresponding to as many permutations
( j1, . . . , jN ) of the fixed vector (1, . . . , N ). Such an assump-
tion of a permutation model, or, more generally, an exchange-
able model as postulated above, presuppose that the R j ’s and
Tj ’s are unrelated to the W j ’s and especially that the labels
1, . . . , N bear no information on R and T . For permutation
models, important references are KEMPTHORNE (1969), C. R.
RAO (1971), THOMPSON (1971) and T. J. RAO (1984).

Under this model, they show that among all estimators
of the form tb above, subject to the model-design unbiasedness
restriction EmEp(tb − Y ) = 0,

t∗
b = W

[
1
n2

∑
s2

Yi

Wi
+ β

(
1
n1

∑
s1

Xi

Wi
− 1

n2

∑
s2

Xi

Wi

)]
,

where β = γ1−γ2
η1−η2

minimizes EmEp(tb − Y )2.
If the estimator tb is restricted to be design-unbiased for

Y, then they show that the optimal strategy among ( p, tb)
is ( p∗, tb∗) where p∗ is a double sampling design for which
π1i = n1Wi/W and π2i = n2/n1, i = 1, . . . , N . Here by π1i(π2i)
we mean the inclusion probability of a unit according to first-
phase sampling design p1 and second-phase conditional inclu-
sion probability according to second-phase sampling design p2
discussed above.

A shortcoming of t∗
b is that it contains an unknown pa-

rameter β and hence is not practicable as such. In practice one
may employ the double sample regression estimator obtained
by replacing β by β̂ where

β̂ = γ̂1 − γ̂2

η̂1 − η̂2

where by γ̂1, γ̂2, η̂1 and η̂2 we mean sample-based estimators of
the quantities of the form Ep(u j − Epu j )(vk − Epvk) where u j ,
vk stand for Y j

W j
, Xk

Wk
, etc., taken in obvious manners. But the

consequence of this replacement on t∗
b in respect of bias and

efficiency is neither known nor studied.
Considering the same class of fixed-sample-size two-phase

sampling designs p, as above, CHAUDHURI and ADHIKARI
(1983, 1985) proposed the estimator for Y based on data d as
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tb = ∑
s1

X j
πi j

+∑s2

(Y j −X j )
π2 j

, which is an extension of the Horvitz-
Thompson (1952) method to the two-phase sampling. This
estimator is free from unknown parameters, but its scope is
limited because it does not include anything like the regres-
sion coefficient of y on x or on w or of y/w on x/w, etc. But
following GODAMBE and JOSHI (1965), they proved many de-
sirable and optimal properties of tb and also proved optimality
properties of the subclass of strategies ( p, tb) with p as the
class of two-phase sampling designs for which π1i = n1Wi/W
and π2i = n2Wi/W , i = 1, . . . , N . Details may be found in
CHAUDHURI and VOS (1988) and CHAUDHURI (1988), among
others.

MUKERJEE and CHAUDHURI (1990) extended the design p
to allow p2 to involve Xi for i ∈ s1 and proposed the regression
estimator for Y as

tr =
∑
s2

Yi

π1iπ2i
− β̂1

[∑
s2

Xi

π1iπ2i

{∑
s1

Xi

π1i
− β̂3

(∑
s1

Wi

π1i
− W

)}]

− β̂2

(∑
s2

Wi

π1iπ2i
− W

)

motivated by consideration of the model for which they postu-
late the following:

Em(Yi(Xi) = β1 Xi + β2Wi, Em(Xi) = β3Wi, i = 1, 2, . . .

Another motivation to hit upon this regression form is the fol-
lowing: if Xi were known for every i in U , then one might
employ the regression estimator

t
′
r =

∑
s2

Yi

π1iπ2i
− β̂1

(∑
s2

Xi

π1iπ2i
− X

)
− β̂2

(∑
s2

Wi

π1iπ2i
− W

)

noting that the unknown X in t
′
r is just replaced in tr by the

sample-based quantity

∑
s1

Xi

π1i
− β̂3

(∑
s1

Wi

π1i
− W

)
.

Here β̂ j , j = 1, 2, 3 are suitable estimators for β j , j = 1, 2, 3,
respectively.
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In order to find appropriate β̂ j ’s, choose appropriate
classes of designs, and establish desirable properties for the
resulting strategies involving tr as the estimator for Y, they
considered asymptotic design unbiasedness (ADU), asymptotic
design consistency (ADC), and derived lower bounds for plim
EmEp(tr − Y )2 following the approach of ROBINSON and
SÄRNDAL (1983) who made a similar investigation to derive
asymtotically desirable properties of regression estimators in
case of single-phase sampling. The details are too technical
and hence are omitted here, inviting the interested readers to
see the original sources cited above.

8.3 SAMPLING ON SUCCESSIVE OCCASIONS
WITH VARYING PROBALITIES

Suppose a finite population U = (1, . . . , N ) is required to be
surveyed to estimate the total or mean a number of times over
which its composition remains intact. But a variable of inter-
est should be supposed to undergo changes, though the values
on close intervals apart should be highly correlated, the degree
of correlation decreasing with time. For two occasions called,
respectively, (1) the previous and (2) the current occasions, let
us denote the values as Xi and Yi (i = 1, . . . , N ), regarding
them, respectively, as values of a variable x denoting the pre-
vious and a variable y denoting the current values. Suppose
on the first occasion a sample s1 is chosen from U adopting a
design p1 with a fixed size n1 for which the values Xi, i ∈ s1,
are ascertained. On the current occasion

(a) a subsample s2 of size n2(<n1) is drawn from s1 fol-
lowing a design p2, and

(b) a subsample s3 of size n3(<N − n1) is drawn from
U − s1 adopting a design p3.

The designs p2 and p3 are both conditional probability sam-
pling designs. In employing p1, p2, p3, the known values Wi(i =
1, . . . , N ) of some variable w correlated with x and y may be
utilized, and, in case of p2, the realized values Xi, i ∈ s1 may
further be utilized. We will refer to the overall design thus
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employed as p for which the total sample size is n1 + n2 +
n3 = n. The main interest here is to estimate Y = �N

1 Yi or
Y = �N

1 Yi/N, but the problem is to exploit the information
gathered on Xi, i ∈ s1 and the association between x and y
that may be assessed through the data on Xi, Yi for i ∈ s2.
The overall data at hand may be summarized by the notation
d = [(i, j , Xi, Y j )|i ∈ s1, j ∈ s2 ∪ s3] and the overall sample of
size n by s = (s1, s2, s3). The main difference between the situa-
tion here and in double sampling is that here, in addition to the
subsample s2 (of s1), which in this case is called the matched
subsample, there is an additional unmatched subsample
s3 of U − s1. RAO and BELLHOUSE (1978) postulated the same
model connecting X = (X1, . . . , X N )′, Y = (Y1, . . . , YN )′ and
W = (W1, . . . , WN )′ as stated in section 8.2 and considered
estimators of the term

tRb = bs +
∑
s2

bsj Y j +
∑
s3

bś j Y j +
∑
s2

bś j́ X j +
∑

s1−s2

bś j́ ′ X j

required to satisfy EmEp(tRb) = R W = µ. They showed that
an optimal estimator in this class is t∗

Rb for which

EmEp(tRb − µ)2 > EmEp(t∗
Rb − µ)2

and t∗
Rb is given by

t∗
Rb = W

[
ψt + (1 − ψ)t1

]
where

t = 1
n2

(∑
s2

Y j

W j

)
+ β

[
1
n1

(∑
s1

X j

W j

)
− 1

n2

(∑
s2

X j

W j

)]

t1 = 1
n3

(∑
s3

Y j

W j

)
, β = γ1 − γ2

η1 − η2
, β ′ = γ1 − γ2

δ1 − δ2
,

ξ2 = ββ ′, φ = 1 − n2

n1
, ψ = 1 − φ

1 − φξ2 .

Requiring the class of estimators tRb above to be design-
unbiased for Y and denoting by p∗ the subclass of the above
designs for which p1, p2, p3 are restricted to have respective
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inclusion probabilities,

π1i = n1Wi

W
, i ∈ U ,

π2i = n2

n1
, i ∈ s1,

π3i = n3Wi∑
U −s1

Wi
for i ∈ U − s1,

CHAUDHURI (1985) showed that

EmEp(tRb − Y )2 > EmEp∗(t∗
Rb − Y )2.

He also showed how to implement sample selection so as to
realize p∗ by adapting FELLEGI’s (1963) scheme of sampling.

GHOSH and LAHIRI (1987) have mentioned how their em-
pirical Bayes estimators (EBE) can be used in the context of
sampling on successive occasions. Their EBE procedure has
been described by us briefly in section 4.2. But in actual large-
scale surveys, this procedure is not yet known to have been put
into practice, though we feel that projects deserve to be under-
taken toward applications of EBE in this repetitive sampling
context.

Numerous strategies for sampling on successive occasions
are discussed in COCHRAN’s (1977) standard text; CHAUDHURI
and VOS (1988) have reviewed many more. They point out
many amendments to our above designs p. For example, they
differentiate between designs for which s3 is to be subsampled
from U itself, from U − s1, or from U − s2, and discuss corre-
sponding advantages and disadvantages. They refer to various
combinations of known sampling schemes to be adopted to re-
alize p1, p2, and p3, present various classes of estimators for
Y or Y , and refer to resulting consequences. An interested
reader may be persuaded to look at the original references
cited in CHAUDHURI and VOS (1988).
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Chapter9

Resampling and Variance
Estimation in Complex Surveys

By a complex survey, we mean one in which any scheme of
sampling other than simple random sampling (SRS) with re-
placement (WR) or without replacement (WOR) is employed;
a common name for these two SRS schemes will be adopted
as epsem, that is, equal probability selection methods.
Estimating population totals or means involves weighting the
sample observations using design parameters. Estimators for
totals and means that are of practical uses are linear in ob-
servations on the values of the variables of interest. For such
linear functions of single variables, variances or mean square
errors (MSE) are quadratic forms, and suitable sample-based
estimators for them are easily found, as we have discussed
and illustrated in the preceding chapters. But the problem no
longer remains so simple if we intend to estimate nonlinear
functions of totals or means of more than one variable. In such
cases, estimators that are linear functions of observations on
more than one variable are not usually available, but nonlin-
ear functions become indispensable. Their variances or MSEs,
however, are difficult to express in simple exact forms, and

201
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estimators thereof with desirable properties and simple cos-
metic forms are not easy to work out. To get over these situa-
tions, alternative techniques are needed, and the following
sections give a brief account of them.

9.1 LINEARIZATION

Let us suppose that θ1, . . . , θK are K population parameters
and f = f (θ1, . . . , θK ) is a parametric function we intend to
estimate. Let t1, . . . , tK be respective linear estimators based
on a common sample s of size n, for θ1, . . . , θK . We assume that
f (t1, . . . , tK ) can be expanded in a TAY LOR series and well-
approximated for large n by the linear function in ti,
i = 1, 2, . . . , K :

f (θ1, . . . , θK ) +
K∑
1

λi(ti − θi)

where

λi = ∂

∂ti
(t1, . . . , tK )]t=θ , i = 1, . . . , k

t = (t1, . . . , tK ), θ = (θ1, . . . , θK ),

and of course we assume that n is large. Since θi ’s and λi ’s are
constants, we approximate the variance of f (t) by the vari-
ance of

K∑
1

λiti

that is, we take

V [ f (t)] = V

[ K∑
1

λ j t j

]
.

Let θ j for j = 1, . . . , K denote the finite population total for
a certain real variable ξ j , j = 1, . . . , K , that is, θ j = ∑N

1 ξ j i,
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j = 1, . . . , K and t j ’s be of the form

t j =
∑
i∈s

bsiξ j i, ( j = 1, . . . , K )

using bsi as sample-based weights for the values ξ j i, i =
1, . . . , N of the ξ j ’s for a finite population U = (1, . . . , N ) of
size N .

So, we may write

V [ f (t)] � V

∑
i∈s

 K∑
j =1

λ j bsiξ j i

 = V

∑
i∈s

bsiφi


where

φi =
K∑

j =1

λ j ξ j i.

This φi, which is obtained by aggregating over all the K vari-
ables, may be described as a synthetic variable. Now,∑

i∈S

bsiφi

is a linear function, and so, applying usual methods of finding
variances or approximate variances of linear functions, one
may proceed to work out formulae for exact or approximate
unbiased estimators for

V

∑
i∈S

bsiφi


and treat them as approximately unbiased estimators of vari-
ances or MSEs of the original estimator f (t).

The only conditions for applicability of this procedure are
(a) large sample size n and (b) conformability of f to its Taylor
expansion. A detailed exposition of this topic is given by RAO
(1975b).

Let us illustrate an application of this procedure. This
form of the procedure is due to WOODRUFF (1971). Suppose
K = 2, ξ1 = y, θ1 = Y = ∑N

1 Yi, ξ2 = x, θ2 = X = ∑N
1 Xi,

f (θ1, θ2) = θ1

θ2
= Y

X
= R.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙ch09 January 17, 2005 11:12

204 Chaudhuri and Stenger

Let an SRSWOR of size n be taken, yielding

t1 = N
n

∑
s

Yi, t2 = N
n

∑
s

Xi,

f (t1, t2) =
∑

s Yi∑
s Xi

= ys

xs

λ1 = (1/X ), λ2 = (−Y /X 2) = −R/X .

Then,

V
( y

x

)
� V

[
N
n

∑
s

( 1
X

Yi − R
X

Xi

)]

= N 2

n2

( 1
X

)2

V

[∑
s

(Yi − RXi)

]

= N 2

X 2

1 − f
n

1
N − 1

N∑
1

(Yi − RXi)2

and this has the usual estimator

N 2

x2

(1 − f )
n

1
(n − 1)

∑
s

(Yi − R̂Xi)2

where R̂ = y/x.
As another example let us consider K = 6, ξ1 = 1, ξ2 =

y, ξ3 = x, ξ4 = y2, ξ5 = x2 and ξ6 = xy. Let θ1 = ∑N
1 ξ1i =

N , θ2 = ∑N
1 Yi, θ3 = ∑

Xi, θ4 = ∑N
1 Y 2

i , θ5 = ∑N
1 X 2

i , θ6 =∑N
1 XiYi and

f (θ1, . . . , θ6) = θ1θ6 − θ2θ3[(
θ1θ4 − θ2

2
)(

θ1θ5 − θ2
3
)]1/2

which is obviously the finite population correlation coefficient

ρN = N
∑

XiYi − (
∑

Yi)(
∑

Xi)[
N
∑

Y 2
i − (

∑
Yi)2

]1/2 [
N
∑

X 2
i − (

∑
Xi)2

]1/2 .

Let p be any sampling design with πi > 0

t j =
∑

s

ξ j i

πi
, for j = 1, . . . , 6.
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Then, f (t1, . . . , t6) takes the form, say,

ρ̂s =
(∑

s
1
πi

) (∑
s

Yi Xi
πi

)
−
(∑

s
Yi
πi

) (∑
s

Xi
πi

)
[(∑

s
1
πi

)(∑
s

Y 2
i

πi

)
−
(∑

s
Yi
πi

)2
]1/2

[(∑
s

1
πi

)(∑
s

X 2
i

πi

)
−
(∑

s
X 2

i
πi

)2
]1/2 .

Here bsi = 1
πi

, for every j = 1, . . . , 6 and every s � i.

λ j = ∂

∂t j
f (t1, . . . , t6)|t=θ = ψ j (θ )

is not difficult to work out. So,
∑

i∈S φi takes the form

∑
i∈s


6∑

j =1

ψ j (θ )ξ j i

/πi =
∑

s

Zi

πi
, say,

which has the HORVITZ–THOMPSON (1952) estimator form.
This immediately yields a known variance form and well-
known estimators.

To consider another example, let us turn to HÁJEK’s (1971)
estimator

tH =
∑

s Yi/πi∑
s 1/πi

of the population mean Y based on an arbitrary design with
πi > 0, i = 1, . . . , N . Then, let ξ1 = 1,

∑
ξ1i = N = θ1, ξ2 = y,∑

ξ2i = Y = θ2,

f (θ1, θ2) = θ2

θ1
,

t1 =
∑

s
1/πi, t2 =

∑
s

Yi/πi.

Then the variance of

f (t1, t2) =
∑

s Yi/πi∑
s 1/πi

is approximately equal to

V

[∑
s

(
λ1 + λ2Yi

πi

)]
= 1

N 2 V
∑

s

(
Yi − Y

πi

)
.
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9.2 JACKKNIFE

Let θ be a parameter required to be estimated from a sample s
of size n and t = t(n) be an estimator for θ based on s. Let t be
a biased estimator of θ with a bias B(t) = Bn(θ ) = E(t(n) − θ )
expressible in the form

Bn(θ ) = b1(θ )
n

+ b2(θ )
n2 + b3(θ )

n3 + . . .

where bj (θ ), j = 1, 2, . . . are unknown functions of θ and
b1(θ ) 	= 0. Then, in the following way, we can derive another
estimator for θ with a bias of order 1/n2, that is, of the form

b′
2(θ )
n2 + b′

3(θ )
n3 + . . .

Let the sample s be split up into g(≥ 1) disjoint groups, each of a
size m(= n

g ). Let the groups be marked 1, . . . , g and the statistic
t be now calculated on the basis of the values in s excluding
those in the ith group. The new statistic may be denoted as
ti = ti(n − m) as it is based on n − m units, omitting from s of
size n the m units in the ith group. Let us now consider a new
statistic

ei = gt(n) − (g − 1)ti(n − m)

called the ith pseudo-value. Then we have the expectation as

E(ei) = gEt(n) − (g − 1)E(ti(n − m))

=
[
θ + b1(θ )

n
+ b2(θ )

n2 + . . .

]
− (g − 1)

[
θ + b1(θ )

n − m
+ b2(θ )

(n − m)2 + . . .

]
= θ + b1(θ )

(g
n

− g − 1
n − m

)
+ b2(θ )

{ g
n2 − g − 1

(n − m)2

}
+ . . .

= θ − g
g − 1

b2(θ )
n2 + . . .

Repeating this process we may derive g such pseudo-values ei,
i = 1, . . . , g, each with a bias of order 1/n2. Now using these
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ei ’s we may construct a new statistic, viz.,

tJ = 1
g

g∑
i=1

ei = gt(n) − g − 1
g

g∑
i=1

ti(n − m)

= gt(n) − (g − 1)t, say.

Obviously, this new statistic tJ has also a bias of order 1/n2

as an estimator for θ . Starting with tJ and applying this tech-
nique, we may get another estimator with a bias of order 1/n3.

The statistic tJ is called a jackknife statistic. It was in-
troduced by QUENOUILLE (1949) as a bias reduction technique
(seen above). But later TUKEY (1958) started using the jack-
knife statistics in estimating mean square errors of biased es-
timators for parameters.

In order to estimate the mean square error (MSE) of the
jackknife statistic

tJ = 1
g

g∑
i=1

ei

one may consider the estimator

vJ = 1
g(g − 1)

g∑
i=1

(
ei − 1

g

g∑
1

ei

)2

= 1
g(g − 1)

g∑
1

(ei − tJ )2

= (g − 1)
g

g∑
1

(ti − t)2.

The pivotal

(tJ − θ )√
vJ

,

for large n and moderate g is supposed to have approximately
STUDENT’s t distribution with (g − 1) degrees of freedom (df),
and for very large g its distribution may be approximated by
that of the standardized normal deviate τ . Then tJ ±tg−1,α/2

√
vJ
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or tJ ± τα/2
√

vJ is used to construct 100(1−α)% confidence in-
tervals for θ for large n, writing tg−1,α/2 (τα/2) for the 100α/2%
point in the right tail area of the distribution of STUDENT’s
statistic with (g − 1) df (standardized normal deviate τ ).

9.3 INTERPENETRATING NETWORK
OF SUBSAMPLING AND REPLICATED
SAMPLING

MAHALANOBIS (1946) introduced the technique of interpen-
etrating network of subsampling (IPNS) (1) to improve the
accuracy of data collection and (2) to throw interim measures
of error in estimation even before the completion of the en-
tire fieldwork in surveys and processing-cum-tabulation. The
method consists in dividing a sample into two or more parts,
entrusting each part to a separate batch of field workers. Since
each part is supposed to provide an estimate of the same
parameter, any awkward divergences among the estimates
emerging from the various parts are likely to create suspicion
about the quality of field work carried out by the various teams.
This realization should induce vigilance on their functions, en-
gendering higher qualities of work. Moreover, with the comple-
tion of each part, a separate estimate is produced, and with two
or more parts of data at hand using the separate comparable
estimates, a measure of error is available as soon as at least
two estimates are obtained. DEMING (1956) applied essentially
the same technique, but mainly with the intention of getting
an easy and simple estimate of the variance of an estimator
of any parameter, no matter how complicated the sampling
scheme. He called this the method of replicated sampling,
which is equivalent to IPNS. Let us see how it works.

Let K independent samples be selected from a given fi-
nite population each following the same scheme of sampling.
Let each sample throw up an estimator that is unbiased for a
parameter θ of interest relating to the population. Let t1, . . . ,
ti, . . . , tK be K such independent estimators for θ . Then, E(ti) =
θ for every i = 1, . . . , K . Also each ti has the same variance be-
cause each is based on a design that is identical in all respects.
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Thus, V (ti) = V , for every i = 1, . . . , K . Then, for

t = 1
K

K∑
1

ti

we have

E(t) = θ , V (t) = 1
K2

∑
V (ti) = V

K
.

It follows that

v = 1
K (K − 1)

K∑
1

(ti − t)2

is an unbiased estimator for V (t).
In case K = 2, V (t) = V

2 and

v = 1
2

[(
t1 − t1 + t2

2

)2
+
(

t2 − t1 + t2

2

)2
]

= 1
4

(t1 − t2)2

and 1
2 |t1 − t2| is taken as a measure of the standard error of the

estimator t = 1
2(t1 + t2) for θ . For the case K = 2, the IPNS is

called half-sampling.
If the samples are independently chosen, this procedure,

of course, is useful in estimating any finite population param-
eter no matter how complicated, and also it is immaterial how
complicated is the sampling scheme, provided an unbiased es-
timator is available. But in practice, for complicated param-
eters like population multiple correlation coefficient, ratio of
two means based on stratified two-stage sampling, etc., unbi-
ased estimators cannot be found. Moreover MAHALANOBIS’s
IPNS does not ensure independent sampling and hence the es-
timators ti for θ are not independent but correlated. In IPNS a
realized sample s of size n is usually split up at random into two
or more groups usually of a common size. The manner of form-
ing the groups required to turn out mutually exclusive results
cannot but lead to estimates that are correlated. So, it is nec-
essary to examine both the bias of an estimator t = 1

K
∑K

1 ti for
θ when θ is a complex parameter for which ti ’s are each biased
estimators and also of

1
K (K − 1)

K∑
1

(ti − t)2
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as an estimator for the variance or the mean square error of
t as an estimator for θ . WOLTER (1985) has made detailed in-
vestigation of IPNS and random group methods in tackling
the advantages and shortcomings of this method of replication.
These may really be called pseudo-replication or sample
re-use techniques because here essentially we have a single
sample from which an estimator t for a parameter might be
obtained, but since it is difficult to estimate its variance, the
sample is artificially split up into components leading to sev-
eral estimators for the same parameter, and from the varia-
tions among these estimators a measure of error for an overall
combined estimator is derived. There is a considerable liter-
ature on this topic, but WOLTER’s (1985) text seems to pro-
vide an adequate coverage. KOOP (1967) demonstrated certain
merits in dividing a sample into unequal rather than equal
groups, ROY and SINGH (1973) showed advantages in form-
ing the groups on taking the units from the chosen sample
by SRS without replacement rather than with replacement.
CHAUDHURI and ADHIKARI (1987) derive further results as
followups to them.

9.4 BALANCED REPEATED REPLICATION

Suppose a finite population of N units is divided into L strata
of N1, N2, . . . , NL units, respectively. From each stratum let
SRSWORs be independently selected, making nh draws from
the hth, h = 1, . . . , L. Let L be sufficiently large and nh be taken
as 2 for each h = 1, . . . , L. Let us write (yh1, yh2) as the vector
of variable values on the variable of interest y observed for the
sample from the hth stratum. Then, with Wh = Nh/N ,

1
N

∑
Nh

( yh1 + yh2

2

)
=
∑

Whyh = yst , say

is taken as the usual unbiased estimator for Y = ∑
WhY h,

the population mean. Neglecting nh/Nh = f h, that is, ignoring
the finite population correction 1 − f h for every h, we have the
variance of yst as

V (yst) =
∑

W 2
h S2

h/2
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where

S2
h = 1

Nh − 1

Nh∑
1

(Yhi − Y h)2,

writing Yhi as the value of ith unit of hth stratum and Y h for
their mean. This V (yst) is unbiasedly estimated by

v = 1
4

∑
W 2

h d 2
h,

where dh = (yh1 − yh2). Let us now form two half-samples by
taking into the first half-sample one of yh1 and yh2 for every
h = 1, . . . , L leaving the other ones, which together, over h =
1, . . . , L, form the second half-sample. We denote the first half-
sample by I and the second by II. There are, in all, 2L possible
ways of forming these half-samples. For the j th ( j = 1, . . . , 2L)
such formation, let δhj = 1(0) if yh1 appears in I (II). Then,

th1 =
∑

Wh
[
δhj yh1 + (1 − δhj )yh2

]
th2 =

∑
Wh

[
(1 − δhj )yh1 + δhj yh2

]
form two unbiased estimators of Y based respectively on I and
II. Then, t j = 1

2(t j 1 + t j 2) = ∑
Whyh for every j = 1, . . . , 2L.

Also

vj = (t j 1 − t j 2)2/4

may be taken as an estimator for

V (t j ) = V
(∑

Whyh

)
= V (yst).

We may note that

1
4

(t j 1 − t j 2)2 = 1
4

(∑
h

Whψhj dh

)2

,

writing ψhj = 2δhj − 1 = ±1 for every j = 1, . . . , 2L. Thus,

vj = 1
4

∑
h

W 2
h d 2

h + 1
4

∑∑
h	=h′

WhWh′dhdh′ψhj ψhj ′

and

v = 1
2L

2L∑
j =1

vj = 1
4

∑
h

W 2
h d 2

h = v
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because
∑

j ψhj ψh′ j = 0, the sum being over j = 1, . . . , 2L. But
even for L = 10, 2L = 1024 so that numerous vj ’s must be
calculated to produce v that equals the standard or customary
variance estimator v. So, it is desirable to form a small subset
of a moderate number, K, of replicates of I and II so that the
average of vj ’s over that small subset may also equal v. In or-
der to do so, we are to form K half-samples I and II such that
�′ψhj ψh′ j = 0, writing �′ for the sum over this small subset
of half-sample formations. Using Hadamard matrices with
entries ±1, which are square matrices of orders that are mul-
tiples of 4, it is easy to construct such half-sample replicates
and the number of such replicates, namely K , is a multiple of
4 and is within the range (L, L + 3). Thus, for L = 10 strata,
K = 12 replicates are enough to yield �′ψhj ψh′ j = 0 giving

1
K

�′vj = v.

Let us illustrate below the choice of the values of ψhj (writing
+ for +1 and − for −1) for L = 5 or 6 and K = 8.

Values of ψhj(±)

Stratum number h
Replicate
number j 1 2 3 4 5 6

1 + + − − − +
2 + + − + − −
3 − + + − − −
4 − + + + − +
5 + − + − − +
6 + − + + − −
7 − − − + − +
8 − − − − − −

It should be noted that if the parameter of interest is the simple
linear parameter, namely the population mean, and the esti-
mator is the standard linear unbiased estimator yst = ∑

Whyh,
then a standard unbiased estimator ignoring fpc, namely v =
1
4
∑

W 2
h d 2

h, is available, and the above exercise of forming repli-
cates of half-samples in a balanced manner ensuring the condi-
tion �′

j ψhj ψh′ j = 0 of orthogonality to achieve �′
j vj /K equal
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to v seems redundant. Actually, this procedure of forming bal-
anced replications is considered useful to apply to alterna-
tive variance estimator formation when, in a more complicated
and nonlinear case, a standard estimator is not available. For
example, in estimating the finite population correlation coeffi-
cient ρN between two variables y and x, one may calculate the
sample correlation coefficient based on the first half-sample
values[

δhj yh1 + (1 − δhj )yh2, δhj xh1 + (1 − δhj )xh2
]

for h = 1, . . . , L, call it r1 j , and the same based on the second
half-sample values[

(1 − δhj )yh1 + δhj yh2, (1 − δhj )xh1 + δhj xh2
]

over all the strata h = 1, . . . , L and call it r2 j . Then, r =
1

2K �′(r1 j + r2 j ) may be taken as an overall estimator for ρN
and 1

4K �′(r1 j − r2 j )2 as an estimator for the variance of r , �′
denoting the sum over a balanced set of K replicates for which
�′ψhj ψh′ j = 0. In this case, a standard variance estimator is
not available, and hence the utility of the procedure.

KEY FITZ (1957) earlier considered estimation of variances
of estimators when only two sample observations are recorded
from each of several strata. But the above repeated orthogonal
replication method (or balanced repeated replication method
or balanced half-sampling method) was introduced and stud-
ied by MCCARTHY (1966, 1969) to consider variance estima-
tion for nonlinear statistics like correlation and regression
estimates, in particular when only two observations on each
variable are available from several strata. To ensure orthogo-
nality, or balancing, and keep the number of replicates down,
HADAMARD matrices are utilized. GURNEY and JEWETT (1975)
extended this to cover the case of exactly p(>2) observations
per stratum, with p as any prime positive integer. GUPTA and
NIGAM (1987) extended it to cover the case of any arbitrary
number of observations per stratum. They showed that bal-
anced subsamples strata-wise may be derived for useful vari-
ance estimation using mixed orthogonal arrays of strength two
or equivalently equal frequency orthogonal main effects plans
for asymmetrical factorials. WU (1991) pointed out that an easy
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way to cover arbitrary number of units per stratum is to di-
vide the units in each stratum separately and independently
into two groups of a common number of units, or closely as
far as practicable, and then apply the balanced half-sampling
method to the two groups.

He also notes that neither this method nor GUPTA and
NIGAM’s (1987) method is efficient enough and recommends
a revised method of balanced repeated replications based on
mixed orthogonal arrays. SITTER (1993) points out the diffi-
culty with the mixed orthogonal arrays to keep the number of
replicates in check while constructing the orthogonal arrays.
As a remedy, he prescribes the use of orthogonal multi-arrays
to produce balanced repeated replications.

In the linear case we have seen that 1
2(t1 j + t2 j ) equals

the standard estimator
∑

h Whyh for every j . But r does not
equal the sample correlation coefficient that might be calcu-
lated from the entire sample. If in nonlinear cases, in specific
situations, there is such a match of the half-sample estimates
when averaged over the replicates satisfying the balancing
condition, then we say that we have double balancing.

9.5 BOOTSTRAP

Consider a population U = (1, 2, . . . , N ) and unknown values
Y1, Y2, . . . , YN associated with the units 1, 2, . . . , N . Let θ =
θ (Y ) be a population parameter, for example, the population
mean Y , or some not necessarily linear function f (Y ) of Y ,
or the median of the values Y1, . . . , YN , etc. Suppose a sample
s = (i1, . . . , in) is drawn by SRSWR, write for j = 1, 2, . . . , n

yj = Yij

and define

y = (y1, y2, . . . , yn)′

Let θ̂ = θ̂ (y) be an estimator of θ ; in the special case θ = f (Y ),
for example, it suggests itself to choose θ̂ = f (y), where y is
the sample mean. To calculate confidence intervals for θ we
need some information on the distribution of θ̂ relative to θ .
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Now, choose a sample s∗ of size n from s by SRSWR, denote the
observed values by

∗
y11,

∗
y21, . . . ,

∗
yn1

and define
∗
y1 = (

∗
y11,

∗
y21, . . . ,

∗
yn1)′

and
∗
s is called a bootstrap sample. If, for example, s = (4, 2, 4,

5), then
∗
s = (2, 2, 4, 2) would be possible, and in this case∗

y1 = (y2, y2, y4, y2).
Repeat the selection of a bootstrap sample independently

to obtain
∗
y2,

∗
y3, . . . ,

∗
yB

where B = 500, 1000, or even larger, and calculate

θ̂0 = 1
B

B∑
b=1

θ̂ (
∗
yb)

vB = 1
B − 1

B∑
b=1

[θ̂ (
∗
yb − θ̂0]2

It may be shown that the empirical distribution of

θ̂ (
∗
yb) − θ̂ (y), b = 1, 2, . . . , B

for large n and B approximates closely the distribution of

θ̂ (y) − θ (Y )

and that vB approximates the variance of θ̂ (y). For details,
good references are RAO and WU (1985, 1988).

Since B is usually taken as a very large number, it
is useful to construct a histogram based on the values
θ̂ (yb), b= 1, . . . , B . This bootstrap histogram is a close ap-
proximation to the true distribution of the statistic θ̂ (y). Let
100α/2% of the histogram area be below θα/2,l and above
θα/2,u. Then

[θ̂α/2,l, θ̂α/2,u]

is taken as a 100(1 −α)% confidence interval for θ . This proce-
dure is called the percentile method of confidence interval
estimation.
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An alternative procedure is the following. The statistic of
the form of STUDENT’s t, namely

[θ̂ (yb) − θ̂ (y)]/
√

vB = tb

is considered and the bootstrap histogram of the values tb, b =
1, 2, . . . , B is constructed. Then, values tα/2,l and tα/2,u are
found such that the proportions of the areas under this boot-
strap histogram, respectively below and above these two
values, are both α/2, (0 < α < 1). Then the interval

(θ̂ (y) − tα/2,l
√

vB , θ̂ (y) + tα/2,u
√

vB )

is a 100(1 − α)% confidence interval because this bootstrap his-
togram is supposed to closely approximate the distribution of

θ̂ (y) − θ√
v(θ̂ (y))

and v(θ̂ (y)) is approximated by vB .
So far only SRSWR has been considered. Now, samples

are often taken without replacement and selections are from
highly clustered groups of individuals. In addition, numerous
strata are often formed, but the numbers of units selected from
within each stratum are quite small, say, 2, 3, 4. So, within
each stratum, separate application of the bootstrap method
may not be reasonable. However, modifications are now avail-
able in the literature to effectively bypass these problems, and
successful applications of bootstrap in complex sample surveys
are reported. An interested reader may consult RAO and WU
(1988).

It is necessary and important to compare the relative per-
formances of the techniques of (a) linearization, (b) jackknife,
(c) BRR (balanced repeated replication), (d) IPNS, and (e) boot-
strap in yielding variance estimators in respect of bias,
stability, and coverage probabilities for confidence intervals
they lead to. J. N. K. RAO (1988) is an important reference for
this.

A few methods of drawing bootstrap samples in the con-
text of finite survey populations that are available in the cur-
rent literature are briefly recounted below.
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(1) Naive bootstrap
Let Y j = 1

N
∑N

i=1 yj i, j = 1, . . . , T and Y =
(Y 1, . . . , Y T ), a vector of T finite population means
of T variables yj ( j = 1, . . . , T ) with values yj i for the
ith unit, i ∈ U = (1, . . . , N ). Let θ = g(Y ) be a non-
linear function of Y . For example, the generalized
regression estimator for Y , namely

tg = 1
N

∑
i∈s

yi

πi
+
X − 1

N

∑
i∈s

xi

πi

∑i∈s yixi Qi∑
i∈s x2

i Qi
, Qi(> 0)

= tg(., ., ., .)

is a nonlinear function of four statistics that are un-
biased estimators of 4 population means, namely Y =
1
N
∑

yi, X = 1
N
∑

xi, 1
N
∑

yixi Qiπi = W , and 1
N∑

x2
i Qiπi = Z. So, θ may be written as θ = g(Y , X , W ,

Z), which in this case reduces to θ = Y . Also, tg may
be written as an estimator θ̂ for θ .

Suppose U is split up into H strata of sizes Nh,
with means Y h (h = 1, . . . , H ). Then, Y = ∑

WhY h,
Wh = Nh

N . Let yh be the mean based on an SRSWR
from the hth stratum. Letting yst = �Whyh, θ̂ =
g(y1st , . . . , yT st) may be taken as an estimator for
θ = g(Y 1, . . . , Y T ).

Let from the SRSWR (yh1, . . . , yhnh) coming from
the hth stratum, (y∗

h1, . . ., y∗
hnh

) be an SRSWR in nh

draws called a bootstrap sample, y∗
h = 1

nh

∑nh
1 y∗

hi
, y∗

st =∑
Why∗

h, θ̂∗ = g(y∗
h), writing y∗

h = (y∗
1h, . . . , y∗

T h), the
sample mean vector. Let this be repeated a large
number of times B , and for the bth replicate θ̂∗

b be cal-
culated by the above formula (b = 1, . . . , B ). Letting
θ̂∗(.) = θ̂∗

B (.) = 1
B
∑B

b=1 θ̂∗
b be the bootstrap estimator

for θ ,

vB = 1
B − 1

B∑
b=1

(θ̂∗
b − θ̂∗

B (.))2

is taken as the bootstrap variance estimator for the
estimator θ̂∗(.) and also forms θ̂ = g(., . . . , .).
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If we write E∗, V∗ the expectation and variance
operators with respect to the above bootstrap sam-
pling continued indefinitely, then θ̂∗(.) is an approx-
imation for E∗(θ̂∗) and vB is an approximation for
V∗(θ̂∗). For the case T = 1 it follows that θ̂∗ = ∑

Why∗
h

and also writing yh the mean for the original sample,
vB = ∑

W 2
h

nh−1
nh

s2
h

nh
, s2

h = 1
nh−1

∑nh
1 (yhi − yh)2. But for

yst = ∑
Whyh we have V (yst) = ∑

W 2
h

s2
h

nh
.

So, unless nh is very large

V∗(θ̂∗) 	= V (yst).

So, θ̂∗
B (.) is not a fair estimator of θ because vB (y∗) is

not a consistent estimator of V (yst).
If nh = k for every h= 1, . . . , H , then, k

k−1 V∗(θ̂∗) =
V (yst) and there is consistency only in this special
case.

EFRON (1982) calls it a scaling problem for this
naive bootstrap procedure, and his remedy is to take
the bootstrap sample of size (nh−1) instead of nh and
thus take care of the scaling problem. Obviously, with
this amendment V∗(θ̂∗) would equal V (yst).

(2) RAO and WU’s (1988) rescaling bootstrap
This is a modification of the naive bootstrap

method. From the original SRSWR taken from the
hth stratum in nh draws, let an SRSWR bootstrap
sample be drawn in n∗

h(≥1) draws and repeated inde-
pendently across h = 1, . . . , H . Let

f h = nh

Nh
,

Ch =
√

n∗
h

nh − 1
(1 − f h),

∼
y

∗
h = yh + Ch(y∗

h − yh),

with y∗
h as the mean of the bootstrap SRSWR of

size n∗
h,

y∼∗=
H∑

h=1

y∼∗
h, θ

∼∗ = g(y∼∗)
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using a lower bar to denote the T − vector of the ob-
vious entities.

Let the bootstrap sampling above be repeated a
large number of times B and let θ

∼∗
b denote the above

θ
∼∗

for the bth bootstrap sample (b = 1, . . . , B ). Then
θ
∼∗

B (.) = 1
B
∑B

b=1 θ
∼∗

b is taken as the final estimator for
θ and

∼
vB = 1

B−1
∑B

b=1(θ
∼∗

b − θ
∼∗

B (.))2 as the variance

estimator for θ
∼∗

B (.).
This procedure eliminates the scaling problem of

the naive bootstrap method and ensures consistency
of v∼B .

(3) RAO and WU’s (1988) general with replacement boot-
strap

For the T − vector of totals Yt(t = 1, . . . , T ) if one
defines θ = g(Y ), Y = (Y 1, . . . , Y t , . . . Y T ) and em-
ploys the homogeneous linear estimator, Ŷ t = ∑

i∈s
bsi yti for Yt such that the mean square error MSE of
Ŷ t is zero if yti

wti
= constant for every i ∈U = (1, . . . , N ),

with wti( 	= 0) as known non-zero constants, then from
RAO (1979) it is known that

m(Ŷ t) = −
∑
i< j

Isi j dsij wtiwtj

(
yti

Wti
− yt j

Wtj

)2

with

E(dsij Isij ) = dij = Ep(bsi Isi − 1)(bsj Isj − 1).

Then, in order to estimate θ = g(Y ) and its variance,
rather MSE estimator, RAO and WU (1988) recom-
mend the following bootstrap procedure.

Let for any sample s the selection probability
p(s) be positive only for every s with n as the num-
ber of units in it all distinct. A bootstrap sample
from s is chosen in the following way. First n(n − 1)
ordered pairs of units i, j (i 	= j ) in s are formed.
From them, m pairs (i∗, j ∗) are chosen with replace-
ment (WR) with probabilities λi j (= λ j i) with their
values as specified below. The sample drawn is de-
noted s∗. For simplicity of notation we drop the
subscript t throughout the symbols used above.
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Let us define

Y
∼ = Ŷ + 1

m

∑
i∗, j ∗∈s∗

ki∗ j ∗

(
yi∗

wi∗
− yj ∗

wj ∗

)

with kij ’s to be specified as below.
Let
�
Y t = Ŷ t

N
,

�
Y = (

�
Y 1, . . . ,

�
Y t , . . . ,

�
Y T ),

θ
∼ = g(

�
Y ).

Let the bootstrap sampling as above be indepen-
dently repeated a large number of times B . Let for
the bth bootstrap sample the above statistics be

denoted as
∼
Y b,

�
Y b,

∼
θ b = g(

�
Y b). In case T = 1 and

θ = Y , it will follow that E∗(
�
Y ) = Ŷ

N because

E∗(
∼
Y ) = Ŷ + E∗

{
ki∗ j ∗

(
yi∗

wi∗
− yj ∗

wj ∗

)}

= Ŷ +
∑

i 	= j ∈s

kij λi j

(
yi

wi
− yj

wj

)
= Ŷ

because kij λi j = k j iλ j i. Also

V∗(
∼
Y ) = 1

m
E∗

ki∗ j ∗

(
yi∗

wi∗
− yj ∗

wj ∗

)2


= 1
m

∑∑
i 	= j ∈s

k2
i j λi j

(
yi

wi
− yj

wj

)2

Then kij λi j and m are to be so chosen that

k2
i j

λi j

m
= −1

2
dij (s)wiwj .

In that case V∗(
∼
Y ) would match the estimate m(Ŷ )

of MSE (Ŷ ).
RAO and WU (1988) recommend that in the linear

case, that is, when T = 1 and the initial estimator
eb is linear in yi, i ∈ s, if its variance or MSE can be
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matched by an estimator based on a bootstrap sample
for which the bootstrap variance equals it, then in the
nonlinear case θ = g(Y ) should be estimated by the
bootstrap estimator, which is

θ
∼

B = 1
B

B∑
b=1

θ
∼

b

writing θ
∼

b for the statistic defined as θ
∼ = g(

�
Y ) for the

bth bootstrap sample. Then, the bootstrap variance
estimator for θ

∼
B is

vB = 1
B

B∑
b=1

(Y
∼

b − θ
∼

B )2

In case RAO’s (1979) approach is modified (a) elimi-
nating the condition that MSE (Ŷ ) equals zero when

yi ∝ wi and (b) consequently adding a term
∑ y2

i
wi

βi to

MSE (Ŷ ) and a term
∑ y2

i
wi

βi
Isi
πi

to m(Ŷ ), then certain
modifications in the above bootstrap are necessary
because (a) the sample size may now vary with sam-
ples and (b) non-negativity of an estimator for the
MSE (Ŷ ) consequently can be ensured only under
additional conditions. PAL (2002) has provided some
solutions in this regard in her unpublished Ph.D.
thesis.

(4) SITTER’s (1992) mirror-match bootstrap
Here the original sample is a stratified SRSWOR

with nh units drawn from hth stratum with yh as the
sample mean. For the case T = 1, the unbiased tra-
ditional estimator for Y is yst = ∑

Whyh with

V̂ar (yst) =
∑

W 2
h

1 − f h

nh
s2
h, f h = nh

Nh
, h = 1, . . . , H.

For bootstrap sampling the recommended steps are:

(a) Choose an integer n′
h(1 < n′

h < nh) and take
SRSWOR of size n′

h from the initial SRSWOR of
size nh from the hth stratum to get y∗

h1, . . . , y∗
hn′

h
.
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(b) Return this SRSWOR of size n′
h to the SRSWOR

of size nh and repeat step (a) a number of times

equal to kh = nh(1− f ∗
h )

n′
h(1− f h) , f ∗

h = n′
h

nh
. Then we have a

total number of y values in this bootstrap sample
given by

n′
hkh = nh(1 − f ∗

h )
(1 − f h)

= n∗
h, say.

If kh is not an integer, take it as [kh] with prob-
ability q and as [kh] + 1 with probability 1 − qh
with a suitable choice of qh (0 < qh < 1).

(c) After realizing the sample observations

s∗ = (y∗
h1, . . . , y∗

hn∗
h
, h = 1, . . . , H )

calculate θ̂∗ = θ̂ (s∗).
(d) Repeat steps a large number of times B .

Denoting by θ̂∗
b the θ̂∗ for the bth bootstrap

sample (b = 1, . . . , B ) and writing θ̂∗
B = 1

B
∑B

b=1
θ̂∗

b , take θ̂∗
B as the bootstrap estimate of θ and

take vB = 1
B−1

∑B
i=1(θ̂∗

b − θ̂∗
B )2 as the variance es-

timate of θ̂∗
B and of θ̂ .

If T = 1, then E∗(θ̂∗
b − E θ̂∗

b )2 equals V (yst).
If f h ≥ 1

nh
, that is, n2

h ≥ Nh, then the choice
n′

h = f hnh ensures f ∗
h = f h, implying that the

bootstrap at the initial step mirrors the origi-
nal sampling. The matching indeed is about the
Var (yst) and the estimate of variance vB .

(5) BWR bootstrap of MCCARTHY and SNOWDEN (1985)
This is a modification of the naive bootstrap

method by taking the sample size mh for the boot-
strap sample to be drawn by SRSWR method from the
initial sample, which is drawn either by SRSWR or
SRSWOR independently from each stratum in such
a way that the bootstrap variance estimator

vB =
H∑

h=1

W 2
h

nh

(nh − 1)
mh

s2
h
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may match V̂(yst) = ∑
W 2

h
s2
h

nh
for SRSWR or

V̂(yst) =
∑

W 2
h (1 − f h)

s2
h

nh
.

Thus, either mh = (nh − 1) or

mh = nh − 1
1 − f h

(6) BWO boostrap of GROSS (1980)
For this method let the initial sample be an

SRSWOR of size n. Let k be an integer such that
N = kn. Then the following are the steps.

(a) Independently replicate the initial sample k
times.

(b) Draw an SRSWOR of size n from the pseudo-
population generated in step (a). Let the sample
observations be

y∗
1, . . . , y∗

n

and calculate

θ̂∗ = g(y∗) = θ̂ (y∗
1, . . . , y∗

n)

(c) Repeat step (b) a large number of times B . Cal-
culate θ∗

b , which is θ̂∗ for the bth bootstrap sam-
ple above (b = 1, . . . , B ). Writing

θ∗
B = 1

B

∑
(θ∗

b )

take

vB = 1
B − 1

B∑
1

(θ∗
b − θ∗

B )2

as the variance estimator for θ∗
B and for θ̂ .

BICKEL and FREEDMAN (1981) extended
this to stratified SRSWOR, which was also dis-
cussed by MCCARTHY and SNOWDEN (1985).

(7) SITTER’s (1992) extended BWO bootstrap method
Bickel–Freedman’s BWO method is extended to

stratified SRSWOR in the following way by SITTER
(1992).
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Ignoring the fractional parts in

n′
h = nh − (1 − f h)

and

kh = Nh

nh

(
1 − 1 − f h

nh

)
the following are the bootstrap sampling steps:

(a) Replicate (yh1, . . . , yhnh), separately and indepen-
dently kh times, h = 1, . . . , H to create H differ-
ent pseudo-strata.

(b) Draw an SRSWOR of size n′
h from the hth

pseudo-stratum, and repeat this independently
for each h = 1, . . . , H , thus generating bootstrap
sample observations

s∗ = {(y∗
h1, . . . , y∗

hn′
h
), h = 1, . . . , H }

and let θ̂∗ = θ̂ (s∗).
(c) Repeat steps (b) and (a) a large number of times

B , and calculate for the bth bootstrap sample
the statistics

θ̂∗
b , b = 1, . . . , B ,

and let

θ̂∗
B = 1

B

B∑
b=1

θ̂∗
b

and

vBW O = 1
B − 1

B∑
b=1

(θ̂∗
b − θ̂∗

B )2

be taken as the variance estimator for θ∗
B as well

as for θ̂ , based on the original sample.
For T = 1 and θ̂ = yst it may be checked

that

E∗(θ̂∗ − E∗θ̂∗)2 = V (yst).

Unlike Bickel–Freedman’s extension of BWO to
stratified SRSWOR, where it is necessary that
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Nh = khnh with nh as the re-sample size as well,
in the present case n′

h and kh are chosen to satisfy

f ∗
h = f h where f ∗

h = n′
h

(khnh)
and

V∗(y∗
h) = 1 − f h

nh
s2
h, h = 1, . . . , H,

fractional parts whenever necessary being ig-
nored. SITTER (1992) may be consulted for fur-
ther details.

(8) SITTER’s (1992) bootstrap for RHC initial samples
Suppose from the population U = (1, . . . , i, . . . ,

N ) on which Y = (y1, . . . , yi, . . . , yN) and p = ( p1, . . . ,
pi, . . . , pN ) are defined as the vectors of real values yi
and normed size measures pi(0 < pi < 1,

∑
pi = 1)

a sample s of nunits is drawn by the RHC scheme. For
this method integers Ni are chosen with their sum
over i = 1, . . . , n, namely �nNi equal to N.
Then n groups are formed taking Ni units chosen by
SRSWOR from U into the ith group. Writing Qi as
the sum of the pi values for the Ni units in the ith
group, one unit from the ith group is chosen with a
probability equal to its pi value divided by Qi and this
is repeated independently for the n groups formed.
Then RHC’s unbiased estimator for Y is

tRHC = �nyi
Qi

pi
,

writing, (yi, pi) as the yi and pi value for the unit
chosen from the ith group. Its variance is

V (tRHC) = �nN 2
i − N

N (N − 1)

[∑ y2
i

pi
− Y 2

]

and RHC’s unbiased estimator for V (tRHC) is

v(tRHC) =
(∑

n N 2
i − N

N 2 −∑
n N 2

i

)[
�nQi

(yi

pi

)2
− t2

RHC

]
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The following are the steps for bootstrap sampling
given by SITTER (1992) in this case.
(a) Choose an integer n∗ such that 1 < n∗ < n. Di-

vide the initially chosen RHC sample s of size n
into n∗ nonoverlapping groups, taking into the
ith group (i = 1, . . . , n∗), ni units of s such that
the sum of ni ’s over the n∗ groups, namely �n∗ni,
equals n. Treat the Qi ’s, for which �nQi = 1,
as the normed size measures of the units in s.
Calculate the sum R∗

i of the Qi values for the ni
units in the ith group into which s is split up.
Then from the ith group choose one unit with
a probability proportional to the ratio of its Qi
value to R∗

i and repeat this independently for
all the n∗ groups. Thus, a sample s∗ of size n∗ is
generated out of the original s.

(b) Repeat step (a) a total of times equal to

k =
[
�n∗n2

i − n
n(n − 1)

] (
N 2 − �nN 2

i
)(

�nN 2
i − N

)
each time keeping s intact but replacing s∗ each
time.

(c) Let

y∗
1

R∗
1

Q∗
1

, . . . , y∗
n∗

R∗
n∗

Q∗
n

denote values respectively for the 1st, . . . , n∗th
group from which one unit each is selected and
pooling together the corresponding k replicates
the values written as

y∗
1

R∗
1

Q∗
1

, . . . , y∗
n∗

R∗
n∗

Q∗
n∗

, . . . , y∗
kn∗

R∗
kn∗

Q∗
kn∗

Then, calculate θ∗ based on the kn∗ samples,
values.

(d) Repeat independently steps (a) to (c) a large
number of times B . For the bth replicate, let θ∗

b
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be the θ∗ value and

θ∗
B = 1

B

B∑
b=1

θ∗
b

Then,

vb = 1
B − 1

B∑
b=1

(θ∗
b − θ∗

B )2

is the variance estimator for θ∗.
SITTER (1992b) has shown that, in the

linear case for the RHC estimator based on

Ŷ
∗ = 1

kn∗

[
y∗

1
R∗

1
θ∗

1
+ . . . + y∗

kn∗
R∗

kn∗

Q∗
kn∗

]

one has E∗(Ŷ
∗
) = Y and V∗(Ŷ

∗
) = v(tRHC).

Finally, let us add one point, that, besides the
percentile method of constructing the confidence
interval discussed earlier, the following double
bootstrap method is also often practicable.

Let θ̂ be a point estimator for a parameter
θ with v as an estimator for the variance of θ̂ .

Corresponding to the standardized pivotal
quantity

θ̂ − θ√
v

,

let us consider δb = θ̂b−θ̂√
vb

, where θ̂b is a bootstrap
estimator for θ based on the bth bootstrap sam-
ple when a large number of bootstrap samples
are drawn by one of the bootstrap procedures.
Let another set of B bootstrap samples by the
same method be drawn from this bth bootstrap
sample on which basis vb is the variance estima-
tor for θ̂ .

Now, constructing the histogram based on
the values of δb above, let l and u be the lower
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and upper 100α/2% points respectively of this
histogram. Then, approximately,

1 − α = Prob

[
l <

θ̂b − θ̂√
vb

< u

]
= Prob[θ̂b − u

√
vb < θ̂ < θ̂b − l

√
vb]

Now replacing θ̂ by θ and θ̂b by θ̂ in this one may
write

1 − α = Pr[θ̂ − u
√

vb < θ < θ̂ − l
√

vb]

So (θ̂ −u
√

vb, θ̂ + l
√

vb) provides the 100(1−α)%
double bootstrap confidence interval for θ .
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Chapter10

Sampling from Inadequate
Frames

Suppose a finite population of N units is divisible into a num-
ber of groups. If the groups are mutually exclusive and, to-
gether, they exhaust the population, the number of units
belonging to each group is known and it is also possible to
identify at the start of the survey which individual univocally
belongs to which group, then one may undertake standard pro-
cedures of sample selection and estimation of parameters of in-
terest. For example, one may have stratified sampling if from
each group with a known composition a predetermined num-
ber t(≥1) of units is sampled. If instead, only some, but not all,
the groups are decided to be sampled with preassigned selec-
tion probabilities, we have cluster sampling. The groups are
called strata in case of stratified sampling where each stra-
tum is represented in the sample with probability 1. The same
groups are called clusters in case of cluster sampling when the
groups are given positive selection probabilities less than 1. If
the selected clusters are not fully surveyed, but only samples of
individuals of the selected clusters are surveyed, then we have

229
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two-stage sampling and the clusters are called the first-stage
units or primary sampling units (fsu or psu).

If instead, before sample selection it is not known as to
which group an individual belongs to, but the groups are iden-
tifiable and distinguishable with respect to known character-
istics like, for example, racial, educational, economic, occupa-
tional levels of distinction, etc., so that an individual after
selection and interrogation is assignable unequivocally to one
of the distinct groups, then the groups are called domains.
Neither the compositions nor the sizes of the domains are
known prior to at least the initial part of the survey.

But if, at the start of the survey, the sizes, that is, the num-
ber of units contained in the respective groups, are known, say,
from recent censuses, but their compositions are not known
so that one cannot utilize a frame to select members of the
respective groups with predetermined probabilities, then the
groups are called post-strata, provided that after the selec-
tion and survey the individuals are assignable to respective
groups and data analysis takes account of the assignment to
groups.

In the former case we are interested in inferring the char-
acteristics of population members of one or more domains. In
the second case the population is one of inferring parameters
relating to the entire population, but we intend to make use of
the knowledge of post-strata sizes and, if available, other post-
strata characteristics, even though we fail to choose samples
from the respective groups in adequate proportions.

In some cases we may have two or more overlapping
frames. In that case one may choose the samples separately
using several frames and face and work out associated addi-
tional problems of inference and interpretation. This is the
problem of multiple-frame estimation.

Sometimes the domains of interest may be so numerous,
while the total sample size one can afford is meager, that it is
impossible to have adequate representations of all domains of
interest in a sample. In that case, similar domains are concep-
tually pooled together and samples are amalgamated across
the similar domains to borrow strength from the ensembles
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in order to derive improved estimators for the respective do-
main parameters. This is the problem of small area estimation.

In many of these cases, the sample sizes representing var-
ious domains or post-strata become random variables. Hence
the problem of inferences conditional on certain sample config-
urations, as opposed to unconditional inferences where sample
configurations are averaged over conceptually repeated real-
izations of samples, arises. In what follows, we give short de-
scriptions of these issues.

10.1 DOMAIN ESTIMATION

Let D be a domain of interest within a population U = (1, . . . ,
i, . . . , N ). Let N D be the unknown size of D. Let a sample s of
size n be drawn from U with a probability p(s) according to a
design p admitting positive inclusion probabilities πi, πi j . Let
for i = 1, 2, . . . , N

IDi = 1(0) if i ε D (i /∈ D)
Y Di = Yi(0) if i ε D (i /∈ D).

Then the unknown domain size, total, and mean are, respec-
tively,

N D =
N∑
1

IDi, TD =
N∑
1

Y Di and T D = TD

N D

In analogy to Y = (Y1, . . . , Yi, . . . , YN )′ we write I D = (ID1, . . . ,
IDi, . . . , IDN )′ and Y D = (Y D1, . . . , Y Di, . . . , Y DN )′. Then, cor-
responding to any estimator t = t(s, Y ) = Ŷ , for Y = �N

1 Yi
we may immediately choose estimators for N D and TD, respec-
tively,

N̂ D = t(s, I D) and T̂D = t(s, Y D).

It may then be a natural step to take the estimator T̂ D for T D
as

T̂ D = T̂D

N̂ D
.
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If t is taken as a homogeneous linear unbiased estimator
(HLUE), that is, if it is of the form

t = t(s, Y ) =
∑
i∈s

bsiYi with
∑
s�i

bsi p(s) = 1 for all i,

then it has a variance

V p(t) =
∑

i

diY 2
i +

∑∑
i< j

dij YiY j

where

di =
∑
s�i

b2
si p(s) − 1, dij =

∑
s�i, j

bsibsj p(s) − 1

and an unbiased estimator for V p(t) is

vp(t) =
∑

dsi IsiY 2
i +

∑∑
i 	= j

dsij Isij YiY j

if dsi, dsij ’s are available subject to

Ep(dsi Isi) = di, Ep(dsij Isij ) = dij ,

writing as earlier

Isi = 1(0) if i ∈ s(i /∈ s), Isij = 1(0) if i, j ∈ s(i, j /∈ s).

It follows then that

V p(T̂D) = V p(t) ]Y →Y D
, vp(T̂D) = vp(t) ]Y →Y D

V p(N̂ D) = V p(t) ]Y →I D
, vp(N̂ D) = vp(t) ]Y →I D

where

V p(t) ]Y →Y D

means that Y in V P (t) is replaced by Y D with a corresponding
interpretation of the other expressions.

Next, if we may assume that the sample sD consisting
of the units of s contained in D, that is, sD = s ∩ D, has a
size nD(≤n) that is large enough so that we may apply the
linearization technique of section 9.1, then we may have the
following approximate formulae for the variance of T̂ D = T̂D

N̂ D
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and for an approximately unbiased estimator for that variance:

V p(T̂ D)  1
N 2

D
V p

(∑
s

bsi ZDi

)

= 1
N 2

D

∑
1

di Z2
Di +

∑∑
i 	= j

dij ZDi ZDj


vp(T̂ )  1

N̂ D)2

∑
i

dsi Isi Ẑ2
i +
∑∑

i 	= j

dsij Isij Ẑi Ẑ j


where

ZDi = Y Di − TD

N D
IDi

Ẑi = Y Di − T̂D

N̂ D
IDi, i = 1, . . . , N .

10.2 POSTSTRATIFICATION

Suppose a finite population U = (1, . . . , i, . . . , N ) of N units
consists of L post-strata of known sizes Nh, h = 1, . . . , L but
unknown compositions with respective post-strata totals Yh =∑Nh

i Yhi and means Y h = Yh/Nh, h = 1, . . . , L. Let a simple
random sample s of size n have been drawn from U yielding
the sample configuration n = (n1, . . . , nh, . . . , nL) where nh(≥ 0)
is the number of units of s coming from the hth post-stratum,
h = 1, . . . , L,

∑L
h=1 nh = n. In order to estimate Y = �WhY h,

writing Wh = Nh
N , h = 1, . . . , L we proceed as follows.

Let Ih = 1(0) if nh > 0 (nh = 0). Then,

E(Ih) = Prob(Ih = 1) = 1 −
(N − Nh

n

)/(N
n

)
, h = 1, . . . , L.

For Y a reasonable estimator may be taken as

tpst = tpst(Y ) =
∑

WhyhIh/E(Ih)∑
WhIh/E(Ih)

writing yh as the mean of the nh units in the sample consisting
of members of the hth post-stratum, if nh > 0; if nh = 0, then
yh is taken as Y h. It follows that x = ∑WhyhIh/E(Ih) is an
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unbiased estimator for Y and b = ∑WhIh/E(Ih) an unbiased
estimator for 1. Yet, instead of taking just a as an unbiased es-
timator for Y , this biased estimator of the ratio form x

b is pro-
posed by DOSS, HARTLEY and SOMAY AJULU (1979) because
it has the following linear invariance property not shared
by itself:

Assume Yi = α + βZi; then yh = α + βzh and tpst(Y ) =
α + βtpst(Z), with obvious notations. Further properties of tpst
have been investigated by DOSS et al. (1979) but are too com-
plicated to merit further discussion here.

10.3 ESTIMATION FROM MULTIPLE FRAMES

Suppose a finite population U of size N is covered exactly by
the union of two overlapping frames A and B of sizes N A and
N B . Let EA denote the set of units of A that are not in B ,
EAB denote those that are in both A and B , and EB denote
the units of B that are not in A; N E A, N AB , N E B respectively
denote the sizes of these three mutually exclusive sets. Let
two samples of sizes nA, nB be drawn by SRSWOR from the
two lists A and B respectively in independent manners. Let
na, nab, nba, nb denote respectively the sampled units of A that
are in EA, EAB and of B that are in EAB , EB . Let us denote the
corresponding sample means by ya, yab, yba, and yb. Then for
the population total Y =∑N

1 Yi one may employ the following
estimators

Ŷ1 = (NEAya + NEB yb) + NAB ( pyab + qyba)

if N E A, N E B , and N AB are known, or, without this assumption,

Ŷ2 = N A

nA
(ya + pyab) + N B

nB
(yb + qyba).

In Ŷ1 and Ŷ2, p is a suitable number, 0 < p < 1 and p + q = 1.
This procedure has been given by HARTLEY (1962, 1974). Sup-
posing first that the variance of the variable of interest y for the
respective sets EA, EAB , EB are known quantities σ 2

A, σ 2
AB , σ 2

B
and choosing a simple cost function, he gave rules for optimal
choices of nA, nB subject to a given value of n = nA + nB and
of p.
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SAX ENA, NARAIN and SRIVASTAVA (1984) consider the
following extension of HARTLEY ’s (1962, 1974) technique to
the case of two-stage sampling. Suppose that whatever has
been stated above applied to the population of first-stage units
(fsu). For each sampled fsu i, the total value Yi over its second-
stage units (ssu) is unavailable, but is estimated on taking
samples of ssus independently. Then Ŷ1, Ŷ2 cannot be used
and the following modifications are needed. Suppose for the
ith fsu (i = 1, . . . , N ) two frames Ai, Bi are available that
overlap but together coincide with the set of Mi ssus in the
ith fsu. Let E Ai, E Bi, ABi denote sets of ssus in ith fsu con-
tained exclusively in Ai, Bi and both in Ai and Bi, respectively;
let their sizes and variances be, respectively, MAi , MBi , MABi ,
σ 2

Ai
, σ 2

Bi
, σ 2

ABi
. Let independent SRSWORs of sizes mAi , mBi be

respectively drawn independently from Ai, Bi. Let mE Ai , mABi ,
mB Ai , mE Bi denote respectively the units out of mAi that are in
E Ai, ABi and of mBi that are in ABi and E Bi. Let yai

, yabi
, ybai

,
ybi

denote the corresponding sample means. Let ri(0 < ri < 1)
and si such that ri + si = 1 be numbers suitably chosen. Then,

Ŷi = MAi yai
+ MABi (ri yabi

+ si ybai
) + MBi ybi

is taken as an unbiased estimator for Yi. Writing, with obvious
notations,

ŷa = 1
na

na∑
1

Ŷa, ŷb = 1
nb

nb∑
1

Ŷbi , ŷab = 1
nab

nab∑
1

Ŷabi ,

ŷba = 1
nba

nba∑
1

Ŷbai

an unbiased estimator for Y is taken as

Ŷ 1 = N E Aŷa + N AB ( pŷab + qŷba) + N E B ŷb

if N E A, N AB , N E B are known, or as

Ŷ 2 = N A

nA
( ŷa + pŷab) + N B

nB
( ŷb + qŷba).

SAX ENA et al. (1984) have worked out optimal choices of ri,
si, p, q, nA, nB , mAi , mBi considering suitable cost functions
following HARTLEY ’s (1962, 1974) procedure of multiple frame
estimation and recommended replacement of unknown
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parameters occurring in the optimal solutions by sample ana-
logues, and have considered various special cases giving sim-
pler solutions.

10.4 SMALL AREA ESTIMATION

10.4.1 Small Domains and Poststratification

Suppose a finite population U of N units labeled 1, . . . , i, . . . , N
consists of a very large, say several thousand, domains of in-
terest, like the households of people of various racial groups of
different predominant occupational groups of their principal
earning members located in various counties across various
states like those in U.S.A. For certain overall general purposes
a sample s of a size n, which may also be quite large, say a few
thousand, may be supposed to have been chosen according to
a design p admitting πi > 0. Then the total Td =∑Ud

Yi for a
variable of interest y relating to the members of a particular
domain Ud of size Nd of interest may be estimated using the
direct estimators

td =
(∑

sd

Yi/πi

)
or

t ′
d = Nd

(∑
sd

Yi/πi

)/(∑
sd

1/πi

)
.

We write sd for the part of the sample s that coincides with
Ud , and nd for the size of sd , d = 1, . . . , D, writing D for the
total number of domains such that Ud ’s are disjoint, coincident
with U when amalgamated over all the Ud ’s d = 1, . . . , D. We
suppose D is very large and so even for large n = ∑D

d=1 nd ,
the values of nd for numerous values of d turn out to be quite
small, and even nil for many of them. Thus the sample base
of td or t ′

d happens in practice to be so small that they may
not serve any useful purpose, having inordinately large mag-
nitudes and unstable estimators for their variances, leading
to inconsequential confidence intervals, which in most cases
fail to cover the true domain totals. Similar and more acute
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happens to be the problem of estimating the domain means
T̄d = Td /Nd , writing domain size as Nd , which often is un-
known. Hence the problem of small domain statistics, and
a special method of estimation is needed for the parameters
relating to small domains, which are often geographical areas
and hence are called small areas or local areas. In this section,
we will briefly discuss a few issues involved in small area or
local area estimation.

Often a population containing numerous domains of in-
terest is also divisible into a small number of disjoint groups
U.1, . . . , U .G, say G in practice not exceeding 20 so that U
may be supposed to be cross-classified into DG cells Udg, d =
1, . . . , D and g = 1, . . . , G, of sizes Ndg such that

∑
g Ndg =

Nd ,
∑

d Ndg = N .g and
∑

g
∑

d Ngd =∑d
∑

g Ndg =∑d Nd =∑
g N .g = N . Of course the union of Udg over d is U .g and

that over g is Ud . If the sample is chosen from U disregard-
ing U.g’s the latter are just the post-strata in case N .g’s are
known, as will be supposed to be the case; often Ndg’s them-
selves are reliably known from a recent past census or from
administration or registration data sources in problems of lo-
cal area estimation. These post-strata may stand for age, sex,
or racial classifications in usual practices. If the population is
divided again into strata for sampling purposes, then we have
classifications leading to the entities for which we have the
following obvious notations. The hth stratum is U ..h, of size
N ..h, the size of cell Udgh is Ndgh, N = ∑

d
∑

g
∑

h Ndgh =∑
g
∑

h N .gh = ∑
d
∑

h Nd .h = ∑
d
∑

g Ndg, etc. Correspond-
ingly, N , ndgh, n.gh, nd .h, ndg will denote sizes of the samples
s, sdgh, s.gh, sd .h, sdg, etc. Further, we shall write Hd to denote
the set of design strata having a non-empty intersection with
the domain Ud . The problem is now to estimate the domain
total

Td = �Hd �Ud .hYk

and the expansion or direct estimators for it are

td = �Hd �sd .hYk/πk

or

t ′
d = Nd

(
�Hd �sd .hYk/πk

)
/
(
�Hd �sd .h1/πk

)
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based on a stratified sample. These estimators make a mini-
mal use of data that may be available and for most domains,
being based on too-scanty survey data, are too inefficient to
be useful. So ways and means are to be explored to effect im-
provements upon them by broadening their databases and bor-
rowing strengths from data available on similar domains and
secondary external sources.

One procedure is to use poststratified estimators if auxil-
iary data, for example, values Xi on a correlated variable, are
available for every unit for each cell Udgh. Then the following
estimators of Td may be employed based on poststratification:

tpdx =
∑

g

[(
�Udg Xk

) (
�sdgYk/πk

) (
�sdg Xk/πk

)]

tpdxsc =
∑

g

�Hd

∑
Udgh

Xk
(
�Hd �sdghYk/πk

)/(
�Hd �sdghXk/πk

)
tpdxss =

∑
g

�Hd

(
�sdghYk/πk

) [ �Udgh Xk

�sdghXk/πk

]
.

These are ratio-type poststratified estimators, the latter two
being, respectively, combined-ratio and separate-ratio types
based on stratified sampling. In case Xk ’s are not available
but the sizes Ndg and, in case of stratified sampling, the sizes
Ndgh , are known, then we have the simpler count-type post-
stratified estimators based on SRSWORs from U or U ..h’s:

tpdc =
∑

g
Ndgydg,

tpdcsc =
∑

g
�Hd Ndgh

(
�Hd N ..h

ndgh

n..h

ydgh

)/(
�Hd N ..h

ndgh

n..h

)
tpdcss =

∑
g

�Hd Ndghydgh.

10.4.2 Synthetic Estimators

Since ndg and ndgh’s are very small, if we may believe that the
g groups have been so effectively formed that in respect of the
characteristics of interest y there is homogeneity within each
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separate group across the domains, then the following broad-
based estimators for Td may be useful

tcsd =
∑

g
Ndg

(
�s.gYk/πk

)
/
(
�s.g1/πk

)
tcscd =

∑
g

(
�Hd Ndgh

) (
�Hd �s.ghYk/πk

)
/
(
�Hd �s.gh1/πk

)
t ′
cssd =

∑
g

�Hd Ndgh
(
�s.ghYk/πk

)
/
(
�s.gh1/πk

)
called the count-synthetic estimators for unstratified,
stratified-combined, and stratified-separate sampling, re-
spectively. The corresponding ratio-synthetic estimators for
unstratified and stratified sampling are:

tRsd =
∑

g
Xdg

(
�s.gYk/πk

)
/
(
�s.g Xk/πk

)
tRscd =

∑
g

(
�Hd Xdgh

) (�Hd �s.ghYk/πk
)(

�Hd �s.ghXk/πk
)

tRssd =
∑

g
�Hd Xdgh

(
�s.ghYk/πk

)
/
(
�s.ghXk/πk

)
.

For SRSWOR from U and independent SRSWORs from U ..h,
we have the six simpler synthetic estimators

t1 =
∑

g
Ndgy.g

t2 =
∑

g
Xdg

y.g

x.g
,

t3 =
∑

g
�Hd Ndgh

(
�Hd

N ..h
n..h

n.ghy.gh

)/(
�Hd

N ..h
n..h

n.gh

)
t4 =

∑
g

�Hd Ndghy.gh

t5 =
∑

g
�Hd Xdgh

(
�Hd

N ..h
n..h n.ghy.gh

)
(
�Hd

N ..h
n..h n.ghx.gh

)
t6 =

∑
g

�Hd Xdgh
y.gh

x.gh
.
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Since the sample sizes n.gh compared to ndgh and n.g compared
to ndg are large, the synthetic estimators are based on much
broader sample survey databases than the poststratified esti-
mators, and hence have much smaller variances. But if the con-
struction of the post-strata is not effective so that the charac-
teristics across the domains within respective post-strata are
not homogeneous, the synthetic estimators are likely to involve
considerable biases. As a result, reduction of variances need
not in practice be enough to offset the magnitudes of squared
biases to yield values of mean square errors within reasonable
limits. Also estimating their biases and MSEs is not an easy
task. Incidentally, a simple count-synthetic estimator based on
SRSWOR, for T d = Td

Nd
is

tcsd =
∑

g

Ndg

Nd
y.g =

∑
g

Pdgy.g,

such that 0 < Pdg < 1,
∑

g Pdg = 1. An alternative count-
synthetic estimator for T d , namely,

tcsd =
∑

g

Ndg

N .g
y.g =

∑
g

Wdgy.g

with 0 < Wdg < 1,
∑

d Wdg = 1 has also been studied in the lit-
erature and shows different properties.

10.4.3 Model-Based Estimation

An alternative procedure of small area estimation involving
a technique of borrowing strength is the following. Suppose
Td , d = 1, . . . , D are the true values for large number, D, of do-
mains of interest and, employing suitable sampling schemes,
estimates td for d ∈ s0 are obtained, where s0 is a subset of m
domains. Now, suppose auxiliary characters xj , j = 1, . . . , K
are available with known values X j d , d = 1, . . . , D. Then, pos-
tulating a linear multiple regression

Td = β0 + β1 X1d + . . . + βK X Kd + εd ; d = 1, . . . , m

one may write for d ε s0

td = β0 + β1 X1d + . . . + βK X Kd + ed + εd
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writing ed = td − Td , the error in estimating Td by td . Now
applying the principle of least squares utilizing the sampled
values, one may get estimates β̂ j for j = 0, 1, . . . , K based on
(td , X j d ) for d εs0 and j = 1, . . . , K , assuming m > K + 1.
Then, we may take

∑K
0 β̂ j X j d = T̂d as estimates for Td not

only for d εs0 but also for the remaining domains d /∈ s0.
This method has been found by ERICKSEN (1974) to work

well in many situations of estimating current population fig-
ures in large numbers of U.S. counties and in correcting census
undercounts. An obvious step forward is to combine the esti-
mators td with T̂d for d = 1, . . . , m to derive estimators that
should outperform both td and T̂d , d = 1, . . . , m. Postulating
that ed ’s and εd ’s are mutually independent and separately
iid random variates respectively distributed as N (0, σ 2) and
N (0, τ2), following GHOSH and MEEDEN (1986) one may derive
weighted estimators

t∗
d = τ2

σ 2 + τ2 td + σ 2

σ 2 + τ2 T̂d , d = 1, . . . , m

provided σ and τ are known. If they are unknown, they are
to be replaced by suitable estimators. Thus, here we may use
JAMES–STEIN or empirical Bayes estimators of the form

t̂d = Ŵ td + (1 − Ŵ )T̂d

with 0 < Ŵ < 1, such that according as td (T̂d ) is more accurate
for Td , the weight Ŵ goes closer to 1(0). These procedures we
have explained and illustrated in section 4.2. PRASAD (1988)
is an important reference.

A compelling text on small area estimation is J. N. K.
RAO (2002); MUKHOPADHY AY (1998) is an immediately ear-
lier text. In the context of small area estimation some of the
concepts need to be mentioned as below. A direct estimator
for a domain parameter is one that uses the values of the
variable of interest relating only to the units in the sample
that belong to this particular domain. An indirect estimator
for a domain parameter of interest is one that uses values of
the variables of interest in the sample of units even outside
this specific domain. As illustrations, let us consider the gen-
eralized regression (GREG) estimator for a d th domain total
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Yd of a variable of interest (d = 1, . . . , D), viz.

tgd =
∑
i∈s

yi

πi
Idi +

Xd −
∑
i∈s

xi

πi
Id i

bQd

writing

Idi = 1 if i ∈ Ud

= 0, else,

Xd = ∑N
1 xi Id i, x a variable well associated with y, Qi(> 0) a

preassigned real number and

bQd =
∑

i∈s yixi Qi Idi∑
i∈s x2

i Qi Id i

This tgd may be treated as a model-motivated, rather than
model-assisted, as per SÄRNDAL, SWENSSON and WRETMAN’s
(SSW, 1992) terminology, estimator or predictor for Yd sug-
gested by the underlying model for which we may write

M1 : yi = βd xi + ∈i, i ∈ Ud , d = 1, . . . , D.

The regression coefficient βd in this model is estimated by bQd
and used in tgd . The tgd is a direct estimator and it does not
borrow any strength from outside the domain. If M1 is replaced
by the model:

M2 : yi = βxi + ∈i, i ∈ U ,

then tgd may more reasonably be replaced by

tsgd =
∑
i∈s

yi

πi
Id i +

Xd −
∑
i∈s

xi

πi
Id i

bQ

taking

bQ =
∑

i∈s yixi Qi∑
i∈s x2

i Qi
.

This tsgd borrows strength from outside the domain Ud be-
cause in bQ values of yi are used for i in s that are outside
sd = s ∩ Ud and hence it is an indirect estimator. So, we call
it a synthetic GREG estimator in contrast to the nonsynthetic
GREG estimator tgd , which is a direct estimator.
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Let us write

tgd =
∑
i∈s

yi

πi
gsd i,

gsdi =
1 +

Xd −
∑
i∈s

xi

πi
Id i

 xi Qiπi∑
i∈s x2

i Qi Isd i

 Idi,

tsgd =
∑
i∈s

yi

πi
Gsdi,

Gsdi =
Idi +

Xd −
∑
i∈s

xi

πi
Id i

 xi Qiπi∑
i∈s x2

i Qi


edi = (yi − bQd xi), esd i = (yi − bQxi)

Then, following SÄRNDAL (1982), two estimators for each of
the mean square errors (MSE) of tgd and of tsgd about Yd are
available as

mkd =
∑∑
i< j ∈s

(
πiπ j − πi j

πi j

)(
akiedi

πi
− akj ed j

π j

)2

,

k = 1, 2; a1i = Idi, a2i = gsdi

mskd =
∑∑
i< j ∈s

(
πiπ j − πi j

πi j

)(
bkiesd i

πi
− bkj esd j

π j

)2

,

k = 1, 2; b1i = Idi, b2i = Gsdi, i ∈ s

In order to borrow further strength in estimation, let us
illustrate a way by a straightforward utilization of the above
models M1 and M2 further limited respectively as follows:

M ′
1 : Model M1 with ∈i

ind∼ N (0, A)

M ′
2 : Model M2 with ∈i

ind∼ N (0, A)

with A as an unspecified non-negative real constant. Let us
further postulate:

I. tgd /Yd
ind∼ N (βd Xd , vd )

Yd
ind∼ N (βd Xd , A)
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and

II. tsgd /Yd ∼ N (βXd , vd ), Yd
ind∼ N (βXd , A)

with vd as either mkd in case I and as mskd in case II.
Considering case II it follows that( tsgd

Yd

)
∼ N2

((
βXd

βXd

)
,
(A+ vd A

A A

))
;

Consequently,

Yd |tsgd ∼ N
(

βXd + A
A+ vd

(tsgd − βXd ),
Avd

A+ vd

)
So,

Ŷ Bd =
( A

A+ vd

)
tsgd +

( vd

A+ vd

)
βXd

is the Bayes estimator (BE) for Yd . This is true for any td if
the model is valid for td and not just for tsgd . But as A and B
are unknown, Ŷ Bd is not usable.

Let

β
∼ =

∑D
d=1 tsgd Xd /(A+ vd )∑D

d=1 X 2
d /(A+ vd )

(10.1)

and
D∑

d=1

(tsgd − β
∼
Xd )2/(A+ vd ) be equated to (D − 1). (10.2)

Solving Eq. (10.1) and Eq. (10.2) by iteration starting with
A = 0 in Eq. (10.1), let us find Â as an estimator for A and

β̂ =
∑D

d=1 tsgd Xd /(Â + vd )∑D
d=1 X 2

d /(Â + vd )
.

Taking β̂, Â as estimators of β, A by the method of moments it
is usual to take

Ŷ E Bd =
(

Â

Â + vd

)
tsgd +

(
vd

Â + vd

)
β̂Xd

as the empirical Bayes estimator for Yd . FAY and HERRIOT
(1979) is the relevant reference. PRASAD and RAO (1990) have
given the following estimator for Ŷ E Bd as

md = m1d + m2d + 2m3d ,
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where

m1d = Âvd

Â + vd
= rd vd , say, rd = Â

Â + vd

m2d = (1 − rd )2 X 2
d∑D

d=1

(
X2

d
Â+vd

) ,

m3d = v2
d

(Â + vd )3

 2
D

D∑
d=1

(Â + vd )2


GHOSH (1986) and GHOSH and LAHIRI (1987) have discussed
asymptotical optimality properties of empirical Bayes estima-
tors (EBE) valid when D is large.

In an unrealistic special case when vd = v for every d =
1, 2, . . . , D, we have

Ŷ ′
Bd =

( A
A+ v

)
tsgd +

( v
A+ v

)
βXd

β
∼′ =

 D∑
d=1

tsgd Xd

/ D∑
d=1

X 2
d .

Also

E

 D∑
d=1

(tsgd − β
∼′

Xd )2/(A+ v)

 = 1
D − 1

Writing

S =
D∑

d=1

(tsgd − β
∼′

Xd )2

we have
1

A+ v
= E

( 1
S

)
/(D − 3).

So, D−3
S is an unbiased estimator for 1

A+v . Consequently, one
may employ for Yd the JAMES–STEIN (1961) estimator

Ŷ J sd =
(

1 − (D − 3)v
S

)
tsgd +

( (D − 3)v
S

)
β
∼′

Xd .
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This has the property that

E

 D∑
d=1

(Ŷ J sd − Yd )2

 ≤ E

 D∑
d=1

(tsgd − Yd )2

 .

Obviously Ŷ E Bd is more realistic than Ŷ J Sd , and hence the
latter is discarded in practice. We have illustrated how small
domain statistics are derived by way of borrowing strength
from the geographically neighboring domains. An approach of
borrowing from past data on the same domain for which a pa-
rameter needs to be estimated and also on the neighboring do-
mains is possible. An effective way to do this is by Kalman filter
technique as succinctly described by MEINHOLD and SINGPUR-
WALLA (1983) and CHAUDHURI and MAITI (1994, 1997), two
relevant references.

10.5 CONDITIONAL INFERENCE

In the design-based approach, usually the inferential basis
for survey data analysis is provided by conceptually repeated
selection of samples. Performance characteristics of sampling
strategies are assessed on averaging out certain functions of
samples and parameters over all possible samples bearing pos-
itive selection probabilities. In the predictive approach and
Bayesian inference, the assessment is conditional on the real-
ized sample without speculation of any kind as to what would
have happened if, instead of the sample at hand, some other
samples might have been drawn, distorting the current sam-
ple configurations. But recently some information is available
in survey sampling literature on possible conditional inference
even within the ambit of classical design-based repeated sam-
pling approach. We intend to refer to some of them here in
brief as the issue is relevant in the contexts of poststratified
sampling and small area estimation.

Suppose for a sample s of size n taken at random from
a population U = (1, . . . , i, . . . , N ) of N units with H post-
strata of known sizes Nh an observed sample configuration
is n = (n1, . . . , nh, . . . , nH ), nh (≥ 0,

∑H
1 nh = n) denoting the
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numbers of units of s coming from the hth post-stratum, h =
1, . . . , H . Then, in evaluating the performances of

t1 =
∑

h

Whyh

where yh is the mean of the nh sample observations if nh ≥ 1,
and 0 otherwise,

t2 =
∑

h

WhyhIh/E(Ih)

or of

t3 =
∑

WhyhIh/E(Ih)/
∑

WhIh/E(Ih)

in estimating Ŷ, where Wh = Nh
N , yh as before if nh ≥ 1 and

otherwise yh = Ŷh, the hth post-stratum mean, and Ih = 1(0)
if nh ≥ 1 (= 0) and

E(Ih) = Prob(Ih = 1) = 1 −
(N − Nh

n

)/(N
h

)
,

the questions are the following. Is it right to evaluate t j , j =
1, 2, 3 in terms of overall expectations E = E(t j ) and MSEs
M = E(t j − Ŷ)2 or the conditional expectations Ec(t j |n) = Ec
and conditional MSEs

Mc(t j |n) = Ec

[
(t j − Y )2|n

]
= Mc,

given the realized n for the sample s at hand? A consensus is
not easy to reach, but it seems that currently the balance has
tilted in favor of the opinions that (a) for future planning of
similar surveys, for example, in allocating a sample size con-
sistently with a given constrained budget, the parameters E
and M are more relevant than Ec and Mc while (b) in ana-
lyzing the current data through point estimation along with a
measure of its error and in interval estimation, the relevant
parameters are Ec and Mc. Admitting (b), one should construct
conditional rather than unconditional confidence intervals uti-
lizing sample-based estimators M̂c for Mc rather than M̂ for M.
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For example, noting that

M =
∑

W 2
h S2

h

[
E
( 1

nh

)
− 1

Nh

]
,

S2
h = 1

N −1
h

Nh∑
1

(Yhk − Y h)2, Wh = Nh

N

and

Mc =
∑

W 2
h S2

h

( 1
nh

− 1
Nh

)
,

writing

s2
h = 1

nh − 1

nh∑
1

(Ynk − yh)2

if nh > 1 and 0, otherwise, it seems more plausible to construct
a confidence interval t1 ± τα/2

√
M̂c where

M̂c =
∑

W 2
h s2

h

( 1
nh

− 1
Nh

)
rather than t1 ± τα/2

√
Mc where

M̂ =
∑

W 2
h s2

h

[
E
( 1

nh

)
− 1

Nh

]
.

Similarly, in comparing the performances as point estimators

of t1 with a comparable overall sample mean ys =
∑

nhyh
n , it

is more meaningful to compare Mc instead of M with M ′
c =

Ec[(ys−Y )2|n] instead of with M ′ = E[(ys−Y )2]. In small area
estimation throughout conditional MSEs, domain estimators
are usually considered relevant and confidence statements are
to be based on suitable estimators of these conditional MSEs.
In each case the crux of the matter is that one must find a
suitable ancillary statistic a = a(d ) given the survey data
d = (i, Yi|iεs), such that the probability distribution of a(d )
is independent of Y and then one should condition on a(d ) for
given d in proceeding with a conditional inferential approach
in survey sampling. For further illuminations one should con-
sult HOLT and SMITH (1979) and J. N. K. RAO’s (1985) works
on this topic.
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Chapter11

Analytic Studies of Survey Data

Suppose y, x1, . . . , xk are real variables with values Yi, X j i, j =
1, . . . , k; i = 1, . . . , N , assumed on the units of U = (1, . . . , i, . . . ,
N ), labeled i = 1, . . . , N . If the survey data d = (s, Yi, X j i|iεs),
provided by a design p, are employed in inference about cer-
tain known functions of Yi, X j i, for i = 1, . . . , k; i = 1, . . . , N
then we have what is called a descriptive study. For exam-
ple, we may intend to estimate the totals Y = ∑N

i Yi, X j =∑N
1 X j i, j = 1, . . . , k or corresponding means or ratios along

with their variance or mean square error estimators and set up
confidence intervals concerning these estimand parameters.
Or we may be interested to examine the values of correlation
coefficients between pairs of variables or multiple correlation
coefficients of one variable on a set of variables, or may like to
estimate the regression coefficient of y on x1, . . . , xk, and so on.
Then the parameters involved are also defined on the values
Yi, X j i for i = 1, . . . , N , and our analysis is descriptive.

Often, however, the parameters of concern relate to ag-
gregates beyond those defined exclusively on the population
U = (1, . . . , N ) at hand with values Yi, X j i currently assumed
by y, xj ’s on the members of U . More specifically, consider a
superpopulation setup so that (Yi, Y1i, . . . , Xki) is regarded as

249
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a particular realization of a random vector with k + 1 real-
valued coordinates. Then the survey data may be employed to
infer about the parameters of the superpopulation model, in
which case we say that we have analytic studies.

In this chapter we briefly discuss theoretical develop-
ments available from the literature about how to utilize sur-
vey data in examining correlation and regression coefficients
of random variables under postulated models. It is important
to decide whether a purely design-based (p-based) or a purely
model-based (m-based) approach or a combination of both (pm-
based) is appropriate to be able to end up with the right formu-
lation of inference problems, choose correct criteria for choice
of strategies, appropriate point and interval estimators, along
with suitable measures of error and coverage probabilities.
These issues are briefly narrated in section 11.2.

In section 11.1 we take up another, more elementary, prob-
lem of handling surveys. Suppose, in terms of certain charac-
teristics, the individuals in U = (1, . . . , i, . . . , N ) are assignable
to a number of disjoint categories, and on the basis of ascertain-
ments from a sample s of individuals chosen with probability
p(s) we obtain a sample frequency distribution of individuals
falling into these categories. Then we may be interested to use
this observed sample frequency distribution to test hypotheses
concerning the corresponding superpopulation probabilities.
Our hypotheses to be tested may concern agreement with a
postulated set of category probabilities or independence among
two-way cross-classified distributions. For these problems of
tests for goodness of fit, homogeneity, and independence, clas-
sical theories of statistics are well-known. These classical theo-
ries are developed under the assumption that the observations
are independent and identically distributed (iid, in brief). But
when samples are chosen from finite populations, they are se-
lected in various alternative ways like SRSWOR, with non-
negligible sampling fractions, stratified sampling with equal
or unequal probabilities of selection, cluster sampling, mul-
tistage sampling, and various varying probability sampling
schemes. Any sampling different from SRSWR from an un-
stratified population will be referred to as complex sampling.
So, it is important to examine whether the classical analytical
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procedures available for iid observations continue to remain
valid under violation of this basic assumption and, if not, to
study the nature of the effect of complex sampling and, in
case the effects are drastic, what kind of modifications may
be needed to restore their validity.

11.1 DESIGN EFFECTS ON CATEGORICAL
DATA ANLYSIS

11.1.1 Goodness of Fit, Conservative
Design-Based Tests

Suppose a character may reveal itself in k + 1 distinct forms
1, . . . , i, . . . , k + 1 with respective probabilities p1, . . . , pi, . . . ,
pk, pk+1, (0 ≤ pi ≤ 1,

∑k+1
1 pi = 1), which are unknown.

Let a sample s of size n be drawn with probability p(s) from
U = (1, . . . , N ) such that each population member bears one
of these disjoint forms of this character. Let p̂i with 0 ≤ p̂i ≤ 1
denote suitable consistent estimators for pi, i = 1, . . . , k + 1
based on such a sample s. Suppose pi0, i = 1, . . . , k + 1 are
certain preassigned values of pi, i = 1, . . . , k + 1. We may be
interested to test the goodness of fit null hypothesis

H0 : pi = pi0, i = 1, . . . , k + 1

against the alternative H : pi �= pi0 for at least one i = 1, . . . ,
k + 1. Let us write

p = ( p1, . . . , pk)′,
p̂ = ( p̂1, . . . , p̂k)′,

p0 = ( p10, . . . , pk0)′.

We shall assume that n is large and, under H0, the vector√
n( p̂ − p0) has an asymptotically normal distribution with

a k-dimensional null mean vector o = ok and an unknown
variance–covariance matrix V = Vk×k, that is, symbolically,

√
n( p̂ − p0) ∼ Nk(o, V ).

Writing V = (Vij ), let V̂ij , based on s, be consistent for Vij

and assume that V̂ = (V̂ij ) = V̂k×k is nonsingular. Then, the
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well-known Wald statistic,

XW = n( p̂ − p0)′V̂ −1( p̂ − p0)

is useful to test the above-mentioned H0 : p = p0. Under the
assumptions stated, this XW is distributed asymptotically as
a chi-square variable χ2

k with k degrees of freedom (df) if H0
is true.

Let Zi, i = 1, . . . , k be k independent variables distributed
as N (0, 1). Then Z2

i , i = 1, . . . , k are independent chi-square
variables with 1 df each so that

∑k
1 Z2

i is a variable distributed
as a chi-square with k df. Hence, for large n, we write,

XW ∼
k∑
1

Z2
i .

In using XW we need to have V̂ and V̂ −1. But in large-scale
surveys, at most, V̂ii ’s are published, and even if V̂ij ’s for i �= j
are available, V̂ −1 is often found to have considerable insta-
bility when the number of categories is large, the number of
clusters is small, and the sample size per category is small. So,
alternatives to XW are desirable to test for goodness of fit.

A well-known alternative statistic to test H0 is the Pear-
sonian chi-square statistic

X = X p = n
k+1∑

1

( p̂i − pio)2/pio

or a modified version of it, namely,

X M = n
k+1∑

1

( p̂i − pio)2/ p̂i

which, for large n, is asymptotically equivalent to X p. Let us
write

P = Diag( p) − p p′ and P0 = Diag( p0) − p0, p′
0.

Then it follows that

X = n( p̂ − p0)′ P −1
0 ( p̂ − p0).

Of course, P = P0 if H0 is true.
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If one takes an SRSWR in n drawn and denotes by ni the
sample frequencies of individuals bearing the form i, then the
vector n = (n1, . . . , nk)′ has a multinomial distribution with
expectation p and dispersion matrix P ; therefore, in this con-
text SRSWR is referred to as multinomial sampling. If H0 is
true, then X has asymptotically the distribution χ2

k . Thus,
under H0, for a general scheme of sampling, we may write
XW ∼ χ2

k = ∑k
1 Z2

i and for multinomial sampling

X = X p ∼ X M ∼ χ2
k =

k∑
1

Z2
i .

But, for sampling schemes other than the multinomial, one
cannot take X under H0 as a χ2

k variable. These cases require
a separate treatment as briefly discussed below.

Let D = P −1
0 V and λ1 ≥ λ2 . . . ≥ λk be the eigenvalues

of D. Each of the λi ’s may be seen to be non-negative. RAO
and SCOTT (1981) have shown that under H0, the Pearsonian
statistic X is distributed asymptotically as �λi Z2

i and we write

X ∼
k∑
1

λi Z2
i .

In case of multinomial sampling it may be checked that D =
I = Ik the identity matrix of order k and λi = 1 for each
i = 1, . . . , k.

The ratio of the variance of an estimator based on a given
complex sampling design to the variance of a comparable esti-
mator based on SRSWR, with the same sample sizes for both,
has been denoted by KISH (1965) as the design effect (deff)
of the complex sampling design. Now, RAO and SCOTT (1981)
noted that

λ1 = sup
c

c′V c
c′ P c

, λk = inf
c

c′V c
c′ P c

,

for an arbitrary k vector c = (c1, . . . , ck)′ of real coordinates so
that

c′V c = Var

 k∑
1

ci p̂i
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for a complex sampling design p and

c′ P c = Var

 k∑
1

ci p̂i


for SRSWR. So, following KISH’s definition, RAO and SCOTT
(1981) give the name generalized design effects (general-
ized deff) to the λi ’s above such that λ1(λk) is the maximal
(minimal) generalized deff.

If one may correctly guess the value of λ1, then X/λ1 pro-
vides a conservative test for H0 treating χ2

k under H0, that is,
the procedure of rejecting H0 when X/λ1 exceeds χ2

k,α, achieves
a significance level (SL) less than the nominal level of α. Thus
the price paid in replacing the available level −α test based on
XW by one based on the simpler statistic X is that we achieve
a lower SL. By contrast, if we reject H0 on observing X ≥ χ2

k,α
then in many cases the achieved SL will far exceed α.

If SRSWOR in n draws is used, then

V =
(

1 − n
N

)
P0, D =

(
1 − n

N

)
Ik.

Thus, here λ1 = (1− n
N ) for every i = 1, . . . , k. In this case RAO

and SCOTT’s (1981) modification of X P is X RS = X/(1 − n
N ),

which under H0 has the asymptotic distribution of χ2
k . The test

of H0 consists of rejecting it if X RS > χ2
k,α achieves asymptot-

ically the SL α as desired and RAO and SCOTT (1981) have
shown that in case (1 − n

N ) is not negligible relative to unity,
this test acquires substantially higher power than the Pear-
son test procedure, keeping the SL for both fixed at a desired
level α.

If the complex design corresponds to the stratified random
sampling with proportional allocations, then it is not difficult
to check that λ1 ≤ 1, implying that X ≤ ∑k

1 Z2
i . So, the Pearson

test with no modifications remains a conservative test in this
situation. FELLEGI’s (1978) observation that the limiting value
of E(X ) is less than k in this case was a pointer to this test
being a conservative one as demonstrated by RAO and SCOTT
(1981).

If the number of strata is only two, then the asymptotic
distribution of X is that of χ2

k−1 + (1−a)χ2
1 , where χ2

k−1 and χ2
1
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are independent and

a = W1(1 − W1)
k+1∑
i=1

( pi1 − pi2)2/pi0 ≤ 1

is the trace of the matrix

W1(1 − W1)P −1( p1 − p2)( p1 − p2)′.

Here W1 is the first stratum proportion, pih is the probability
of category i for stratum h, and ph = ( p1h, . . . , pkh)′, h = 1, 2.
If k is large, there is little error in approximating X by χ2

k
because χ2

k−1 + χ2
1 = χ2

k .
Let a two-stage sampling scheme be adopted, choosing

primary sampling units (psu) out of R available psus with
replacement with selection probabilities proportional to the
numbers M1, M2, . . . , MR of secondary sampling units (ssu)
contained in them. Assume r draws are made, and every time
a psu is chosen an SRSWR of ssus is taken from it in m draws,
giving a total sample size n = mr . Let pit(i = 1, . . . , k + 1; t =
1, . . . , R) be the probabilities of category i in psu t and define

Wt = Mt/

R∑
1

Mt

pi =
R∑
1

Wt pit , i = 1, . . . , k + 1,

p = ( p1, . . . , pk)′, pt = ( p1t , . . . , pkt)′

Then, one may check that

V = P0 + (m − 1)
∑

Wt( pt − p0)( pt − p0)′ = P0 + (m − 1)A,

Let B = P −1
0 A and ρi(i = 1, . . . , k) be the eigenvalues of B .

Then the eigenvalues λi of V satisfy λi = 1 + (m − 1)ρi. These
ρi ’s are interpreted as generalized measures of homogeneity.
Supposing ρ1 ≥ . . . ≥ ρk, if a value of ρ1 can be guessed a
conservative test for H0 : p = p0 may be based on the statistic
X/[1 + (m − 1)ρi] because this, under H0, is asymptotically
less than

∑k
1 Z2

i . Since ρ1 ≤ 1, a test based on X/m is always
conservative.
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11.1.2 Goodness of Fit, Approximative
Design-Based Tests

Whatever the eigenvalue λi of D = P −1
0 V , let

λ =
k∑
1

λi/k, a2 = 1
(λ)2

k∑
1

(λi − λ)2/k, b = k
1 + a2 .

It follows that under H0 and under large sample approxima-
tion,

E(X/λ) = k = E
k∑
1

Z2
i

V (X/λ) = 2k(1 + a2) > 2k = V

 k∑
1

Z2
i

 .

Also,

λ = tr
(
P −1

0 V
)

k
= tr (D)

k
=

k+1∑
1

Vii/pi,

where Vii are the diagonal elements of V = (Vij ).
Let

di = Vii

pi(1 − pi)
= Vii/n

pi(1 − pi)/n
= V p( p̂i)

Vsrs( p̂i)

be the deff for p̂i, writing V p, Vsrs as variances for a given
design p and for SRSWR, respectively. Then,

λ = 1
k

k+1∑
1

di(1 − pi).

Now, if suitably consistent estimators V̂ii of Vii and d̂i of di are
available, then one may get an estimate λ̂ of λ and X F = X/λ̂

is a suitable modification of Pearson’s statistic X . If one rejects
H0 on finding X/λ̂ > χ2

k,α, then one’s achieved SL value for large
samples should be close to the nominal level α, provided the λi ’s
do not have wide variations among themselves. X F is known
as RAO and SCOTT’s first-order correction of X .
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Using the estimators λ̂i for λi and λ̂ = 1
k
∑k

1 λ̂ for λ one
may get estimators

â2 = 1

(λ̂)2

k∑
1

(λ̂i − λ̂)2/k for a2

b̂ = k
(1 + â2)

for b

and then use the second-order correction

X S = X F /(1 + â2)

and reject H0 at level of significance α if X S ≥ χ2
b̂,α

, where χ2
b̂,α

is such that for a chi-square variable χ2
b̂

with b̂ df

Prob
[
χ2

b̂
≥ χ2

b̂,α

]
= α.

This approximation given by RAO and SCOTT (1981) is based
on the result of SATTERTHWAITE (1946) that the distribution
of X/λ may be approximated by that of (1+a2)χ2

b . But one may
check that

∑k
1 λ2

i = ∑k+1
i

∑k+1
j Vij /pi p j and so one needs V̂ij

to calculate â.
Even if V̂ij are available such that the procedure is ap-

plicable, it may not be stable enough. The effect of instability
is failure to achieve the desired value of SL. FAY (1985) and
THOMAS and RAO (1987) have reported that if V̂ij ’s are not
stable, then, in spite of its asymptotic validity, a test based
on XW also often fails to achieve the intended SL values. But
the test based on X F is often found good unless λ̂i ’s vary con-
siderably, as RAO and SCOTT (1981) have illustrated that SLs
achieved by X F remain within the range 0.05–0.056, whereas
those based on uncorrected X vary over 0.14–0.77, while the
desired level is 0.05.

FELLEGI (1980) recommended another correction for X
given by X/d , where

d̂ = 1
k + 1

k+1∑
1

d̂i

Some further corrections of the above test procedures proposed
in the literature enjoin consulting Fisher’s F table rather than
chi-square tables. THOMAS and RAO (1987) and RAO and
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THOMAS (1988) are good references for these studies. The tests
of goodness of fit may also be based on the well-known likeli-
hood ratio statistic

G = 2n
k+1∑

1

p̂i log( p̂i/pio).

In addition, FAY (1985) has given test procedures based on
jackknifed chi-square statistics, which fare better than X F in
case of wide fluctuations among λ̂i ’s.

11.1.3 Goodness-of-Fit Tests, Based
on Superpopulation Models

ALTHAM (1976) made a model-based approach in this two-
stage setup. An extended version of that due to RAO and SCOTT
(1981) consists of defining indicator variables Ztj i that equal
1(0) if j th ssu of ith psu bears category i (else) and choosing
r psus out of R psus of sizes Mt and mt ssus out of Mt ssus in
tth psu is sampled. Let n = (n1, . . . , nk+1) where

ni =
r∑

t=1

mt∑
j =1

Ztj i, i = 1, . . . , k + 1.

Let

Em(Ztj i) = pi, covm(Ztj i, Ztj ′i) = qij say, for every j ′ �= j .

These conditions lead to

Em(ni) = npi, Vm(ni) = npi(1 − pi) +
(∑

m2
t − n

)
qii,

covm(ni, nj ) = −npi p j +
(∑

m2
t − n

)
qij , i �= j .

Let Q = (qij ), G = P −1Q, ρ1 ≥ ρ2 ≥ . . . ≥ ρK the eigenvalues
of G, m0 = �m2

t /n, λi = 1 + (m0−1)ρi. Then ρ1 < 1 and X/λ1 =
X/m0 provides a basis for a conservative test. If ρi = ρ for every
i = 1, . . . , k, then in case ρ may be correctly guessed, a test for
the goodness of fit is based on X/[1 + (m0 − 1)ρ]. If Mt = M
and mt = m for every t then X/m provides a conservative test.

BRIER (1980) postulates a slightly altered model for the
above two-stage setting. Suppose mti is the number of sampled
ssus bearing the form i of the character mt = (mt1, . . . , mt,k+1)′
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and let pt = ( pt1, . . . , pt,k+1),
∑k+1

1 pti = 1, 0 < Pti < 1, i =
1, . . . , k + 1. Let pt have the Dirichlet’s distribution with a
density

f ( pt1, . . . , pt,k+1) = �(ν)
k+1
π
1

�(νpi)

k+1
π
1

pνpi−1
i ,

where ν > 0, 0 < pi < 1,
∑k+1

1 pi = 1 and �(x) = ∫∞
0 euux−1d u.

Also, given a realization pt from the density, it is postulated
that mt has a multinomial distribution.

In the special case for which mt = m for every t, the result-
ing compound Dirichlet multinomial distribution of mt yields
a test based on the modification X = X (1+ν)

(m+ν) of X as an asymp-
totically good test for the goodness of fit. It is based on a
constant deff model and it achieves the nominal SL for large
samples. Another alternative to it, namely X ∗ = 1+ν

m0+ν
X where

m0 = ∑
m2

t /n, when mt ’s may be unequal, is also asymptoti-
cally valid. To apply these tests one needs to estimate ν, and
procedures are given by RAO and SCOTT (1981).

From the above discussion, it is apparent that it is not
easy in practice to find λi ’s in order to be able to work out a
test that rejects H0 if X > χ2

k,α for a preassigned α. Using
methods given by SOLOMON and STEPHENS (1977) it is possi-
ble to work these out for trial values of λi ’s just to see how the
attained values of SL compare with a nominal value of α fixed
at 0.05. RAO and SCOTT (1979, 1981), HOLT, SCOTT and
EWINGS (1980), HIDIROGLOU and RAO (1987), RAO (1987),
and others have shown that, for stratified or clustered sam-
pling schemes, the Pearson chi-square statistic X P frequently
leads to SLs in the range of 20–40%, and not infrequently about
70%, as opposed to the nominal level of 5%. Hence, the effect
of designs on blindly applied classical test procedures may be
disastrous.

11.1.4 Tests of Independence

In the context of categorical data analysis, one problem is of
testing for independence in two-way contingency tables with
cell probabilities Pij , i = 1, . . . , r + 1; j = 1, . . . , c + 1 with
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p̂i j ’s as their consistent estimators based on a suitably taken
sample of size n chosen according to a certain design p. Let

Pio =
c+1∑
j =1

pij ,

P0 j =
r +1∑
i=1

pij ,

hij = pij − pio pij ,
p = ( p11, p12, . . . , p1c+1, p21, . . . , p2c+1, . . . , pr +1c)′

h = (h11, h12, . . . , h1c, h21, . . . , h2c, . . . , hr c)′

p̂r = ( p̂10, . . . , p̂r o)′, P r = Diag( pr ) − pr p′
r

p̂c = ( p̂01, . . . , p̂0c)′, P c = Diag( pc) − pc p′
c

and define analogously

p̂10, p̂0 j , p̂c, p̂r , p̂, P̂ c, P̂r ĥ

Note that p and p̂ have (r + 1)(c + 1) − 1 components, while h
and ĥ have r c components.

Writing V /n(V̂ /n) for the covariance (estimated) matrix
of p̂, the covariance (estimated) matrix of ĥ will be 1

n H ′V H
(resp. 1

n Ĥ–V̂ Ĥ ) where

H = ∂h/∂ p

is the matrix of partial derivatives of h wrt p and Ĥ is defined
by replacing pij in H by p̂i j .

To test for independence of the two characters in terms of
which the individuals have been classified into (r + 1)(c + 1)
categories is to test the null hypothesis

H0 : pij = pi0 p0 j for every i = 1, . . . , r and j = 1, . . . , c

against an alternative that hij = pij − pio poj is non-zero for
at least one pair (i, j ).

The Wald statistic for this null hypothesis of indepen-
dence is

XW = nĥ
′
(Ĥ ′V̂ Ĥ )−1ĥ
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and the Pearson statistic is

X I = nĥ
′(

P̂
−1
r ⊗ P̂

−1
c

)
ĥ.

Here, ⊗ denotes the Kronecker product of two matrices. Under
H0, XW is asymptotically χ2

r c distributed, while X1 is asymp-
totically distributed as the variable

∑T
1 δi Z2

i where T = r c,
the δi ’s are the eigenvalues of (P −1

r ⊗ P −1
c )(H ′V H ) such that

δ1 ≥ . . . ≥ δT and the Z2
i ’s are independent χ2

1 variables.
Here the δi ’s may be interpreted as the deffs corresponding

to estimators of pij ’s as functions of hij ’s. As in the case of
goodness of fit problems, X1/δ1 provides a conservative test
for independence if δ1 can be guessed or reliably estimated. If
a complex design corresponds to stratified random sampling
with proportional allocations, then δ1 ≤ 1 and X1 provides
a conservative test. Unfortunately, simple alternative useful
tests modifying X I in this case are not yet available, as in the
case of goodness of fit problems. But, as a saving grace, the
deviations of SL values achieved by the Pearsonian statistic
X I from the nominal value α = 0.05, while rejecting H0 in
case X I ≥ χ2

T ,α, are not so alarming as in the case of goodness
of fit problems.

11.1.5 Tests of Homogeneity

Next we consider the problem of testing homogeneity of two
populations both classified according to the same criterion into
k + 1 disjoint categories on surveying both the populations on
obtaining two independent samples of sizes n1 and n2 from the
two populations following any complex designs.

Let p j i, i = 1, . . . , k + 1; j = 1, 2 (0 < pij < 1,
∑k+1

1 p j i =
1, j = 1, 2) be the unknown proportions of individuals of the
j th ( j = 1, 2) population bearing the form i (i = 1, . . . , k+1) of
the classificatory character. Let p j = ( p j 1, . . . , p j ,k)′, j = 1, 2.
Let p̂ j i be suitably consistent estimators of p j i based on
the respective samples from the two populations. Let V j /nj ,
( j = 1, 2) denote the variance–covariance matrices (of order
k × k) corresponding to p̂ j i ’s admitting consistent estimators
V̂ j /nj , ( j = 1, 2). We will write

n̂j = ( p̂ j 1, . . . , p̂ j k)′, j = 1, 2.
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The problem is to test the null hypothesis

H0 : p1 = p2 = p, say,

writing p = ( p1, . . . , pk)′ corresponding to the supposition
that, under H0, the common values of p j i for j = 1, 2 are
pi, i = 1, . . . , k + 1. Let

P = Diag( p) − p p′, Dj = P −1V j ,

D̂ = (D1/n1 + D2/n2)/(1/n1 + 1/n2), n = 1
1/n1 + 1/n2

,

p̂oi = (n1 p̂1i + n2 p̂2i)/(n1 + n2),

p̂0 = ( p̂01, . . . , p̂0,k)′, P̂0 = Diag( p̂0) − p̂0 p̂′
0.

Then the Wald statistic for the test of the above H0 concerning
homogeneity of two populations is

XW = ( p̂1 − p̂2)′
(

V̂1

n1
+ V̂2

n2

)−1

( p̂1 − p̂2).

Under H0, XW has an asymptotic χ2
k distribution. The Pearson

statistic for the test of this H0 on homogeneity of two popula-
tions is

X H = n( p̂1 − p̂2)′ P̂ −1
0 ( p̂1 − p̂2).

Writing λi as the eigenvalues of D̂, the generalized deff ma-
trix, SCOTT and RAO (1981) and RAO and SCOTT (1981) note
that under H0, for large nj ( j = 1, 2), X H is asymptotically,
distributed as

∑k
1 λi Z2

i . They have noted that, for clustered de-
signs, the SLs achieved on rejecting H0 in case X H > χ2

k,α devi-
ate drastically from the nominal value α. For example, against
a desired α = 0.05, SL values for several clustered two-stage
sampling designs actually achieved vary over the range 0.17
to 0.51, as may be checked with SCOTT and RAO (1981).

Extensions to the case of j > 2, that is, more than two pop-
ulations, have also been covered by RAO and SCOTT (1981). In
dealing with multi-way classifications, RAO and SCOTT (1984)
have studied the goodness of fit problem postulating log-linear
models. In this context, also, they have observed that a rele-
vant Pearson statistic motivated by multinomial sampling is
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inappropriate when the sample is actually based on a complex
design. They demonstrated that the large sample distribution
of Pearson’s statistic in this case, under the null hypothesis of a
log-linear model, is that of a linear combination of independent
χ2

1 variables, with the compounding coefficients amenable to
interpretations in terms of deffs. They have also demonstrated
that conclusions derived from the wrong supposition that the
Pearsonian statistic has a chi-square distribution yield SL val-
ues widely discrepant from the desired nominal ones. In this
case, they also further presented simple corrective measures
presuming the availability of suitable estimates of deffs of in-
dividual cell estimates or of certain marginal totals.

In fitting logistic and logit models while analyzing vari-
ation in estimated proportions associated with a binary re-
sponse, variable similar problems are also encountered when
one takes recourse to complex designs involving cluster sam-
pling in particular, and devices available with a similar ap-
proach are reported in the literature. The details are avail-
able from RAO and SCOTT (1987), RAO and THOMAS (1988),
ROBERTS, RAO and KUMAR (1987), and the references cited
therein. We also omit developments originated from likelihood
ratio statistics and FAY ’s (1985) works on jackknifed versions
of Pearsonian chi-squared tests, which are generally improve-
ments over RAO and SCOTT’s (1981) first-order corrections in
case estimated eigenvalues of deff matrices fluctuate too much.

11.2 REGRESSION ANALYSIS FROM COMPLEX
SURVEY DATA

On regression analysis of data available through complex de-
signing, the first problem is to fix the target parameters to
infer about, the second to settle for an inferential approach.
Further, there are problems of choosing the correct regressor
variables and deciding on the question of whether to include
design variables among the regressors or to keep them sep-
arate. We briefly report on these issues in what follows, of
course, as usual drawing upon a vast literature already grown
around them.
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11.2.1 Design-Based Regression Analysis

Suppose Y = (Y1, . . . , YN )′ is the N ×1 vector of values for the
N units of a finite population U = (1, . . . , N ) on a dependent
variable y and X N an N × r matrix of values for these N
units on r regressor variables x1, . . . , xr . With a strictly finite
population setup one may take

B = (X ′
N X N )−1 X ′

N Y

as the parameter of interest. Let s be a sample of size n drawn
from U following any scheme of sampling corresponding to a
design p admitting inclusion probabilities

πi =
∑
s�i

p(s) > 0

πi j =
∑

s�i, j

p(s) > 0.

Let X s be an n × r submatrix of X N containing the values of
xj ( j = 1, . . . , r ) on only the n sampled units of U occurring
in s and Y s the n × 1 subvector of Y N including the y values
for the units only in s. Let W N be an N × N diagonal matrix
with diagonal entries as Wi ’s and W s an n × n submatrix of
it involving Wi ’s for iεs as its diagonal entries. Similarly, let
π N , π s stand for them, respectively, when Wi equals πi, for
i = 1, . . . , N . Then, replacing every term of the form

∑
i∈s uiWi

or, in particular, by
∑N

1 ui occurring in the r × 1 vector B of
unknown regression parameters of y on x1, . . . , xr by a term of
the form

∑
i∈s

ui
πi

, one approach is to estimate B by

B̂ W = (
X ′

sW s X s
)−1(X ′

sW sY s
)

or, in particular, by the Horvitz–Thompson type estimator

B̂π−1 =
(

X ′
sπ

−1
s X s

)−1(
X ′

sπ
−1
s Y s

)
.

We will assume the existence of the inverse matrices whenever
employed. In the above, the rationale behind the use of B is
that this choice minimizes the quantity

e′
N eN

where eN is defined by

Y N = X N B∗ + eN
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Thus B above provides the least squares solution for B∗. If,
however, the dispersion of eN is of an enormous magnitude,
then B , in spite of providing a least squares fit, may not be
very useful in explaining the relationship of y on x1, . . . , xr.
A practice of treating B as the target parameters is adopted
by KISH and FRANKEL (1974), JÖNRUP and RENNERMALM
(1976), SHAH, HOLT and FOLSOM (1977), and others. Admit-
ting this B as a parameter of interest, estimators of variances
of B̂ W and B̂π−1 may be worked out, applying the techniques
of (a) linearization based on Taylor expansion of nonlinear
functions, (b) balanced repeated replication (BRR), (c) jack-
knifing, and (d) bootstrap. Details are available from KISH and
FRANKEL (1974). In case the population is clustered, with high
positive intracluster correlations and cluster sample designs
employed, then they have shown that the variances of B̂π−1

or B̂ W are inflated compared to what might have happened
if they were based on SRSWR. Consequently, confidence inter-
vals based on such strategies have poor coverage probabilities.

11.2.2 Model- and Design-Based
Regression Analysis

Let us consider the usual model-based superpopulation ap-
proach. Then X N is an N × r matrix of fixed real values as-
sumed on the variables x1, . . . , xr . But Y N is regarded as a re-
alization of an N × 1 random vector of variables also denoted
by Y1, . . . , YN , which have a joint probability distribution. Em
and Vm are used as operators for model-based expectation and
variance–covariance:

Em(Y N | X N ) = X N β

Vm(Y N | X N ) = σ 2V N ,

where β is an r × 1 vector of unknown parameters and σ (> 0)
is an unknown constant. In particular V N may equal IN , the
N × N identity matrix. Let

Y N = X N β + εN
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with εN as the N × 1 vector of errors, for which

Em(εN | X N ) = 0.

V M(εN | X N ) = σ 2V N .

In order to apply the principle of least squares to estimate β

from a sample chosen from U , it is necessary that, for the sub-
vectors and submatrices Y s, X s, εs corresponding to Y s, X s,
εN , respectively, we must have Em(εs | X s) = 0. One way to
ensure this for every s with p(s) > 0 is to suppose that all
the variables in terms of which selection probabilities p(s) are
determined are covered within x1, . . . , xr and p(s) is not influ-
enced by the values of the dependent variable y. Later on, we
will consider certain exceptional situations.

Under the above formulation, if all the values of Y N , X N
are available and V N is completely known, then

β̂G =
(

X ′
N V −1

N X N

)−1(
X ′

N V −1
N Y N

)
is the generalized least squares (GLS) estimator (GLSE) for
the target parameter β. In case V N = IN , β̂G is identical with
the ordinary least squares estimator (OLSE)

β̂0 = (X ′
N X N )−1(X ′

N Y N ).

But these estimators are available only if a census, rather than
a sample survey, is undertaken in order to fit a regression
line as modeled above. So, the problem is to use the sample
survey data Y s, X s to obtain a suitable estimator for β̂G or β̂0,
whichever is appropriate. For simplicity, let us assume that
V N is known and write V s for the submatrix of V N consist-
ing of the elements corresponding to units in s.

Let us consider the estimators

β̂1 = (X ′
s X s)

−1(X ′
sY s),

β̂2 = (X ′
sWs X s)

−1(X ′
sWsY s)

β̂3 =
(

X ′
sπ

−1
s X s

)−1(
X ′

sπ
−1
s Y s

)
β̂4 =

(
X ′

sV −1
s X s

)−1(
X ′

sV −1
s Y s

)
.
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First we note that

Em(β̂G) = Em(β̂0) = β

Em(β̂1) = Em(β̂2) = Em(β̂3) = Em(β̂4) = β

that is, each of the estimators β̂i; i = 1, 2, 3, 4 is model-unbiased
for β.

Further,

Vm(β̂i) ≤ Vm(β̂1) for i = 1, 2, 3

The estimator β̂3 is asymptotically unbiased and consistent. If
V is diagonal and πi∞Vii, then β̂3 = β̂4.

Among model-unbiased estimators β̂s of β or equivalently
among model-unbiased predictors β̂s of β̂0 or β̂G according as
V N = IN ( �= IN ), consider those that are asymptotically design-
unbiased or design-consistent for β̂0 (or β̂G) such that the mag-
nitudes of EmEp(β̂s − β̂0)2 or EmEp(β̂s − β̂G)2 are suitably con-
trolled. Since the population sizes in case of large-scale sur-
veys are usually very large, the quantities Em(β̂0 − β)2 and
Em(β̂ − β̂)2 may disregard the differences between the target
parameters β and β̂0 (or β and β̂G), and a predictor β̂s with
small EmEp(β̂s − β̂0)2 or EmEp(β̂s − β̂G)2 may be supposed
to achieve a small EmEp(β̂s − β)2. After such a predictor β̂s
is found, it is an important issue as to whether to use suit-
able estimators for Em(β̂s − β̂0)2 and Em(β̂s − β̂G)2 for deriving
what HARTLEY and SIELKEN (1975) call tolerance intervals
of β̂0 and β̂G. While setting up confidence intervals for β, the
question is whether to use an estimator of Em(β̂s − β)2 or of
EmEp(β̂s − β)2. Clear-cut solutions are not available. But let
us discuss some of the developments reported in the literature.

We shall write

σ̂ 2 = 1
(n − r )

(Y s − X sβ̂s)′(Y s − X sβ̂s)

where β̂s stands for the least squares estimator for β under
an appropriate model, that is, β̂s is either β̂1 or β̂4. Then,
an estimator for Em(β̂4 − β)2 is σ̂ 2(X ′

sV −1
s X s)−1 and that for

Em(β̂1 − β)2 is σ̂ 2(X ′
s X s)−1.

Note that Em(β̂2 − β)2 equals

σ 2(X ′
sWs X s)

−1(X ′
sWsVsWs X s)(X ′

sWs X s)
−1 = σ 2Zs,
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and hence an estimator for it should be taken as σ̂ 2Zs. But
since standard computer packages like SPSS, BMDP, etc., re-
port values of (X ′

sV −1
s X s)−1 as an estimate for Em(β̂4 − β)2,

often σ̂ 2(X ′
sWs X s)−1 is derived as an estimate for Em(β̂2 −β)2,

substituting Ws for V −1
s in the former. But this practice is un-

warranted by theory. In the absence of the correction, the confi-
dence interval based on such an erroneous variance estimator
often turns out to yield poor coverage probabilities.

HARTLEY and SIELKEN (1975) observe that Em(β̂1−β̂0) =
0, Vm(β̂1 − β0) = σ 2[(X ′

s X s)−1 − (X ′
N X N )−1] in case V N = IN

and, assuming normality, treat

c′(β̂1 − β̂0)/σ̂
{

c′(X ′
s X s)

−1 − (X ′
N X N )−1c

}1/2

as a STUDENT’s t variable with (n−1) degrees of freedom, lead-
ing to confidence intervals for c′β̂0, which they call tolerance
intervals because c′β̂0 is a random variable for a chosen r × 1
vector c.

The literature mainly gives accounts of asymptotic design-
based properties of consistency and extents of biases of the four
estimators β̂ j , j = 1, . . . , 4 and coverage properties of confi-
dence intervals based on estimated design mean square errors
or model mean square errors of these estimators taken either
as estimators of β or as predictors of β̂0 or β̂G. For details, one
may consult FULLER (1975), SMITH (1981), PFEFFERMANN and
SMITH (1985), NATHAN (1988), and references cited therein.
BREWER and MELLOR (1973), HOLT and SCOTT (1981), and
HOLT and SMITH (1976) are interesting further references in
this context.

11.2.3 Model-Based Regression Analysis

In the above, we really considered a two-step randomization:
the finite population is supposedly a realization from an in-
finite hypothetical superpopulation with reference to which
a regression relationship is postulated connecting a depen-
dent variable and a set of independent regressor variables.
Then, from the given or realized finite population a sample
is randomly drawn because the population is too large to be
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completely investigated. The sample is then utilized to make
inference with reference to the two-step randomization. But
now let us consider a purely model-based approach that takes
account of the structure of the finite population at hand by
postulating an appropriate model.

Suppose for a sample of c clusters from a given finite pop-
ulation, observations are taken on a dependent variable y and
a set of independent regressor variables x1, . . . , xr for indepen-
dently drawn samples of second stage units (SSUs) of sizes
mi from the respective sampled clusters labeled i = 1, . . . , c
so that

∑c
1 mi = n, the total sample size. Let Y n be an n × 1

vector of observations on y, successive rows in it giving val-
ues on the mi observations in the order i = 1, . . . , c and the
observations X j ’s, j = 1, . . . , r be also similarly arranged in
succession. Now it is only to be surmised that the observations
within the same cluster should be substantially well and pos-
itively correlated compared to those across the clusters. So,
after postulating a regression relation of Y n on X n, which is
an n × r matrix, the successive rows in it arranging the val-
ues for the clusters taken in order i = 1, . . . , c, which states
that

Em(Y n) = X nβ

where β is an r × 1 vector of unknown regression parameters,
one should carefully postulate about the distribution of the
error vector

εn = Y n − X nβ.

One obvious postulation is that Em(εn | X n) = 0 and the
variance–covariance matrix of εn is such that Vm(Y n) = σ 2V ,
where V is a block diagonal matrix with the ith block Vi =
Imi + ρ Jmi, where Imi is the mi × mi identity matrix, Jmi the
mi × mi matrix with each entry as unity and ρ the intraclass
correlation for each cluster.

If ρ is known and we may identify the cluster from which
each observation comes, then the best linear unbiased estima-
tor (BLUE) for β is the GLSE, which is

β̂opt =
(

X ′
nV −1 X n

)−1(
X ′

nV −1Y n

)
.
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But in practice it is simpler to employ the ordinary least square
estimator (OLSE), namely

β̂ols = (X ′
nX n)−1(X ′

nY n).

Both are model-unbiased estimators for β but

Em(β̂opt − β)2 < Em(β̂ols − β)2.

The least squares unbiased estimator for σ 2 is

σ̂ 2 = 1
(n − r )

Y ′
n(In − P0)Y n

where P0 = X n(X ′
n X n)−1 X ′

n and the appropriate least squares
estimator for Em(β̂ols − β)2 is

σ̂ 2(X ′
n − X n)−1(X ′

nV X n)(X ′
nX n)−1 = σ̂ 2(X ′

nX n)−1C,

In evaluating an estimator for Em(β̂ols − β)2 while using the
standard computer program packages like SAS, SPSS, and
BMDP, one often disregards the correction term C, which re-
flects the effect of clustering and plays the role analogously
to that of KISH’s deffs in case of the design-based regression
studies. SCOTT and HOLT (1982) first pointed out the impor-
tance of the role of this correction term C, which should not be
disregarded.

11.2.4 Design Variables

Next we consider an important situation where, besides the
regressor variables, there exist another set of variables that
are utilized in determining the selection probabilities, called
the design variables. For example, one may plan to examine
how expenses on certain items of consumption, the dependent
variable y, vary with the annual income, the single regressor
variable x. Then, if accounts of the taxes paid by the relevant
individuals in the last financial year, values of a variable z, are
available, this information can be utilized in stratifying the
population accordingly. Then z is a design variable obviously
well-correlated with x and y.

Following the works of NATHAN and HOLT (1980), HOLT,
SMITH and WINTER (1980), and PFEFFERMANN and HOLMES
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(1985) let us consider the simple case of a single dependent
(endogeneous) variable y, a single regressor (exogeneous, in-
dependent) variable x, and a single design variable z. Assume
the regression model

y = α + βx + ε

with Em(ε | x) = 0, Vm(ε | x) = σ 2(σ > 0). Suppose a random
sample s of size n is taken following a design p using the values
Z1, Z2, . . . , ZN of z and define

νz = 1
N

N∑
1

Zi, σ 2
z = 1

N − 1

N∑
1

(Zi − νz)2.

Also, let y, x, z denote sample means of y, x, z, s2
y , s2

x , s2
z the sam-

ple variances and syx, syz, sxz the sample covariances. The prob-
lem is to infer about β, the regression coefficient of y on x under
the model-based approach.

Consider the ordinary least squares estimator (OLSE),

b = syx/s2
x .

Its performance depends essentially on the relation between
the design variable z and the variables x, y in the regres-
sion model. In the simplest case x, y, z might follow a trivari-
ate normal distribution. DEMETS and HALPERIN (1977) have
shown that, under this assumption, b is biased. Following
ANDERSON’s (1957) missing value approach, they derive an
alternative estimator, which is the maximum likelihood esti-
mator (MLE) for β, namely,

β̂ =
[
syx + syzsxz

s2
z

(
σ 2

z

s2
z

− 1

)]/[
s2

x + s2
xz

s2
z

(
σ 2

z

s2
z

− 1

)]
.

NATHAN and HOLT (1980) have relaxed the normality ass-
umption and postulated only a suitable linear regression
connecting y, x, z. They have found that, even then, β̂ is asymp-
totically unbiased in the sense that for large n we have
approximately

Ep Emβ̂ = β.
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But Emβ̂ = β holds asymptotically only if s2
z equals σ 2

z . Writing

y∗ = 1
N

∑
s

Yi

πi
, x∗ = 1

N

∑
s

Xi

πi
, z∗ = 1

N

∑
s

Zi

πi
,

s∗
yx = 1

N

∑
s

Yi Xi

πi
− y∗x∗∑

s
1

N πi

, s∗
xz, s∗

yz likewise,

s∗2
y = 1

N

∑
s

X 2
i

πi
− (y∗)2∑

s
1

N πi

, s∗2
x , s∗2

z likewise,

an alternative design-weighted estimator is also proposed for
β, namely,

β̂∗ =
[
s∗

yx + s∗
yzs

∗
xz

s∗2
z

(
σ 2

z

s∗2
z

− 1

)]/[
s∗2

x + s∗2
xz

s∗2
z

(
σ 2

z

s∗2
z

− 1

)]
and it may be seen that

EmEp(β̂∗)

is asymptotically equal to β, that is, β̂∗ is asymptotically unbi-
ased.

For any estimator e for β, considering the criterion

EmEp(e − β)2 = EmEp
[
(e − Ep(e) + (Ep(e) − β)

]2
= EmV p(e) + Em(Ep(e) − β)2

and supposing that for large samples Ep(e) should be close to β

for many appropriate choices of e, one may neglect the second
term here. Then, if an estimator for V p(e), namely vp(e) with
Ep(vp(e)), close to V p(e) at least for large samples be avail-
able, it may be a good idea to employ vp(e) as an estimator for
the overall MSE EmEp(e − β)2 and use vp(e) in constructing
confidence intervals. In terms of this approach, a comparison
among b, β̂ and β̂∗ is available in the literature, showing that
β̂ is the most promising, followed by β̂∗. It must be noted, how-
ever, that β̂(β̂∗) coincides with (or approximates) b if s2

z (s∗2
z )

matches (or approximately matches) σ 2
z . Thus, the design vari-

able is important in yielding alternative estimators even with
a model-based approach, and the values of the design variable
may be suitably used in achieving required properties for the
simple statistic, namely b, for example, by bringing s2

z or s∗2
z
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close to σ 2
z , the latter being known. Then it is not necessarily

the design but the values of the design variable that may affect
the performance of model-based regression analysis.

11.2.5 Varying Regression Coefficients
for Clusters

So far we have considered fitting a single regression equation
applicable to the entire aggregate, whether it is a finite pop-
ulation or a hypothetical modeled population that is infinite.
Now we consider a population divisible into strata or clusters
for which we postulate a regression relationship to connect a
dependent variable y and a regressor variable x such that re-
gression curves may be supposed to vary over the clusters or
the strata.

First we consider the case where there are N clusters with
ith cluster (i = 1, . . . , N ) having Mi units so that

∑N
1 Mi = M

is the total number of individuals in a finite population for
which Yij is the value of a dependent variable y on the j th
member of ith cluster ( j = 1, . . . , Mi, i = 1, . . . , N ). Following
PFEFFERMANN and NATHAN (1981), we adopt a model-based
approach postulating the model

Yij = βi Xij + εi j ,

with Em(εi j | xij ) = 0 and Em(ε2
i j | xij ) = σ 2

i and Em(εi j εkl | xij ,
xkl) = 0 if either i �= j or k �= l or both. Let a sample con-
sist of n clusters out of N clusters and from ith cluster, if se-
lected, mi units be taken. KONJIN (1962) and PORTER (1973)
considered estimating, respectively, 1

M
∑N

1 Miβi and 1
N
∑N

1 βi
for which solutions are rather easy utilizing the approach as
in multistage sampling, especially if one employs design-based
estimators, which approach these authors followed. But follow-
ing SCOTT and SMITH (1969), the under-noted model-based
approach is worth consideration that treats the following ran-
dom effects model. Following them, PFEFFERMANN and
NATHAN (1981) postulate the following model for the βi ’s

βi = β + vi, i = 1, . . . , N
Em(vi) = 0, Vm(vi) = δ2 and Cm(vi, vj ) = 0, i �= j .
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Writing s for a sample of n clusters and si for a sample of mi
units from ith cluster for i in s, and first supposing that σi
and δ are known, PFEFFERMANN and NATHAN (1981) give the
following estimator β∗

i for βi, i = 1, . . . , N , namely

β∗
i = λiβ̂i + (1 − λi)β̂, i = 1, . . . , N

where

λi = δ2

/δ2 + σ 2
i

/∑
j ∈si

x2
i j

 for i ∈ s;

= 0 for i /∈ s,

β̂i =
∑
j ∈si

yij xij

/∑
j ∈si

x2
i j for i ∈ s

= 0 for i /∈ s

β̂ =
∑
i∈s

λiβ̂i

/∑
i∈s

λi.

Then

σ̂ 2
i = 1

(mi − 1)

∑
si

(yij − β̂ixij )2

is taken as an estimator for σ 2
i , i ∈ s. Let

λ
∼

i = δ2

δ2 +
(
σ̂ 2

i
/∑

j ∈si
x2

i j

) ,

then δ2 is estimated by δ̂2 which is the largest solution of

1
(n − 1)

∑
i∈s

β̂i −
∑
i∈s

λ
∼

iβ̂i

/∑
i∈s

λ
∼

i)2 = δ2.

Then, writing

λ̂i = δ̂2(
δ̂2 + σ̂ 2

i /
∑

si
x2

i j
) ,

β
∼ =

∑
s

λ̂iβ̂i

/∑
s

λ̂i

the final estimator for βi is

β̂i = λ̂iβ̂i + (1 − λ̂i)β̂, i = 1, . . . , N .
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Randomized Response

Suppose a survey is required to deal with sensitive issues like
the extent to which habits of drunken driving, tax evasion,
gambling, etc., are prevalent in a certain community in a given
time period. The entire survey need not be exclusively con-
cerned with such stigmatizing items of query, but some of the
structured questions in an elaborate survey questionnaire may
cover a few specimens like these. It is likely that an investi-
gator will hesitate to raise such delicate questions, and people
when so addressed may refuse to reply or supply evasive or
false answers. As a possible way out one may try to replace a
direct response (DR) query by a randomized response (RR) sur-
vey. We discuss briefly how it can be planned and implemented
and indicate some possible consequences.

12.1 SRSWR FOR QUALITATIVE
AND QUANTITATIVE DATA

12.1.1 Warner Model

First let us consider the pioneering work in this area by
WARNER (1965), who dealt with a qualitative character like al-
coholism, which appears only in two mutually exclusive forms.

275
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Suppose A denotes a stigmatizing character and A its comple-
ment. Let in a given community of people the unknown pro-
portion of persons bearing the form A of the character be πA
and 1 − πA be the proportion of persons bearing A. Our prob-
lem is to estimate πA and obtain an estimate of the variance
of the estimate on taking a simple random sample (SRS) with
replacement (WR) in n draws. If a DR survey is undertaken
and every sampled person responds and each response is as-
sumed to be truthful, then the proportion of Yes response to
the question

Do you bear A?

pY = nY /n, where nY = (Yes) responses in the sample would
give an unbiased estimator of πA with a variance

V ( pY ) = πA(1 − πA)
n

= V D

admitting an unbiased variance estimator

vD = pY (1 − pY )
n − 1

.

But if we believe that there may be a substantial nonresponse
as well as incorrect response, then this estimate cannot do, as
it is grossly biased and unreliable.

Instead, let us ask a sampled person

Do you bear A?

with a probability P and the negation of it, that is,

Do you bear A?

with the complementary probability Q = 1 − P , choosing a
suitable positive proper fraction P . The answer Yes or No is
then requested of the respondent in a truthful manner, assur-
ing him or her that the interrogator does not know to which of
the two complementary questions the given answer relates.

A possible device is to offer to the respondent a pack of
identical-looking cards, a proportion P of which is marked as
A and the rest as A with the instruction that the respondent,
after thoroughly shuffing the pack, would choose one, unno-
ticed by the investigator, and record in the questionnaire the
truthful Yes or No response that corresponds to the type of
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card. Thus a Yes response may refer to his/her bearing A or A
with the variation of the type of card he/she happens to choose.

If this RR procedure is adopted, on the basis of the SRSWR
of size n, the proportion of Yes response will unbiasedly esti-
mate πy ≡ the probability of Yes response, which equals

πy = P πA + (1 − P )(1 − πA) = (1 − P ) + (2P − 1)πA.

So, using the sample proportion pyr of Yes responses, we get
an unbiased estimator π̂A of πA as

π̂A = pyr (1 − P )
(2P − 1)

, provided P �= 1
2
.

Then,

V (π̂A) = 1
(2P − 1)2 V ( pyr ) = πy(1 − πy)

n(2P − 1)2 = V R, say,

which simplifies to

V R = πA(1 − πA)
n

+ P (1 − P )
n(2P − 1)2

= πA(1 − πA)
n

+ 1
n

[ 1
16(P − 1/2)2 − 1

4

]
.

Clearly, comparing V R with V D, one notes the loss in efficiency
in resorting to RR and how the loss in efficiency decreases as
P approaches either 0 or 1. But the values of P close to 0 or 1
should not be acceptable to an intelligent respondent who, for
the sake of protected privacy, would prefer a value of P close
to 1/2, which leads to increasing loss in efficiency. An unbiased
estimator for V R is obviously

vR = pyr (1 − pyr )
(n − 1)(2P − 1)2

= 1
(n − 1)

[
π̂A(1 − π̂A) +

{ 1
16(P − 1/2)2 − 1

4

}]
.

12.1.2 Unrelated Question Model

The attributes A and A may both be sensitive, for example,
affiliation to two rival political blocks. An alternative RR device
for estimating πA in this dichotomous case is described below.
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Suppose B is another innocuous character unrelated to
the sensitive attribute A, for example, B may mean preference
for fish over chicken and B its complement. Assume further
that the proportion of persons bearing B is a known number
πB . Then, for an SRSWR in n draws a sampled respondent is
requested to report Yes or No truthfully about bearing A with
a probability P and about bearing B with the complementary
probability Q = 1 − P . The sample proportion pyr of Yes re-
sponses is an unbiased estimator for

πy = P πA + (1 − P )πB .

Since πB is supposed known and P is preassigned, an unbiased
estimator for πA is

π̂A = [pyr − (1 − P )πB/P ,

provided P �= 0.
One way to have πB known is to adopt the following mod-

ified device where a respondent is asked to (1) report Yes or
No truthfully about bearing A with probability P1, (2) report
Yes with a probability P2 and (3) report No with a probability
P3, choosing numbers P1, P2, P3 such that 0 < P1, P2, P3 < 1
and P1 + P2 + P3 = 1, using a pack of cards of three types
mixed in proportions P1 : P2 : P3. Then,

πy = P1πA + P2 = P1πA +
( P2

P2 + P3

)
(1 − P1)

and the known quantity P2
P2+P3

may be supposed to play the
role of πB .

However, a better way to deal with the case when πB is
unknown is to draw two independent SRSWRs of sizes n1 and
n2 and for the two samples use separate probabilities P1, P2
with which a response is to relate to A. Then, the sample pro-
portions pyr for the two samples, p1, p2 of Yes responses are
respectively unbiased estimators (independent) of

πy1 = P1πA + (1 − P1)πB and πy2 = P2πA + (1 − P2)πB .

Then

π̂A = [(1 − P2) p1 − (1 − P1) p2]/(P1 − P2)
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is an unbiased estimator of πA provided P1 �= P2. Then,

V (π̂A) = [(1 − P2)2πy1(1 − πy1)/n1

+ (1 − P1)2πy2(1 − πy2/n2
]
/(P1 − P2)2

and an unbiased estimator for it is

v(π̂A) =
[
(1 − P2)2 p1(1 − p1)

n1 − 1
+ (1 − P1)2 p2(1 − p2)

n2 − 1

]/
(P1 − P2)2.

With this scheme, problems are to choose P1 �= P2 to achieve
high efficiency but both close to 1/2 to induce a sense of pro-
tected privacy in a respondent and thus enhance prospects for
trustworthy cooperation. Also, the ratio n1/n2 must be rightly
chosen subject to a preassigned value for n1 + n2 = n con-
sistently with a given budget. The literature contains results
with varied and detailed discussions, and one may refer to
CHAUDHURI and MUKERJEE (1988) and the appropriate refer-
ences cited therein.

Another slight variation of the above procedure intro-
duces a third innocuous character C unrelated to the sensitive
attribute A, and two independent SRSWRs of sizes n1, n2 are
taken as above. But in the first sample, RR queries are made
about A and B as above, but also a DR query is made about
bearing C. The second sample is used to make an RR query con-
cerning Aand C but a DR query about B . Writing πC as the un-
known proportion bearing C and probability (sample propor-
tion) for the two samples for Yes responses based on RR, DR as

πRyi( pRyi), πDyi( pDyi), i = 1, 2,

we have the probabilities and unbiased estimators as follows

πRy1 = P1πA + (1 − P1)πB , πDy1 = πC

πRy2 = P2πA + (1 − P2)πC , πDy2 = πB

π̂C = pDy1, π̂B = pDy2,

π̂A1 = PRy1 − (1 − P1)π̂B

P1
, π̂A2 = pRy2 − (1 − P2)π̂C

P2
.

A combined weighted estimator π∗
A = W π̂A1 + (1 − W )π̂A2 may

then be determined with W chosen to minimize V (π∗
A) and

then replacing the unknown parameters in the optimal W by
their sample-based estimates.
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12.1.3 Polychotomous Populations

Many alternative devices are available for the purpose we are
discussing. We will mention selectively a few more. Suppose
a population may be classified into several mutually exclusive
and exhaustive categories according to a sensitive character-
istic. For example, women may be classified according to the
number of self-induced abortions so far implemented. Suppose,
in general πi, i = 1, . . . , k,

∑k
k πi = 1, denote the unknown pro-

portions of individuals belonging to k disjoint and exhaustive
categories according to a stigmatizing character. In order to
estimate πi on taking an SRSWR of a given size n, let us apply
the following device. Suppose small marbles or beads of k dis-
tinct colors numbering mi, i = 1, 2, . . . , k,

∑k
k mi = m are put

into a flask with a long neck marked 1, . . . , m spaced apart to
accommodate one bead each when turned upside down with
the mouth tightly closed. Each color represents a category and
a sampled person is requested to shake the flask thoroughly,
unobserved by the investigator, and to record on the question-
naire the number on the flask-neck accomodating the bottom-
most bead of the color of his/her category when turned upside
down. Writing λ j as the probability of reporting the value j , Pij
as the probability of reporting j when the true category is i,
and p j as the sample proportion of RR as j , we have p j as an
estimator for λ j given by

λ j =
k∑

i=1

Pij πi, j = 1, . . . , J , where J = m − min
1≤i≤k

mi + 1.

Here Pij is easy to calculate for the given mi ’s, i = 1, . . . , k.
For example,

P11 = m1

m
,

P21 = m2

m
,

P12 = m − m1

m
· m1

m − 1
,

P23 = m − m2

m
· m − m2 − 1

m − 1
· m2

m − 2
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and so on. The values of mi should be kept small and distinct for
simplicity. Yet J > k. One good choice is mi = i; i = 1, . . . , k,
in which case J = m = k(k + 1)/2. So, πi is to be estimated as
π̂i on solving

p j =
p∑
1

Pij π̂i

but a unique solution is not possible. One procedure recom-
mended in the literature is to apply the theory of linear mod-
els. The solution requires evaluation of generalized inverses
and is complicated and unlikely in practice to yield π̂i within
the permitted range [0, 1].

12.1.4 Quantitative Characters

If x denotes the amount spent last month on alcohol, amount
earned in clandestine manners, etc., so that we may antici-
pate its range and form equidistant intervals, then, applying
the above technique, it is easy to estimate the relative fre-
quencies π j together with the moments of the corresponding
distribution. A simpler alternative is described below.

Consider the mean µ = ∑k
1 j π j of a variable x with val-

ues j = 1, . . . , k and let a disc be divided into k equal cross-
sections marked 1, 2, . . . , k in the clockwise direction. Also sup-
pose there is a pointer revolving along the clockwise direction
indicating one of the cross-sections where it stops after a few
revolutions. Then for an SRSWR in n draws we may request
a sample person to revolve the pointer, unobserved by the in-
vestigator, and report Yes (No) if the pointer, after revolution,
stops in a section marked i such that i ≤ j , where j is his true
value.

Then, writing Py as the probability of a Yes response and
py as the sample proportion of Yes responses, we have

Py = 1
k

k∑
1

j π j = µ

k

and so kpy provides an estimator for µ. The variance of this
estimator µ̂ = kpy is then V (µ̂) = k2V ( py) = k2

n ( µ
k )(1− µ

k ) and
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an unbiased estimator for this variance is

v = k2

n − 1

(
µ̂

k

)(
1 − µ̂

k

)
= k2

n − 1
py(1 − py).

A more straightforward RR method of estimating the mean µx
of a sensitive variable x is obtained by an extension of a method
we discussed in what precedes in estimating an attribute pa-
rameter. Let y be an innocuous variable unrelated to x with
an unknown expected value µy. Then, we may take two inde-
pendent SRSWRs of sizes ni, i = 1, 2, n1 + n2 = n and request
every sampled person j for the ith (i = 1, 2) sample to report a
value of x, say X j with a probability Pi and his/her true value
of y, Y j with the complementary probability Qi = 1 − Pi with-
out divulging to the interviewer the variable on which he/she
is reporting. Writing the value reported, that is, the RR as Zj i
on zi, a random variable thus generated for the ith sample, we
may use the sample mean zi of the RRs to estimate the mean
µzi of zi which is given by

µzi = Piµx + (1 − Pi)µy, i = 1, 2, P1 �= P2.

Then,

µx = [(1 − P2)µz1 − (1 − P1)µz2]/(P1 − P2)

and hence

µ̂x = [(1 − P2
)

z1 − (1 − P2
)

z − 2
]
/ (P1 − P2)

is an unbiased estimator for µx. Writing

s2
zi = 1

(ni − 1)

ni∑
j =1

(zj i − zi)2

an unbiased estimator for V (µ̂x) is given by

v =
[(

1 − P2
)2 s2

z1/n1 + (1 − P1)2s2
z2/n2

]
/ (P1 − P2)2 .

In the next section, we consider a strictly finite population
setup allowing sample selection with unequal probabilities.
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12.2 A GENERAL APPROACH

12.2.1 Linear Unbiased Estimators

Let a sensitive variable y be defined on a finite population
U = (1, . . . , N ) with values Yi, i = 1, . . . , N , which are sup-
posed to be unavailable through a DR survey. Suppose a sample
s of size n is chosen according to a design p with a selection
probability p(s). In order to estimate Y =∑N

1 Yi, let an RR as
a value Zi be available on request from each sampled person
labeled i included in a sample. Before describing how a Zi may
be generated, let us note the properties required of it. We will
denote by ER(V R, CR) the operator for expectation (variance,
covariance) with respect to the randomized procedure of gener-
ating RR. The basic RRs Zi should allow derivation by a simple
transformation reduced RRs as Ri ’s satisfying the conditions

(a) ER(Ri) = Yi
(b) V R(Ri) = αiY 2

i + βiYi + θi with αi(> 0), βi, θi ’s as
known constants

(c) CR(Ri, R j ) = 0 for i �= j
(d) estimators vi = ai R2

i +bi Ri +Ci exist, ai, bi, ci known
constants, such that ER(vi) = V R(Ri) = Vi, say, for
all i.

We will illustrate only two possible ways of obtaining Zi ’s from
a sampled individual i on request. First, let two vectors A =
( A1, . . . , AT )′ and B = (B1, . . . , BL)′ of suitable real numbers
be chosen with means A �= 0, B and variances σ 2

A, σ 2
B . A sample

person i is requested to independently choose at random ai out
of A and bi out of B , and report the value Zi = aiYi + bi. Then,
it follows that ER(Zi) = AYi + B , giving

Ri = (Zi − B )/A

such that

ER(Ri) = Yi,

V R(Ri) =
(
Y 2

i σ 2
A + σ 2

B

)/(
A
)2 = Vi,

CR(Ri, RJ ) = 0, i �= j
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and

vi =
(
σ 2

AR2
i + σ 2

B

)/(
σ 2

A + A2
)

has

ER(vi) = Vi.

As a second example, let a large number of real numbers X j ,
j = 1, . . . , m, not necessarily distinct, be chosen and a sample
person i be requested to report the value Zi where Zi equals
Yi with a preassigned probability C, and equals X j with a
probability qj , which is also preassigned, j = 1, . . . , m such
that

C +
m∑

j =1

qj = 1.

Then,

ER(Zi) = CYi +
m∑
1

qj X j = CYi + (1 − C)µ, say,

writing µ = ∑m
1 qj X j /

∑m
1 qj . Then, Ri = [Zi − (1 − C)µ]/C

has ER(Ri) = Yi. Also,

V R(Ri) = V R(Zi)/C2 = Vi

=
[
C(1 − C)Y 2

i − 2C(1 − C)µYi +
(∑

qj X 2
j

)
− (1 − C)2µ2

]
/C2

which admits an obvious unbiased estimator vi.
Thus we may assume the existence of a vector R = (R1, . . . ,

RN )′ derivable from RRs Zi corresponding to the vector Y =
(Y1, . . . , YN )′. Let t = t(s, Y ) =∑bsi IsiYi be a p-based estima-
tor for Y, assuming that Yi for i ∈ s is ascertainable admitting
the MSE

Mp = Mp(t) = Ep(t − Y )2 =
∑

i

∑
j

dij YiY j

where

dij = Ep(bsi Isi − 1)(bsj Isj − 1).

Assume further that there exist non-zero constants Wi ’s such
that Yi/Wi = C for every i = 1, . . . , N and C �= 0 implies
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Mp = 0. Then Mp reduces to

Mp = −
∑∑

i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

as was discussed in chapter 2. Now, since Yi ’s are supposedly
not realizable, we cannot use t in estimating Y, nor can we
use

mp = −
∑∑

i< j

dsij Isij WiW j

(
Yi

Wi
− Y j

W j

)2

to unbiasedly estimate Mp. So, let us replace Yi in t by Ri to
get

e = e(s, R) = t(s, Y )|Y =R =
∑

bsi Isi Ri.

Then, ER(e) = t and hence, in case t is p unbiased for Y , that
is, EP (t) =∑s p(s)t(s, Y ) = Y , then

E(e) = Ep ER(e) = Ep(t) = Y ,

writing Ep(V p) from now on again as operator for design ex-
pectation (variance) and

E = EpR = Ep ER

as an overall operator for expectation with respect to random-
ized response and design. Similarly, we will write

V = V pR = Ep[V R] + V p[ER]

as the operator for overall variance, first over RR followed by
design. In case Ep ER(e) = Y, we call e an unbiased estimator
for Y . With the assumptions made above, now we may work
out the overall MSE of e about Y , namely,

M = E(e − Y )2 = Ep ER [(e − t) + (t − Y )]2

= Mp(t) + Ep ER

[∑
bsi Isi(Ri − Yi)

]2
= −

∑∑
i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

+ Ep
∑

b2
si IsiVi

= −
∑∑

i< j

dij WiW j

(
Yi

Wi
− Y j

W j

)2

+
N∑
1

Vi Ep

(
b2

si Isi

)
.
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It then follows that

m = −
∑∑

i< j

dsij Isij WiW j

( Ri

Wi
− R j

W j

)2

−
(

vi

W 2
i

+ vj

W 2
j

)2


+
∑

i

vib2
si Isi

may be taken as an unbiased estimator for M because it is not
difficult to check that

E(m) = Ep ER(m) = M if Ep(dsij Isij ) = dij .

12.2.2 A Few Specific Strategies

Let us illustrate a few familiar specific cases. Corresponding to
the HTE t̄ = t̄(s, Y ) =∑i

Yi
πi

Isi, we have the derived estimator
e = (s, R) =∑i

Ri
πi

Isi for which

M = −
∑∑

i< j

(πiπ j − πi j )(Yi/πi − Y j /π j )2 +
∑

i

Vi

πi

and

m =
∑∑

i< j

(
πiπ j − πi j

πi j

)(
Ri

πi
− R j

π j

)2

+
∑ vi

πi
Isi.

To LAHIRI’s (1951) ratio estimator tL = Yi/
∑

s Pi based on
LAHIRI-MIDZUNO-SEN (LMS, 1951, 1952, 1953) scheme corre-
sponds the estimator

eL =
∑

s
Ri/

∑
s

Pi

(0 < Pi < 1, N
1 Pi = 1) for which

M =
∑∑

i< j

aij

(
1 − 1

C1

∑
s

Isij

Ps

)
+
∑

Vi Ep(Isi/P 2
s ),

where

Cr =
(N − r

n − r

)
, r = 0, 1, 2, . . . , Ps =

∑
s

Pi, aij

= Pi P j (Yi/Pi − Y j /P j )2
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m =
∑∑

Pi P j Isi Isij

(N − 1
n − 1

− 1
Ps

)/

Ps

(Ri

Pi
− R j

P j

)2

−
(

vi

p2
i

+ vj

p2
j

)+
∑

vi Isi/P 2
s

is unbiased for M. If tL and eL above are based on SRSWOR in
n draws, then, M equals

M ′ = − 1
C0

∑∑
i< j

aij
∑

s

(
Isij

p2
s

− Isj

Ps
− Isj

Ps
+ 1

)

−
∑

i

Vi

(∑
s

Isi/P 2
s

)]
and

m′ = − N (N − 1)
n(n − 1)C0

∑∑
i< j

âi j Isi j
∑

s

(
Isij

p2
s

− Isi

Ps
− Isj

Ps
+ 1

)

+ 1
C0

N
n

∑
vi Isi

(∑
s

Isi/P 2
s

)
writing

âi j =

(

Ri

Pi
− R j

P j

)2

− vj

P 2
i

+ vj

P 2
j

) Pi P j .

But the coefficients of aij in M ′ and of âi j in m′ are so compli-
cated that m′ is hardly usable. Instead, we shall approximate

M ′ = Ep ER

(∑
s

Ri/
∑

s
Pi − Y

)2

= Ep ER

[∑
s

(Ri − Yi)/
∑

s
Pi +

(∑
s

Yi

/∑
s

Pi − Y

)]2

by

M ′ = N
f

(1 − f )
N∑
1

(Yi − Y Pi)2 /(N − 1)

+ Ep

∑
s

Vi

/(∑
s

Pi

)2
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writing f = n
N as usual. An approximately unbiased estimator

of M ′ is

m′ = N
f

(1 − f )u(s) − N
f

1 − f
(N − 1)

∑
s

vi
1
f

+
(∑

s vi
) (∑

s P 2
i

)
(∑

s Pi
)2

−2
∑

s
Pivi/

∑
s

Pi

]
+
(∑

s
vi

)/(∑
s

Pi

)2

,

where

u(s) = 1
(n − 1)

∑
s

(
Ri − r s

ps
P i
)2

with

r s = 1
n

∑
s

Ri, ps = 1
n

∑
s

Pi.

Assume a PPSWR sample is drawn using normed size mea-
sures Pi, (0 < Pi < 1, Pi = 1), and each time a person ap-
pears in the sample, an independent RR rk is obtained. Write
yk, rk, and pk for the corresponding Yi, Ri, and Pi value for
the individual i if chosen on the kth draw, then, corresponding
to tH H = 1

n
∑n

r =1
yk
pk

, the HANSEN–HURWITZ (1953) estimator
for Y , the derived estimator is eH H = 1

n
∑n

k=1
rk
pk

having the
variance

M = 1
n

( N∑
1

Y 2
i

Pi
− Y 2

)
+ 1

n

∑ Vi

Pi

and an unbiased variance estimator is

m = 1
n(n − 1)

n∑
1

(
rk

pk
− 1

n

n∑
1

rk

pk

)2

.

Presuming that a person, on every reappearance in the sam-
ple, may understandably refuse to reapply the RR device and
may be requested only to report one RR, then a less efficient
estimator is

e′
H H = 1

n

∑
s

Ri

Pi
f si,
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f si = frequency of i in s, with a variance

M ′ = 1
n

(∑ Y 2
i

Pi
− Y 2

)
+ 1

n

∑ Vi

Pi
+ n − 1

n

∑
Vi

and an unbiased estimator for it is

m′ = 1
n(n − 1)

N∑
1

(Ri

Pi
− e′

H H

)2
f si + 1

n

N∑
1

vi

Pi
f si.

Corresponding to other standard sampling strategies due to
DES RAJ (1956), RAO-HARTLEY-COCHRAN (1962), MURTHY
(1957), and others, also similar RR-based estimators along
with formulae for variance and estimators of variance are
rather easy to derive.

12.2.3 Use of Superpopulations

In the case of DR surveys, models for Y are usually postulated
to derive optimal strategies ( p, t) with t = t(s, Y ) to control the
magnitudes of EmEp(t −Y )2 writing Em(Vm, Cm) for expecta-
tion (variance, covariance) operators with respect to the model.
In the RR context, it is also possible to derive, under the same
models, optimal sampling strategies ( p, e), with e = e(s, R) to
control the magnitude of

EmE(e − Y )2 = EmEp ER(e − Y )2.

Here it is necessary to assume that (1) Em, Ep and ER com-
mute and (2) that Ep(e) = p(s)e(s, R) =∑N

1 Ri = R. Since

e(s, R) = t(s, Y )|Y =R = R,

the assumption (2) is rather trivial because in DR optimal
p-based model optimal estimators t are subject to Ep(t) = Y .

We follow GODAMBE and JOSHI (1965), GODAMBE and
THOMPSON (1977), and HO (1980) and postulate the model for
which

Em(Yi) = µi, Vm(Yi) = σ 2
i

and the Yi ’s are independent. Write

e =
∑ Ri

πi
Isi,

e = e(s, R) = e + h,
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with h = h(s, R) subject to Eph = 0. Define, in addition

e0 = e0(s, R) =
∑

i

(Ri − µi

πi

)
Isi + µ,

h0 = e0 − e = −
∑ µi

πi
Isi + µ,

where µ =∑N
1 µi, and check that

M = EmE(e − Y )2 = EmEpV R(e) + EmEpV R(h)
+ EpVm(ERe)EpVm(ERh)

+ Ep(EmERe − µ)2 − Vm(Y )

M̂ = EmE(e − Y )2 = EmEpV R(e) + EpVm(ERe)

+ Ep(EmERe − µ)2Vm(Y )

and

M0 = EmE(e0 − Y )2 = Em

(∑ Vi

πi

)
+
∑

σ 2
i

( 1
πi

− 1
)

on observing, in particular, that

V R(h0) = 0, Vm(ERh0) = 0, EmER(e0) = µ.

So, as an analogous result of HO (1980) for the DR case, we
derive that an optimal strategy involves e0 based on any de-
sign p. But since, in practice, µi may not be fully known, this
optimal strategy is not practicable in general. Assuming that
µi = βXi with Xi(> 0) known but β(> 0) unknown, restrict-
ing within fixed (a) sample size designs pn and in particular
adopting a design pnx for which πi = nXi/X , X = ∑N

1 Xi, one
gets e0 = e and

EmEpnx ER(e − Y )2 ≥ EmEpnx ER(e − Y )2

that is, the class ( pnx, e) is optimal among ( pnx, e). If in addit-
ion σi = σ Xi(σ > 0), then, writing pnxσ as a pn design with
πi = nXi

X = nσi∑
σi

, we have

EmEpn ER(e − Y )2 ≥ Em
∑ Vi

πi
+ (
∑

σi)2

n
−
∑

σ 2
i

= EmEpnxσ
ER(e − Y )2.

Thus, ( pnxσ , e) is optimal among ( pn, e).
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We may observe at the end that in the developments of
RR strategies, we have followed closely the procedure of mul-
tistage sampling. An important distinction is that, in multi-
stage sampling estimating the variance of an estimator Ŷi for
fsu total Yi is an important problem, while in the RR context
the problem of estimating unbiasedly the variance of Ri as
an estimator of Yi does not exist, at least if one employs the
techniques we have illustrated.

12.2.4 Application of Warner’s (1965) and
Other Classical Techniques When
a Sample Is Chosen with Unequal
Probabilities with or without
Replacement

Let, for a person labeled i in U = (1, . . . , N ), yi = 1 if i bears
a sensitive characteristic A, = 0 if i bears the complementary
characteristic Ac. Then, Y = yi denotes, for a given com-
munity, the total number of people bearing A needed to be
estimated.

Let every person sampled participate in WARNER’s RR
programme in an independent way. Let

Ii = 1 if i answers Yes on applying Warner’s device
= 0 if i answers No

Then,

Prob[Ii = 1] = ER(Ii) = pyi + (1 − p)(1 − yi)

yielding

ri = Ii − (1 − p)
2p − 1

,

provided p �= 1
2 , as an unbiased estimator for yi because

ER(ri) = yi for every i in U . Also,

V R(ri) = 1
(2p − 1)2 V R(Ii) = Vi = p(1 − p)

(2p − 1)2

since

V R(Ii) = ER(Ii)(1 − ER(Ii)) = p(1 − p)
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on noting that y2
i = yi. So, if

t = t(s, Y ) =
∑
i∈s

yibsi =
N∑

i=1

yibsi Isi

subject to

Ep(bsi Isi) = 1∀i,

then,

e = e(s, R) = ribsi Isi

writing

Y = (y1, . . . , yi, . . . , yN ), R = (r1, . . . , ri, . . . , r N ),

satisfies

E(e) = Ep ER(e) = Epyibsi Isi = Y

and also,

E(e) = ER Ep(e) = ER(ri) = Y

Again,

V (e) = EpV R(e) + V p ER(e)

= Ep
(
Vib2

si Isi
)+ V p(t)

(12.1)

and also,

V (e) = ERV p(e) + V R Ep(e)
= ERV p(e) + V R(ri) (12.2)
= ERV p(e) + Vi,

following CHAUDHURI, ADHIKARI and DIHIDAR (2000a). Con-
sulting CHAUDHURI and PAL (2002), we may write

V p(t) = −
∑∑

i< j

wiwj

(
yi

wi
− yj

wj

)2

+ 
y2

i

wi
αi

with wi( �= 0) arbitrarily assignable,

dij = Ep(bsi Isi − 1)(bsj Isj − 1)
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and

αi =
N∑

j =1

dij ,

and

V p(e) = V p(t)|Y =R = −
∑∑

i< j

dij wiwj

(
ri

wi
− r j

wj

)
+ 

r 2
i

wi
αi

Let it be possible to find dsij ’s free of Y , R, such that

Ep(dsij Isij ) = dij , Isij = Isi Isj , Isi = 1 if i ∈ s, πi > 0 ∀i.

Then,

vp(t) = −
∑∑

i< j

dsij Isij wiwj

(
yi

wi
− yj

wj

)2

+ 
y2

i

wi
αi

Isi

πi

and

vp(e) = vp(t)|Y =R

satisfy respectively

Epvp(t) = V p(t)

and

Epvp(e) = V p(e).

Then,
v1 = vp(e) + Vibsi Isi

satisfies E(v1) = V (e), vide Eq. (12.2). Since

ERvp(e) = vp(t) −
∑∑

i< j

dsij Isij wiwj

(
Vi

w2
i

+ V j

w2
j

)
+ 

Vi

wi
αi

Isi

πi

it follows from Eq. (12.1) above that

v2 = vp(e) +
∑∑

i< j

dsij Isij wiwj

(
Vi

w2
i

+ V j

w2
j

)

+ 

(
b2

si − αi

wiπi

)
Isi

is an unbiased estimator of V (e) because

E(v2) = Ep ER(v2) = V (e).
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REMARK 12.1 For WARNER’s RR scheme, Vi is known. But in
other schemes, Vi may have to be estimated from the sample
by some statistic V̂i, which has to be substituted for Vi in the
above formulae for v1 and v2.

If, as in RAJ (1968) and RAO (1975),

V p(t) =
∑

i

ai y2
i +

∑∑
i �= j

aij yi yj

and

v′
p(t) = y2

i asi Isi +
∑∑

i �= j

yi yj asij Isij

such that Ep(asi Isi) = ai and

Ep(asij Esij ) = aij ,

then if V̂i be an unbiased estimator for Vi = V R(ri), then two
alternative unbiased estimators for V (e) turn out as

v′
1 = v′

p(e) + V̂ibsi Isi

and

v′
2 = v′

p(e) + V̂i
(
b2

si − asi
)
Isi

writing

v′
p(e) = v′

p(t)|Y =R

This is because it is easy to check that

Ev′
1 = V (e) of Eq. (12.2)

and

Ev′
2 = V (e) of Eq. (12.1) above.

For the well-known unrelated question RR model of HORVITZ
et al. (1967), for any sampled person i, four independent RRs
are needed according to the following devices.

Let Ii, I ′
i be distributed independently and identically

such as Ii = 1 if i draws at random a card from a box with
a proportion p1 of cards marked A and the remaining ones as
marked B, and the card type drawn matches his/her actual
trait A or B , = 0, else.
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Similarly, let Ji and J ′
i be independently and identically

distributed random variables generated in the same manner
as Ii, I ′

i , with the exception that p1 is replaced by p2 (0 < p1 <

1, 0 < p2 < 1, p1 �= p2).
Letting

yi = 1 if i bears the sensitive trait A
= 0, else

and

xi = 1 if i bears an unrrelated innocuous trait B
= 0, else

we may check that

ER(Ii) = p1yi + (1 − p1)xi = ER(I ′
i )

ER(Ji) = p2yi + (1 − p2)xi = ER(J ′
i )

leading to

r ′
i = (1 − p2)Ii − (1 − p1)Ji

( p1 − p2)
· � ·ER(r ′

i) = yi

and

r ′′
i = (1 − p2)I ′

i − (1 − p1)J ′
i

( p1 − p2)
· � ·ER(r ′′

i ) = yi

so that ri = 1
2(r ′

i +r ′′
i ) satisfies ER(ri) = yi and V̂i = 1

4(r ′
i −r ′′

i )2

satisfies ER(V̂i) = V R(ri) = Vi. So, for e = ribsi Isi one may
easily work out v1, v2, v′

1, v′
2.
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Chapter13

Incomplete Data

13.1 NONSAMPLING ERRORS

The chapters that precede this develop theories and methods
of survey sampling under the suppositions that we have a tar-
get population of individuals that can be identified and, us-
ing labels for identification of the units, we choose a sample
of units of a desired size and derive from them values of one
or more variables of interest. However, to execute a real-life
sample survey, one usually faces additional problems. Corre-
sponding to a target population one has to demarcate a frame
population, or frame for short, which is a list of sampling
units to choose from, or a map in case of geographical cover-
age problems. The target and the frame often do not exactly
coincide. For example, the map or list may be outdated, may
involve duplications, may overlap, and may together under or
over cover the target. Corresponding to a frame population
one has the concept of a survey population, which consists
of the units that one could select in case of a 100 percent sam-
pling. These two also need not coincide because during the
field enquiry one may discover that some of the frame units

297
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may not qualify as the members of the target population and
hence have to be discarded to keep close to the target. The
field investigation values may be unascertainable for certain
sections of the survey populations, or, even if ascertained, may
have to be dropped because of inherent inconsistencies or pal-
pable inaccuracies at the processing stage. Consequently, the
sample data actually processed may logically yield conclusions
concerning an inference population, which may differ from
the survey population. MURTHY (1983) elegantly enlightens
on these aspects.

The units from which one may gather variate values of
interest, irrespective of accuracies, are called the responding
units, the corresponding values being the responses; those
that fail to yield responses constitute the nonrespondents.
Some of the nonrespondents may, as a matter of fact, refuse to
respond, giving rise to what are called refusals, while some,
although identified and exactly located, may not be available
for response during the field investigation, giving rise to the
phenomenon of not-at-homes.

The discrepancies between the recorded responses and
the corresponding true values are called response errors,
or measurement errors. These errors are often correlated
and arise because of faulty reporting by the respondents or be-
cause of mistaken recording by the agents of the investigator,
namely the interviewers, coders, and processors. Interpene-
trating network of subsampling is one of several procedures
to provide estimators for correlated response variances aris-
ing because of interviewer (and/or coder-to-coder) variations.
Further sophisticated model-based approaches making use of
the techniques of variance components analysis and Minque
(Minimum normed quadratic unbiased estimator) procedures
are reported in the recent literature.

As a consequence of measurement inaccuracies, estima-
tors based on processed survey data will deviate from the es-
timand parameters even if they are based on the whole pop-
ulation. The deviations due to sampling are called sampling
errors, and the residual deviations are clubbed together under
the title nonsampling errors.
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If an estimator for a finite population mean (or total) is
subject to an appreciable nonsampling error, then its mean
square error about the true mean (or total) will involve not
only a sampling error but also a component of nonsampling
error. Consequently, estimators of sampling mean square er-
rors discussed in the previous chapters will underestimate the
overall mean square errors. Hence, the estimators in practice
will not be as accurate as claimed or expected solely in terms of
sampling error measures, and the confidence intervals based
on them may often fail to cover the estimand parameters with
the nominal confidence proclaimed. So, it is necessary to antic-
ipate possible effects of nonsampling errors while undertaking
a large-scale sample survey and consider taking precautionary
measures to mitigate their adverse effects on the inferences
drawn.

Another point to attend to in this context is that exclu-
sively design-based inference is not possible in the presence of
nonsampling errors. In the design-based approach, irrespec-
tive of the nature of variate values, inferences are drawn solely
in terms of the selection probabilities, which are completely un-
der the investigator’s control. But nonresponse due to refusal
unavailability, or ascertainment errors cannot be under the
investigator’s complete command. In order to draw inferences
in spite of the presence of nonsampling errors, it is essential
to speculate about their nature and magnitude and possible
alternative and cumulative sources. Therefore, one needs to
postulate models characterizing these errors and use the mod-
els to draw inferences.

In the next few sections we give a brief account of various
aspects of nonsampling errors, especially of errors due to in-
adequate coverage of an intended sample due to nonresponse
leading to the incidence of what we shall call incomplete data.

13.2 NONRESPONSE

To cite a simple example, suppose that unit i, provided it is
included in a sample s, responds with probability qi, qi not de-
pending on s or Y = (Yi, . . . , YN ). Suppose n units are drawn
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by SRSWOR and define

Mi =
{

1 if unit i is sampled and responds
0 otherwise

Consider the arithmetic mean

y =
∑N

1 MiYi∑N
1 Mi

of all observations as an estimator of Y . Then

E Mi = n
N

qi

and E y is asymptotically equal to∑
qiYi∑
qi

The bias∑( qi∑
qi

− 1
N

)
Yi

is negligible only if approximately

qi = 1
N

∑
qi.

Even if the last equality holds for i = 1, 2, . . . , N the variance
of y is inflated by the reduced size of the sample of respondents.
So it behooves us to pay attention to the problem of nonre-
sponse in sample surveys. The nonresponse rate depends on
various factors, namely the nature of the enquiry, goodwill of
the investigating organization, range of the items of enquiry,
educational, socioeconomic, racial, and occupational character-
istics of the respondents, their habitations and sexes, etc. In
case of surveys demanding sophisticated physical and instru-
mental measurements, as in agricultural and forest surveys
covering inaccessible areas, various other factors like, sincer-
ity and diligence of the investigator’s agents and their pre-
paredness and competence in doing the job with due care and
competence, are essential. With the progress of time, unfor-
tunately, rates of nonresponse are advancing, and rates of re-
fusals among the nonresponses are gradually increasing faster
and faster in most of the countries where sample surveys and
censuses are undertaken.
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In order to cope with this problem in advanced countries
enquiries are mostly being done through telephone calls rather
than through mailing questionnaires or direct face-to-face in-
terviews. One practice to realize a desired sample size is to
resort to quota sampling after deep stratification of the popu-
lation. In quota sampling from each stratum, a required sam-
ple size is realized by contacting the sampling units in each
stratum in succession following a preassigned pattern, and
sampling in each stratum is terminated as soon as the pre-
determined quota of sample size is fulfilled and nonresponses
and refusals in course of filling up the quota are just ignored.
This is a nonprobability sampling and hence is not favored by
many survey sampling experts.

Randomized response technique is also a device purported
to improve on the availability of trustworthy response relating
to sensitive and ticklish issues on which data are difficult to
come by, as we have described in detail in chapter 12.

Another measure to reduce nonresponse is to callback
either all or a suitable subsample of nonrespondents at suc-
cessive repeat calls. We postpone to section 13.3 more details
about the technique.

Sometimes during the field investigation itself, each non-
response or refusal case after a reasonable number of call-
backs and persuasive efforts fails to elicit response is replaced
by a sampling unit found cooperative but outside the selected
sample of units, although of course within the frame. Such
a replacement unit is called a substitute. Anticipating pos-
sibilities of nonresponse, in practice, a preplanned procedure
of choosing the substitutes as standbys or backups is usually
followed in practice. In substitution it is, of course, tacitly as-
sumed that the values for the substituting units closely re-
semble those for the ones correspondingly substituted. Success
of this procedure depends strongly on the validity of this
supposition.

As is evident from the text thus far developed, an esti-
mator for a finite population total or mean is a weighted sum
of the sampled values, the weights being determined in terms
of the features of the sampling design and/or characteristics of
the models if postulated to facilitate inference making. In case
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there is nonresponse, and hence a reduced effective size of the
data-yielding sample, an obvious step to compensate for miss-
ing data is to revise the original sample weights. The sample
weights are devised to render an estimator reasonably close
to the estimand parameter. Since some of the sample values
are missing due to nonresponse, the weights to be attached to
the available respondent sample units need to be stepped up
to bring the estimator reasonably close to the parameter. So,
weighting adjustment is a popular device to compensate for
missing data in sample surveys. In effect, in employing this
technique, the nonresponses are treated as alike as the re-
sponses such that this technique also is tacitly based upon the
assumption that the respondents and nonrespondents have
similar characteristics and the nonrespondents are missing
just at random.

In large-scale surveys the assumption of missingness at
random is untenable. To overcome this difficulty, utilizing
available background information provided by data on aux-
iliary correlated variables with values available on both the
respondents and the nonrespondents, the population is divided
into strata or into post-strata, in this case called adjustment
classes or weighting classes, so that within a class the re-
spondents and the nonrespondents may be presumed to have
similar values on the variables of interest. Thus, missingness
at random assumption is not required to be valid for the entire
population, but only separately within the weighting classes.
The nonresponse rates will vary appreciably across these
classes. Then, weighting adjustment technique to compensate
for nonresponse is applied using differential weight adjust-
ments across the classes, the weights within each class being
stepped up in proportion to the inverse of the rate of response.

HARTLEY (1946), followed by POLITZ and SIMMONS (1949,
1950), proposed to gather from each available respondent the
number out of the five previous consecutive days he/she was
available for a response. If someone was available on h (h =
0, 1, 2, 3, 4, 5) days h+1

6 was used as an estimated probability
of his/her response and 6

h+1 was used as a weight for every
respondent of the type h (h = 0, 1, . . . , 5). Here 1 is added be-
cause on the day of his/her actual interview he/she is available
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to report. This device, however, only takes care of not-at-homes,
not the refusals. Also, no information is gathered on the actual
not-at-homes on the day of the enquiry.

Weighting adjustment techniques, described in sections
13.4 and 13.5, are usually applied to tackle the problem of
unit nonresponse, that is, when no data are available worth
utilization on an entire unit sampled. But if, for a sampled
unit, data are available on many of the items of enquiry but are
missing on other items, then an alternative technique called
imputation is usually employed. Imputation means filling in
a missing record by a plausible value, which takes the place
of the one actually missed by virtue of presumed closeness
between the two. Various imputation procedures are currently
being employed in practice, to be discussed in brief in
section 13.7.

Another device to improve upon the availability of re-
quired data or cutting down the possibility of incomplete data
is the technique of network sampling. A group of units that
are eligible to report the values of a specific unit is called a
network. A group of units about which a specific unit is able
to provide data is called a cluster. In traditional surveys, the
network and cluster relative to a given unit are both identical
with the given unit itself. But in network sampling various
rules are prescribed following which various members of net-
works and clusters are utilized in gathering information on
sampled units. More details are discussed in section 13.6.

13.3 CALLBACKS

HANSEN and HURWITZ (1946) gave an elegant procedure for
callbacks to tackle nonresponse problems later modified
by SRINATH (1971) and J. N. K. RAO (1973), briefly described
below. The population is conceptually dichotomized with
W1(W2 = 1 − W1) and Ŷ1(Ŷ2 = [Ŷ − W1Ŷ1]/W2) as the propor-
tion of respondents (nonrespondents) and mean of respondents
(nonrespondents) and an SRSWOR of size n yields proportions
w1 = n1/n and w2 = 1 − w1 = 1 − n1/n = n2/n of respondents
and nonrespondents, respectively. Choosing a suitable number
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K > 1 an SRSWOR of size m2 = n2/K , assumed to be an inte-
ger, is then drawn from the initial n2 sample nonrespondents.
Supposing that more expensive and persuasive procedures are
followed in this second phase so that each of the m2 units called
back now responds, let y1 and y22 denote the first-phase and
second-phase sample means based respectively on n1 and m2
respondents. Then, Y may be estimated by yd = w1y1 +w2y22,
and the variance

V (yd ) = (1 − f )
S2

n
+ W2

(K − 1)
n

S2
2

by

vd = (1 − f )
(n1 − 1

n − 1

)
w1

s2
1

n1

+ (N − 1)(n2 − 1) − (n − 1)(m2 − 1)
N (n − 1)

w2
s2
22

m2

+ N − n
N (n − 1)

[
w1(y1 − yd )2 + w2(y22 − yd )2

]
.

Here f = n
N ; S2 is the variance of the population of N units

using divisor (N − 1), S2
2 , the variance of the population of

nonrespondents, using divisor (N2−1), writing Ni = N Wi(i =
1, 2), s2

1 , s2
22 the variances of the sampled respondents in the

first and second phases, using divisors (n1 − 1) and (m2 − 1),
respectively.

Choosing a cost function C = C0n + C1n1 + C2m2 where
C0, C1, C2 are per unit costs of drawing and processing the
initial, first-phase, and second-phase samples respectively of
sizes n, n1, and m2 optimal choices of K and n that minimize
the expected costs

E(C) = C0n + C1nW1 + C2nW2/K

for a preassigned value V of V (yd ) are, respectively,

Kopt =
[
C2
(
S2 − W2S2

2
)
/S2

2(C0 + C1W1)
]1/2

and

nopt = N S2

N V + S2

[
1 + (Kopt − 1)W2S2

2/S2
]
.
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The same Kopt but

n′
opt = CKopt/

[
Kopt (C0 + C1W1) + C2W2

]
minimize V (yd ) for a preassigned value C of E(C). These
results are inapplicable without knowledge about the magni-
tudes of S2, S2

2 , W2.
BARTHOLOMEW (1961) suggested an alternative of calling

back. EL-BADRY (1956), SRINATH (1971), and P. S. R. S. RAO
(1983) consider further extensions of the HANSEN–HURWITZ
(1946) procedure of repeating callbacks, supposing that succes-
sive callbacks capture improved fractions of responses, leaving
hardcore nonrespondents in succession in spite of more and
more stringent efforts.

Another callback procedure is to keep records on the num-
bers of callbacks required in eliciting responses from each sam-
pled unit and study the behavior pattern of the estimator, for
example, the sample mean based on the successive numbers of
calls i = 1, 2, 3, . . ., etc., on which they were respectively based.
If the sample mean yi based on responses procured up to the
ith call for i = 1, 2, 3, . . . up to t shows a trend as i moves ahead,
then, fitting a trend curve, one may read off from the curve the
estimates that would result if further callbacks are needed to
get 100 percent response, and, using the corresponding extrap-
olated estimates y j for j > t, one may get an average of the yi ’s
for i = 1, 2, . . . , t, t +1, . . . using weights as the actual and esti-
mated response rates to get a final weighted average estimator
for the population mean. This extrapolation procedure, how-
ever, is not very sound because not-at-home nonresponses and
refusal nonresponses are mixed up in this procedure, although
their characteristics may be quite dissimilar on an average.

13.4 WEIGHT ADJUSTMENTS

In POLITZ-SIMMONS divided into disjoint and exhaustive
weighting classes, weights are taken as reciprocals of the esti-
mated response probabilities. The response probabilities here
are estimated from the data on frequency of at-homes deter-
mined from the respondents met on a single call. THOMSEN and
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SIRING (1983) extend this, allowing repeated calls. Utilizing,
background knowledge and data on auxiliary variables, the
sample is poststratified into weighting or adjustment classes.
On encountering nonrespondents, several callbacks are made.

They consider three alternative courses, namely (1) get-
ting responses on the first call, (2) getting nonrespondents and
a decision to revisit, and (3) getting nonrespondents and aban-
doning them. In case (2) in successive visits, also, one of these
three alternative courses is feasible. For the sake of simplic-
ity let us illustrate a simple situation where there are only
two post-strata and up to three callbacks are permitted. Let
for the hth post-stratum or weighting class (h = 1, 2) Ph, Qh
and Ah denote the probabilities of (a) getting a response on the
first call, (b) getting a response from one who earlier nonre-
sponded, and (c) of getting a nonresponse and not calling back,
abandoning the nonrespondents. Here Qh is permitted to ex-
ceed Ph because after the first failure, a special appointment
may be made to enhance chances of success in repeated calls.
Let Ah for simplicity be taken as a constant A over h = 1, 2.
Then, letting nh as the observed sample size from the hth post-
stratum and f hj as the frequency of observed responses from
the hth post-stratum on the j th call ( j = 1, 2, 3), postulating
a trinomial distribution for f h1, f h2, f h3 for each h = 1, 2 one
may apply the method of moments to estimate Ph, Qh, A by
solving the equations (for h = 1, 2)

f h1 = nhPh

f h2 = nh(1 − Ph − A)Qh

f h3 = nh(1 − Ph − A)(1 − Qh − A)Qh.

Alternatively, one may also use the least squares method by
postulating, for example,

f hj = αh + βh j + ε j

with αh, βh as unknown parameters, h = 1, 2, j = 1, 2, 3,
E(ε j ) = 0, V (ε j ) = σ 2(> 0), so that E( f hj ) = αh + βh, j =
1, 2, 3. After obtaining estimates of probabilities of responses
available on the first, second, and third calls from sampling
units of respective post-strata, weight-adjusted estimates of
population means and totals are obtained using weights as
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reciprocals of estimated response probabilities. Further gener-
alizations necessitating quite complicated formulae are avail-
able in the literature. OH and SCHEUREN (1983) is an impor-
tant reference.

We will now consider samples drawn with equal proba-
bilities, that is, by epsem (equal probability selection meth-
ods). Suppose the population is divisible into H weighting
classes, rather post-strata with known sizes Nh or weights
Wh = Nh/N for the respective post-strata with known sizes
Nh or weights Wh = Nh/N for the respective post-strata de-
noted by h = 1, . . . , H . Let Nh = Rh + Mh, Rh(Mh), denot-
ing the unknown numbers of units who would always respond
(nonrespond) to the data collection procedure employed. Let
Y rh, Y mh, Rh, Mh denote the means of the respondents, non-
respondents, and corresponding proportions of the hth class,
h = 1, . . . , H . Let yr be the overall mean of the sampled re-
spondents and yr h the mean of the sampled respondents from
the hth class (h = 1, . . . , H ). Then, the bias of yr as an estima-
tor for the population mean Y is

B(yr ) =
∑

Wh
(
Y r h − Y r

) (
Rh − R

)
/R

+
∑

WhMh
(
Y r h − Y mh

)
= A+ B , say,

writing Y r as the overall population mean of all the R respon-
dents, R = R

N , R = ∑
NhRh. An alternative estimator for Y

is yp = ∑
Whyrh, called the population weighting adjusted

estimator, available in case Wh’s are known. Its bias is

B(yp) =
∑

WhMh(Y r h − Y mh) = B .

A condition for unbiasedness of yr is Y r = Y m, writing Y m for
the mean of overall nonrespondents in the population, while
that for yp is Y r h = Y mh for each h = 1, . . . , L. THOMSEN (1973,
1978) and KALTON (1983b) examined in detail relative merits
and demerits of these two in terms of their biases, variances,
mean square errors, and availability of variance estimators.
Preference of one over the other here is not conclusive.

In case Wh’s are unknown, using their estimators, namely
wh = nh/n, the proportion of the sample falling in the respective
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weighting classes, an alternative sample weighted estimator
for Y is ys = ∑

h whyr h. Its bias is B(ys) = B = B(yp). One may
consult KALTON (1983b) and KISH (1965) for further details
about the formulae for variances of ys and comparison of yr ,
yp and ys with respect to their biases and mean square errors
and variance estimators.

Raking ratio estimation, or raking, is another use-
ful weighting adjustment procedure to compensate for nonre-
sponse when a population is cross-classified according to two
or more characteristics. For simplicity, we shall illustrate a
cross-tabulation with respect to only two characteristics, which
respectively appear in H and L distinct forms. Suppose Whl
is the proportion of the population of size N falling in the
(h, l)th cell, which corresponds to the hth form of the first
character I , and the lth form of the second character, say,
π, h = 1, . . . , H and 1 = 1, . . . , L. Let Wh = ∑L

l=1 Whl and
W.l = ∑

h Whl denoting, respectively, the two marginal distri-
butions, be known, h = 1, . . . , H and l = 1, . . . , L. Let, for a
sample of size n from the population, the sample proportion
in the (h, l)th cell be Phl = nhl/n, nhl, denoting the number of
sample observations falling in the (h, l)th cell. We shall assume
an epsem sample. The sample marginal distributions are then
specified by ph. = ∑

l phl and p.l = ∑
h phl for h = 1, . . . , H

and l = 1, . . . , L, respectively. In the above, the population
joint distribution (Whl) is supposed to be unknown. The prob-
lem of raking is one of finding right weights so that when
the sample cell relative frequencies are weighted up, then the
two resulting marginal distributions of the weighted sample
cell proportions respectively agree simultaneously with the
known population marginal distributions. In order to choose
such appropriate weighting factors one needs to employ an
algorithm involving iteration, called the method of iterated
proportional fitting (IPF). To illustrate this algorithm, sup-
pose the initial choice of weights is Wh/ph. Then, the weighted
sample proportions, namely thl = Wh.

ph.
phl, lead to a marginal

distribution{∑
l

Wh.

ph.
phl = Wh.

}
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which agrees with one of the population marginal distribu-
tions, namely, with {Wh.} but not with the other, namely {W.l}.
So, at the second iteration, if we use the new set of weights
W.l/t.l where t.l = ∑

h thl, then the new set of weighted sample
cell proportions, namely, ehl = W.l

t.l
thl, will yield a marginal dis-

tribution {∑h ehl} = {W.l}, which coincides with the other popu-
lation marginal distribution but differs from the first marginal
distribution. So, further iteration should be continued in turn
to achieve conformity with the two marginal distributions with
a high degree of accuracy. If the convergence is rapid the
method is successful; if not, usually as specified, 4 or 6 iter-
ation cycles are employed and the process is stopped. Sup-
pose the terminating weighted sample proportions for the cells
conforming closely with respect to their marginal distribu-
tions to the given population marginal distributions are given
by {W hl}. Then tr = ∑

h
∑

l W hl yr hl with yr hl as the sample
mean based on the respondents out of the sampled units falling
in the (h, l)th cell, is taken as the estimator for Y . For fur-
ther discussion on raking ratio method of estimation, one
may consult KALTON (1983b) and BRACKSTONE and RAO
(1979).

13.5 USE OF SUPERPOPULATION MODELS

Suppose x1, x2, . . . , xk are k auxiliary variables correlated with
the variable of interest with values X j i, i = 1, . . . , 1, . . . , N ,
j = 1, . . . , k. Let X be the N × k matrix with ith row x′

i =
(x1i, . . . , xki), i = 1, . . . , N , X s an n × k submatrix of X con-
sisting of n rows with entries for i in a sample s chosen with
probability p(s) with inclusion probabilities πi > 0, and Xr an
n1 × k submatrix of X s consisting of n1(< n) rows correspond-
ing to n1 units of s which respond. Let β = (β1, . . . , βk)′ be a
k × 1 vector of unknown parameters and let

Em(Y ) = Xβ, Vm(Y ) = σ 2V

where σ (> 0) is unknown but V is a known N × N diagonal
matrix and Y = (Y1, . . . , Yn)′ (cf. section 4.1.1). Then, an
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estimator based on s assuming full response is

ts =
N∑

i=1

µ̂i

where

µ̂1 = xi
′β̂s

β̂s =
(

X ′
sπ

−1
s V −1

s X s

)−1 (
X ′

sπ
−1
s V −1

s Y s

)
π s = diagonal matrix with πi for i in s in the diagonals
V s = diagonal submatrix of V with entries for i ∈ s
Y s = n × 1 subvector of Y containing entries for i ∈ s

and all the inverses are assumed to exist throughout.
This ts may be expressed in the form

ts = U ′
sY s =

∑
i∈s

UsiYi,

with Usi as the ith element of the 1 × n vector

U ′
s = 1′

N X
(
X ′

sπ
−1
s V ′

s X s
)−1 X ′

sπ
−1
s V −1

s .

In case response is available on only a subsample s1 of size
n1(< n) out of s, then we employ the estimator

∼
t s =

∑
i∈s1

UsiYi +
∑

i∈s−s1

UsiY i

where, with

X ′
s1

, π−1
s1

V −1
s1

, Y s1

as submatrices and subvectors corresponding to X ′
s, π−1

s , V −1
s ,

Y s, omitting from the latter the entries corresponding to the
units in s − s1,

β̂s1 =
(

X ′
s1

π−1
s1

V −1
s1

X s1

)−1 (
X ′

s1
π−1

s1
V −1

s1
Y −1

s1

)
,

Ŷi = x′
iβ̂s1 .

And it may be shown that
∼
t s =

∑
i∈s1

Us1iYi = ts1 , say,
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with

U ′
s1

= 1′
N X

(
X ′

s1
π−1

s1
V −1

s1
X s1

)−1
X ′

s1
π−1

s1
V −1

s1

and Us1i the ith element of the 1 × n1 vector U ′
s1

. This seems
intuitively sensible, and its properties of asymptotic design-
unbiasedness in spite of model failure and under assumption of
random missingness of records have been investigated by CAS-
SEL, SÄRNDAL and WRETMAN (1983). An alternative proce-
dure in this context of using generalized regression estimator
(GREG estimator) in the presence of nonresponse is considered
as follows by SÄRNDAL and HUI (1981) in case every unit is
assumed to have a positive but unknown response probability.

Let qi = qi(X , θ )(> 0) denote an unknown response prob-
ability of ith unit (i = 1, . . . , N ), which is permitted to de-
pend on the known matrix X and on some unknown parameter
θ = (θ1, . . . , θα). SÄRANDAL and HUI (1981) suggest estimating
θ in qi using the likelihood∏

i∈s1

qi
∏

i∈s−s1

(1 − qi)

assuming a simple form of qi = qi(X , θ) = qi(θ ). Suppose that
maximum likelihood or other suitable estimators q̂i for qi are
available and denote by QN the diagonal matrix of order N ×N
with q̂i ’s, i = 1, . . . , N in the diagonal and by Qs, Qs1

the diag-
onal submatrix of QN accommodating only the entries corre-
sponding to i in s and i in s1, respectively. SÄRNDAL and HUI
(1981) suggest estimating β by

β̂q = (
X ′

s1
π−1

s1
V −1

s1
Q−1

s1
X s1

)−1 (X ′
s1

π−1
s1

V −1
s1

Q−1
s1

Y s1

)
,

and

Y =
N∑
1

Yi by tqg =
N∑
1

µ̂qi +
∑
s1

êqi

πi

where

µ̂qi = x′
iβ̂q, êqi = Yi − µ̂qi

and examine properties of this revised GREG estimator under
several postulated models for qi. One difficulty with this ap-
proach is that the same model connecting both the respondents
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and nonrespondents is required to be postulated to derive good
properties of tqg.

In section 3.3.2, we discussed GODAMBE and THOMPSON’s
(1986a) estimating equation∑

i∈s

φi(Yi, θ )
πi

= 0

in deriving optimal estimators based on survey data d = (i, Yi|
i ∈ s). If the response probability qi(> 0) is known and sr is the
responding subset of s, then GODAMBE and THOMPSON (1986)
recommend estimation on solving∑

i∈sr

φi(Yi, θ )
πiqi

= 0.

In case qi ’s are unknown, they propose further modifications
we omit.

13.6 ADAPTIVE SAMPLING
AND NETWORK SAMPLING

Suppose we intend to estimate the unknown size µ of a domain
in a given finite population of individuals, the domain being
characterized by a specified trait that is rather infrequent. Let
such a domain be denoted by

� = (1, . . . , µ).

Suppose we have a frame of households

F = (H1, . . . , HM)

and let Iij denote the j th person of ith household Hi which
consists of Ti household members, j = 1, . . . , Ti, i = 1, . . . , M,
and let T = ∑M

1 Ti. We presume that, taking hold of individu-
als Iij from the households Hi, we can construct networks to
obtain information about the individual α (α = 1, . . . , µ) in the
domain �. In order to estimate µ let us, for example, choose a
counting rule r , as follows, which will enable us to derive an
estimator for µ on taking a sample of households from F and
contacting members of selected households who may serve as
informants about the members of the domain �.
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Let

δαi j (r ) = 1 is Iij if eligible by rule r to report about α

= 0, else.

Then

Sαi(r ) =
Ti∑

j =1

δαi j (r )

is the total number of members of Hi eligible by rule r to report
about α and

Sα(r ) =
M∑

i=1

Sαi(r )

the total number of members of all the households in the frame
F eligible to report on α by rule r.

Let an SRSWR in m draws be taken out of F and define

ai = 1 if Hi is sampled, i = 1, . . . , M
= 0, else.

Let some sampling weights Wαi j (α = 1, . . . , µ, i = 1, . . . , M,
j = 1, . . . , Ti) be chosen somehow and consider the weighted
sum

λi(r ) =
µ∑

α=1

Ti∑
j =1

δαi j (r )Wαi j

Then

µ̂(r ) = M
m

M∑
i=1

aiλi(r )

is called the multiplicity estimator for µ. For the sake of un-
biasedness we assume α = 1, 2, . . . , µ

(a) Sα(r ) > 0
(b)

∑M
1
∑Ti

j =1 Sαi j (r )Wαi j = 1.

One choice is Wαi j = 1/Sα(r ). Let 1
M
∑M

i=1 λi(r ) = λ(r ). Then,
the variance of µ̂(r ) is

V (µ̂(r )) = M2

M
V (λ(r )),
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where

V (λ(r )) = 1
M

M∑
1

(λi(r ) − λ(r ))2.

To see an advantage of network sampling instead of traditional
sampling in this context, let us assume that

µ∑
α=1

Ti∑
j =1

δαi j (r ) ≤ 1 for every i = 1, . . . , M,

that is, (1) no more than one individual of � will be enumerable
at a household and (2) no individual will be enumerable more
than once at a household. If P = µ/M is quite small, that is,
the trait characterizing the domain � is relatively rare, then
this assumption should be satisfied. Then, taking

Wαi j (r ) = 1
Sα(r )

,

it follows that

V (λ(r )) = P (K(r ) − P ) = P (1 − P ) − P (1 − K(r ))

where

K(r ) = 1
µ

µ∑
α=1

1/Sα(r ).

Writing

S(r ) = 1
µ

µ∑
1

Sα(r )

it follows that
1

S(r )
≤ K (r ) ≤ 1

since K (r ) is the inverse of the harmonic mean of the Sα(r ) ≥ 1.
For traditional surveys K (r ) = 1 and V (λ(r )) = P (1−P ).

Thus P (1 − K (r )) represents the gain in efficiency induced by
network sampling. Introducing appropriate cost consideration,
SIRKEN (1983) has shown that in addition to efficiency, average
cost of survey may also be brought down by network sampling
in many practical situations.
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S. K. THOMPSON (1990) introduced adaptive sampling,
later further developed by THOMPSON (1992) and THOMPSON
and SEBER (1996). CHAUDHURI (2000a) clarified that if a sam-
ple provides an unbiased estimator for a finite population to-
tal along with an unbiased estimator for the variance of this
estimator, then this initial sample can be extended into an
adaptive sample, capturing more sampling units with desir-
able features of interest, yet providing an unbiased estimator
for the same population total along with an unbiased variance
estimator for this estimator.

An important virtue of adaptive sampling compared to the
initial one is its ability to add to the information content of the
original sample, although not necessarily boosting an upward
efficiency level unless one starts with a simple random sample.

Historically, adaptive sampling is profitably put to use in
exploring mineral deposits, inhabitance of land and sea ani-
mals in unknown segments of vast geographical locations, and
pollution contents in various environments in diverse locali-
ties. Recently, CHAUDHURI, BOSE and GHOSH (2004) have ap-
plied it in effective estimation of numbers of rural earners,
principally through specific small-scale single industries in the
unorganized sector abounding in unknown pockets.

Suppose U = (1, . . . , i, . . . , N ) is a finite population of a
known number of units with unknown values yi which are non-
negative but many are zero or low-valued, but some are large
enough so that the population total Y = �yi is substantial and
should be estimated through a judiciously surveyed sample. If
a chosen sample contains mostly zero or low-valued units, then
evidently it is unlikely to yield an accurate estimate. A way to
get over this is the following approach.

Suppose every unit i in U has a well-defined neighbor-
hood composed of itself and one or more other units. Any unit
for which a certain prespecified condition c∗, concerning its y
value is not satisfied is called an edge unit. Starting with
any unit i for which c∗ is satisfied, the same condition is to
be tested for all the units in its neighborhood. This testing is
to be continued for any unit in the neighborhood satisfying c∗
and is to be terminated only on encountering those for which
c∗ is not satisfied. The set of all the distinct units thus tested
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constitutes a cluster c(i) for i including i itself. Dropping the
units of c(i) with c∗ unsatisfied the remainder of c(i) is called
network A(i) of i. An edge unit is then called a singleton
network. Treating the singleton network also, by courtesy,
as networks, it follows that all the networks thus formed are
nonoverlapping, and they together exhaust the entire popula-
tion. Writing Ci the cardinality of A(i) and writing

ti = 1
Ci

∑
j ∈A(i)

yj

it follows that T = �ti equals Y = �yi. Consequently, to esti-
mate Y is same as to estimate T .

If t = t(s, yi|i ∈ s) is an unbiased estimate for Y , then
t(s, ti|i ∈ s) is unbiased for T and hence for Y as well. Now, in
order to ascertain t(s, ti|i ∈ s), it is necessary to survey all the
units in A(s) = ∑

i∈s A(i). This A(s) as an extension of s is called
an adaptive sample. This process of extending from s to A(s)
is called adaptive sampling. Obviously, this is an example of
informative sampling, because to reach A(s) from s one has
to check the values of yi for i in s and also in c(i) for i in s.

Let us treat a particular and familiar case of t as

tb =
∑

yibsi Isi with Ep(bsi, Isi) = 1∀i . . . (13.1)

when s is chosen with probability p(s) according to design p.
Then,

V p(tb) = −
∑∑

i< j

dij wiwj

(
yi

wi
− yj

wj

)2

+
∑

i

y2
i

wi
αi,

where wi( �= 0) are constants, αi = ∑
j dij wj and

dij = Ep(bsi Isi − 1)(bsj Isj − 1).

An unbiased estimator for V (tb) is

v(tb) = −
∑∑

i< j

dsij Isij wiwj

(
yi

wi
− yj

wj

)2

+
∑

i

y2
i

wi
αiCsi Isi

on choosing constants Csi, dsij free of Y = (y1, . . . , yi, . . . , yN )
such that Ep(Csi Isi) = 1 and Ep(dsij Isij ) = dij , for example,
Csi = 1

πi
, dsij = dij

πi j
provided πi j = ∑

s�i j p(s) > 0∀i, j (i �= j ),
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in which case also πi > 0∀i. Now for the adaptive sample A(s)
reached through s, one has only to replace yi by ti for i ∈ s in tb
and v(tb) to get the appropriate revised estimators for adaptive
sampling.

With a different kind of network formation we must con-
sider network sampling, which is thoroughly distinct from
adaptive sampling.

Suppose there are M identifiable units labeled j = 1, . . . ,
M called selection units (su). Also, suppose to each su is linked
one or more observation units (ou), to each of which are linked
one or more of the sus. Let N be the total number of such
unknown ous with their respective values yis with a total Y =∑N

1 yi, which is required to be estimated on drawing a sample
s of sus and surveying and ascertaining the yi values of all the
ous linked to the sus thus sampled. This process of reaching
all the ous linked to the initially sampled sus is called network
sampling.

Here, a network means a set of ous and sus mutually in-
terlinked. The link here is a reciprocal relationship. One ou
linked to an su is linked to another ou, to which this su is
linked and also several ous may be mutually linked directly as
well. A hospital, for example, may be an su, and a heart pa-
tient treated in it may be an ou. Through a sample of hospitals
exploiting the mutual and reciprocal links, we may capture a
number of ous. Ascertaining their y values, for example, the
number of days spent in hospitals for a heart patient, the ex-
penses incurred for treatment there, etc., it may be possible to
estimate the totals for all the patients who are the ous.

To see this, let us proceed as follows. Let Aj denote the
set of ous linked to the j th su and mi be the number of sus to
which the ith ou is linked. Let

wj =
∑
i∈Aj

yi

mi
.

Then,

W =
M∑

j =1

wj =
M∑

j =1

∑
i∈Aj

yi

mi
=

N∑
i=1

yi

mi

∑
( j |Aj �i)

1 = Y .
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Thus, to estimate Y is to estimate W . So, using the data (s, wj |
j ∈ s) one may employ an estimator t = t(s, wj | j ∈ s) for
W and hence estimate Y, and also if a variance estimator for
t is available in terms of wj ’s, that automatically provides a
variance estimator in terms of yi ’s.

The main situation when network sampling is needed and
appropriate is when the same observational unit is associated
with more than one selection unit and vice versa, and it is not
practicable to create a frame of the observation units to be able
to choose samples out of them in any feasible manner.

An outstanding problem that needs to be addressed for
adaptive as well as network sampling is that there is no built-in
provision to keep a desirable check on the sample sizes in either
of the two. SALEHI and SEBER (1997, 2002) have introduced
some devices to keep in check the size of an adaptive sample.
For network sampling, no such procedure seems to be available
in the literature.

One easy solution for adaptive sampling is to take simple
random samples without replacement (SRSWOR) B(i) of suit-
able sizes di(≤ Ci) independently for every i in s such that∑

i∈s di ≤ L, where L is a preassigned suitable number so
that with the resources at hand, ascertainment may be ac-
complished for yi within B(s) = ∪i∈s B(i). Then, instead of ti
one may calculate ei = 1

di

∑
j ∈B(i) yj and employ an estimator

for Y based on ei for i in B(s).
Similarly, in the case of network sampling one may confine

surveying SRSWORs taken independently from Aj ’s, say, B j ’s
and ascertaining yi ’s for i ∈ B j only with cardinality Dj of B j ’s
suitably chosen subject to an upper limit for

∑
j ∈s Dj . Estima-

tion in both adaptive and network sampling with sample sizes
thus constrained may be comfortably accomplished. SIRKEN
(1993) has certain results on efficiency of network sampling.

For adaptive sampling THOMPSON and SEBER (1996) have
observed that, in case the original sample is an SRSWOR, in-
creased efficiency is ensured for adaptive sampling, as is easy
to see considering the analysis of variance, keeping in mind
the between and within network sums of squares. But for gen-
eral sampling schemes, no general claim is warranted about
gain in efficiency through adaptive sampling.
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The techniques of constraining the sizes of adaptive sam-
ples or network samples may essentially be interpreted as
means of adjusting in estimation in the presence of partial non-
response in surveys. This is because the nonresponding units
in the samples from within each stratum may be assumed to
have been actually drawn as simple random samples without
replacement (SRSWOR) by design from the sample already
drawn. Let us illustrate with an example.

Suppose an initial sample of size n has been drawn from
a population by the RAO, HARTLEY, COCHRAN (RHC) scheme
utilizing the normed size measures pi (0 < pi < 1,

∑
pi = 1).

From the n groups formed let us take an SRSWOR of m groups
with m as an integer suitably chosen between 2 and (n − 1).
Corresponding to the following entitites relevant to the full
sample, namely,

t = �nyi
Qi

pi
, V (t) = A

[
�

y2
i

pi
− Y 2

]
,

v(t) = B

[
�nQi

y2
i

p2
i

− t2

]
, A = �nN 2

i − N
N (N − 1)

, B = �nN 2
i − N

N 2 − �nN 2
i

we may work out the following based on the SRSWOR out of it

e = n
m

�myi
Qi

pi
, Em(e) = t = �nξi, ξi = yi

Qi

pi
, Em, Vm

as expectation, variance operators with respect to SRSWOR in
m draws from the RHC sample of size n, �n sum over m groups,

Vm(e) = n2
( 1

m
− 1

n

) 1
(n − 1)

�n(ξi − t)2,

vm(e) = n2
( 1

m
− 1

n

) 1
(m − 1)

�n

(
ξi − �mri

m

)2
,

Emvm(e) = Vm(e)

Writing

w = B

[
n
m

�mQi
y2

i

p2
i

− (e2 − vm(e))

]
,
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an unbiased estimator for the variance of e turns out to be

v = vm(e) + w = (1 + B )vm(e) + B

[
n
m

�mQi
y2

i

p2
i

− e2

]
.

This approach may be pursued with other procedures of sample
selection and also in more than one stage of sampling with
equal and unequal selection probabilities at various stages.

13.7 IMPUTATION

If, on an item of enquiry in a sample survey, values are recorded
in respect of a number r of sampled units, the so-called re-
sponses, while the values are missing in respect of the remain-
ing m = n−r sampled units, then for the sake of completeness
of records to facilitate standard analysis of data, it is often
considered useful not to leave the missing records blank but
to ascribe somehow certain values to them deemed plausible
on certain accountable grounds. This procedure of assigning
values to missing records is called imputation. In computer-
ized processing of huge survey data covering prodigious sizes
of ultimate sampling units sampled related to numerous items
of enquiry, it is found convenient to have a prescribed number
of readings on each item rather than arbitrarily varying ones
across the items induced by varying item-wise response rates.
A simple procedure to facilitate this is imputation. The aim of
imputation is, of course, to mitigate the effect of bias due to
nonresponse. So, it is to be conceded that the acid test of its
efficiency is the closeness of the values imputed to the true
ones. Since the true values are unknown, one cannot prove
the merits of this technique, if any. When implementing impu-
tation, one should be careful to announce the extent of im-
putation executed in respect of each item subjected to this
and explicitly indicate how it is done. Let us now mention a
few well-known procedures of imputation. While applying an
imputation process, the population is customarily considered
divisible into a number of disjoint classes, called imputation
classes. Several variables called control on matching on an
item of interest available from the respondents’ records are
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utilized in some form to be assigned to some of the nonre-
sponding units on this item. The respondent for which a value
is thus extracted to be utilized in assigning a value to a missing
record for a nonrespondent is called a donor and the latter is
called a recipient. Some of the imputation methods are:

(1) Deductive imputation
A missing record may sometimes be filled in

correctly or with negligible error, utilizing available
data on other related items, which, for the sake of
consistency, itself may pinpoint a specific value for it
as may be ascertained while applying edit checks at
the start of processing of survey data. This is called
logical or consistency or deductive imputation.

(2) Cold deck imputation
If records are available on the items of inter-

est on the same sampled units from a recent past
survey of the same population, then, based on the
past survey, a cold deck of records is built up. Then,
if for the current survey a record is missing for a
sampled unit while one is available on it from the
cold deck, then the latter is assigned to it. Cold deck
imputation is considered unsuitable because it is
not up-to-date and is superseded by the currently
popular method of hot deck.

(3) Mean value imputation
Separately within each imputation class, the

mean based on the respondents’ value is assigned to
each missing record for the nonrespondents inside
the respective class. This mean value imputation
has the adverse effect of distorting the distribution
of the recorded values.

(4) Hot deck
First the imputation classes are prescribed.

Using past or similar survey data a cold deck is
initiated. For each class, for each item the current
records are run through, a current survey value
whenever available replacing a cold deck value
while a cold deck value is retained for a unit which is
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missing for the current survey when the records are
arranged in a certain order, fixing a single cold deck
value for each class. For example, for an item sup-
pose for the hth class xh is a cold value obtained from
past data. Suppose the sampled units are arranged
in the sequence i1, i2, i3, i4, i5, i6, i7, i8, i9, i10 and the
current values available are yi3, yi6, yi9 only and the
remaining ones are unavailable. Then, the imputed
values will be zi1, zi2, zi3, zi4, zi5, zi6, zi7, zi8, zi9, zi10
where zi1 = zi2 = xh, zi3 = yi3, zi4 = yi3, zi5 =
yi3, zi6 = yi6, zi7 = yi6, zi8 = yi6, zi9 = yi9 and zi10 =
yi9. Two noteworthy limitations of the procedure
are that (a) values of a single donor may be used
with multiplicities and (b) the number of imputa-
tion classes should be small, for otherwise current
survey donors may be unavailable to take the place
of cold deck values.

(5) Random imputation
First the imputation classes are specified. Sup-

pose for the hth imputation class nh is the epsem
sample size out of which rh are respondents and
mh = nh − rh are nonrespondents. Although m =∑

h mh should be less than r = ∑
h rh, the over-

all nonresponse rate m
n (writing n = ∑

h nh) being
required to be substantially less than 1

2 for gen-
eral credibility and acceptability of the survey re-
sults, for a particular class h, it is quite possible
that mh may exceed rh. Keeping this in mind, let
for each h two integers kh and th be chosen such
that mh = khrh + th (kh, th ≥ 0, taking kh = 0 if
mh < rh). Then, an SRSWOR of th is chosen out of
the rh respondents to serve as donors for the mh
missing records (kh+2) times each and the remain-
ing (rh − th) respondents serving as donors (kh + 1)
times each. Further improvements of this random
imputation procedure are available, leading to more
complexities but possibly improved efficacies. Per-
formances of this procedure may be examined with
considerably complex analysis.
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(6) Flexible matching imputation
This is a modification of hot deck practiced in

the U.S. Bureau of the Census. Here, on the basis
of data on numerous control variables considered
in a hierarchical pattern in order of importance, for
each recipient a suitable matching donor is deter-
mined, and in such determinations stringencies are
avoided by dropping some of the control variables in
the lower rungs of the hierarchy if found necessary
to create a good match.

(7) Distance function matching
After creating imputation classes on the basis

of control variables while fixing up donor–recipient
matching, some ambiguities are required to be re-
solved on the borders of consecutive classes. For a
smooth resolution the closeness of a match is of-
ten assessed in terms of a distance function. Differ-
ent measures of distance, including MAHALANOBIS
distance in case of availability of multiple control
variables, and also those based on transformations
including ranks, logarithmic transforms, etc., are
tried in finding good neighbors or, if possible, near-
est neighbors in picking up right donors for recipi-
ents. FORD (1976) and SANDE (1979) are appropri-
ate references to throw further light on this method
of imputation.

(8) Regression imputation
Suppose x1, . . . , xt are control variables with

values available on both the respondents and non-
respondents, the potential donors and recipients re-
spectively, while y is the variable of interest with
values available only for the respondents. Using y
and xj ( j = 1, . . . , t) values on the respondents is
then established a regression line, which is utilized
in obtaining predicted values on y for nonrespon-
dents corresponding to each nonrespondent’s xj
value. The predicted value is then usable for impu-
tation either by itself or with a random error com-
ponent added to it. If the control variables are all
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qualitative then log-linear or logistic models are of-
ten postulated in deriving the predicted values. If
both qualitative and quantitative variables are
available, then the former are often replaced by
dummy variables in obtaining a right regression
function. For alternatives and further discussions,
one should consult FORD, KLEWENO and TORTORA
(1980) and KALTON (1983b).

(9) Multiple imputations
While applying any one of several available im-

putation techniques, one must be aware that each
imputed value is fake, as it cannot be claimed to be
the real value for a missing one. Imputation cannot
create any information that is really absent. So, it
is useful to obtain repeated imputed values for each
missing record by applying the same imputation
techniques several, c(> 1) times, and also by apply-
ing different imputation techniques repeatedly to
compare among the resulting final estimates using
the imputed values for satisfaction about their use-
fulness. RUBIN (1976, 1977, 1978, 1983) is an out-
standing advocate for trying multiple imputed val-
ues in examining the performances of one or more
of the available imputation techniques in any given
context. Multiple imputation facilitates variance es-
timation, extending the technique of subsampling
replication variance estimation procedure suitably
adaptable in this context. For example, if z is any
statistic obtained on the basis of multiple imputa-
tions replicated C(> 1) times, zj being its value for
the j th replicate ( j = 1, . . . , C), z = 1

C
∑C

j =1 zj ,
and v̂ j is an estimated variance of zj , then RU-
BIN’s (1979) formula for estimating the variance of
z is

v(z) = 1
C

C∑
1

v̂ j + 1
C − 1

C∑
1

(zj − z)2

For further details, one should consult RUBIN (1983)
and KALTON (1983b).
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(10) Repeated replication imputation
KISH (cf. KALTON, 1983b) recommends a vari-

ation but an analogue of multiple imputation tech-
nique that consists of splitting the sample into two
or more parts, as in interpenetrating or replicated
sampling, each part containing both respondents
and nonrespondents, the response rates in the two
or more such parts being usually different. A method
is then applied using suitable weights, taking ac-
count of these differential response rates in the parts
so that the bias due to nonresponse may be reduced
when the donors are appropriately sampled in the
two or more parts of the sample. In RUBIN’s multiple
imputation, donor values are duplicated to compen-
sate for nonresponse and the process is then repli-
cated. In KISH’s repeated replication technique, first
the sample is replicated and then in each replicate
there is duplication of donor values to compensate
for nonresponse. The latter procedure involves se-
lection of donors without replacement and hence
is likely to yield lower variances than the former,
which involves selection of donors with replacement.
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This book is, of course, not a suitable substitute for a well-
chosen sample of published materials from the entire liter-
ature on theory and methods of survey sampling. In fact, a
careful reader of the contents of even the limited bibliography
we have annexed must be infinitely better equipped with the
message we intend to convey than one depending exclusively
on it. Yet, we claim it justifies itself because of its restricted
size designed for rapid communication.

Requirements in a design- or, randomization- or, briefly,
p-based approach toward estimating a total Y by a statistic
tp based on a sample s chosen with probability p(s) are the
following. (a) The bias Bp(tp) should be absent, or at least nu-
merically small, (b) the variance V p(tp) as well as the mean
square error Mp(tp) should be small, and (c) a suitable esti-
mator vp(tp) for V p(tp) should be available. One may use the
standardized estimator (SZE) (tp − Y )/

√
vp(tp) to construct a

confidence interval of a limited length covering the unknown
Y with a preassigned nominal confidence coefficient (1 − α),
close to 1, which is the coverage probability calculated in terms
of p(s). If the exact magnitude of its bias cannot be controlled,

327
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tp should at least be consistent, or at least its asymptotic p
bias should be small.

Here the concept of asymptotics is not unique. We men-
tioned briefly one approach due to BREWER (1979). But we did
not discuss one due to FULLER and ISAKI (1981) and ISAKI
and FULLER (1982), which considers nested sequences of fi-
nite populations Uk(Uk ⊂ Uk′ , k < k′) of increasing sizes
Nk(Nk < Nk′ , k < k′) from which independent samples sk
of sizes nk(< nk′ , k < k′) are drawn according to sequences pk
of designs.

The SZE mentioned above is required to converge in law
to the standardized normal deviate τ . The inference made with
this approach is regarded as robust in the sense that it is valid
irrespective of how the coordinates of Y = (Y1, . . . , YN )′ are
distributed of which Y is the total. The sampled and unsam-
pled portions of the population are conceptually linked through
hypothetically repeatable realization of samples. So the selec-
tion probability of a sample out of all speculatively possible
samples constitutes the only basis for any inference.

In the p-based approach the emphasis is on the property
of the sampling strategy specified with reference to the hypo-
thetical p distribution of the estimators, rather than on how
good or bad the sample actually drawn is. In the predictive
model-based (m-based, in brief) approach, however, inference
is conditional on the realized sample, which is an ancillary
statistic. The speculation is on how the underlying population
vector Y = (Y1, . . . , YN )′ is generated through an unknown
process of a random mechanism. In the light of available back-
ground information, a probability distribution for Y is pos-
tulated within a reasonable class, called a superpopulation
model. Under a model, M, a predictor tm for Y is adopted that
is m unbiased, that is, Em(tm − Y ) = 0 for every sample such
that Vm(tm − Y ) is minimum among m-unbiased predictors
that are linear in the sampled Yi ’s.

A design, however, is chosen consistently within one’s re-
sources such that EpVm(tm−Y ) is minimal. An optimal design
here turns out purposive, that is, nonrandom.

To complete the inference, one needs an estimator vm for
Vm(tm −Y ) and an SZE of the form (tm −Y )/

√
vm, which again

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙Epilogue January 27, 2005 12:34

Epilogue 329

is required to converge in law to τ . As a result, a confidence
interval for Y may be set up with a nominal coverage
probability calculated with respect to speculated unanswered
questions about the performances of tm, vm and (tm − Y )/

√
vm

when the postulated model is incorrect. If a correct model is
M0, it is not easy to speculate on the m bias of tm

Em0(tm − Y ) = Bm0(tm),

the m MSE of tm

Em0(tm − Y )2 = Mm0(tm)

the m bias of vm

Em0[vm − Mm0(tm)] = Bm0(vm),

and the distribution of (tm − Y )/
√

vm when Y is generated
according to M0. So, the question of robustness is extremely
crucial here.

One approach to retain m unbiasedness of tm in case of
modest departure from a postulated model is to adjust the sam-
pling design. The concept of balanced sampling that demands
equating sample and population moments of an auxiliary x
variable is very important in this context, as emphasized by
ROY ALL and his colleagues. They also demonstrate the need
for alternatives to vm as m variance estimators that retain
m unbiasedness and preserve asymptotic normality of revised
SZEs. A net beneficial impact of this approach on survey sam-
pling theory and practice has been that some classical p-based
strategies like ratio and regression estimators with or without
stratification, weighted differentially across the strata, have
been confirmed to be serviceable predictors and, more impor-
tantly, alternative variance estimators for several such com-
mon estimation procedures for total have emerged.

A further important outcome is the realization that a re-
evaluation of p-based procedures is necessary and useful in
terms of their performances, not over hypothetical averaging
over all possible samples, but through their conditional be-
havior averaging over only samples sharing in common some
discernible features with those in the sample at hand.
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ROY ALL, the chief promoter of predictive methodology
in survey sampling, and his colleagues CUMBERLAND and
EBERHARDT, have demonstrated that x-dependent variation
of variance estimators of ratio and regression estimators is a
behavior worthy of attention that is not revealed if one blindly
follows the classical p-based procedures. Inspired by this
demonstration WU, DENG, SÄRNDAL, KOTT, and others have
derived useful alternative variance estimators, keeping eyes
to their conditional behaviors. HOLT and SMITH (1979) have
emphasized how in poststratified sampling the observed sam-
ple configuration n = (n1, . . . , nL) for the given L post-strata
should be used in a variance estimator rather than averag-
ing over it, and then its variation conditional on n and how
it is useful to set up conditional confidence intervals should
be studied. J. N. K. RAO (1985) has further stressed how effi-
cacious is conditional inference in survey sampling, but also
illustrated several associated difficulties. GODAMBE (1986),
SÄRNDAL, SWENSSON and WRETMAN (1989), and KOTT (1990)
have also given new variance estimators with good design- and
model-based properties. SÄRNDAL and HIDIROGLOU (1989)
recommended setting up confidence intervals with preassigned
conditional coverage probabilities that are maintained uncon-
ditionally and have given specific recipes with demonstrated
serviceability.

Followers of HANSEN, MADOW and TEPPING (1983) would
agree to live with model-based predictors provided, in case of
large samples, they have good design-based properties. Espe-
cially if a tm has small |Bp(tm)| and hence, hopefully, also a
controlled Mp(tm), then it may be admitted as a robust proce-
dure. BREWER (1979) (a) recommended that to avoid exclusive
model dependence tm need not be chosen as the BLUP and (b)
discouraged purposive sampling. Instead he based his tm on
a design to invest it with good design properties. At least the
limiting value of |Bp(tm)| for large samples should be zero. A
preferred tm is one for which the lower bound of the limiting
value of EmEp(tm − Y )2 is attained, and the right design is
one for which this lower bound is minimized. SÄRNDAL (1980,
1981, 1982, 1984, 1985) has alternative recommendations in
favor of what he called the GREG predictors, which are robust
in the sense of being asymptotically design unbiased (ADU).
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WRIGHT (1983) introduced the wider class of QR predic-
tors covering both linear predictors (LPRE) including BREWER’s.
GREG, and SÄRNDAL and WRIGHT (1984) examine their ADU
properties. MONTANARI (1987) enlarges this class, further ac-
commodating correlated residuals. LITTLE (1983) considers
GREG predictors inferior to LPRE and shows that the lat-
ter are ADU and ADC provided they originate from a modeled
regression curve with a non-zero intercept term for each of
a number of identifiable groups into which the population is
divisible. This leads to expensive strategies demanding group-
wise estimation of each intercept term. An adaption of JAMES-
STEIN procedures as empirical Bayes estimators, which
involve borrowing strength across the groups with unrepre-
sented or underrepresented groups is, however, recommended
in case one cannot afford adequate group-wise sampling.

An accredited merit of this approach is that a predictor
is good if the underlying model is correct, but is nevertheless
robust in case the model is faulty because it is ADU or ADC.
But a criticism against it is that its model-based property is
conditional on the chosen sample, while its asymptotic design
property is unconditional and based on speculation over all
possible samples. For a better design-based justification a pro-
cedure should fare well conditionally when the reference set
for the repeated sampling is a proper but meaningful subset of
all possible samples. For example, averaging should be over a
set of samples sharing certain recognizable common features of
the sample at hand. SÄRNDAL and HIDIROGLOU (1989), how-
ever, have shown that GREG predictors and some modified
ones adapted from them have good conditional design-based
properties.

Advancing conditional arguments, ROBINSON (1987) has
proposed a conditional bias-corrected modification to a ratio
estimator of Y in case X is known, given by

td = X

(
y
x

+
( y

x
− b

)(
1 − X

x

))

where

b =
∑

s
(Yi − y)(Xi − x)/

∑
s

(Xi − x)2
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postulating asymptotic bivariate normality for the joint distri-
bution of (x, y) with an approximate variance estimator as

v2 =
(

X
x

)2

v0, v0 = 1 − f
n − 1

∑
s

(
Yi − y

x
Xi

)2

Asymptotics have been effectively utilized in the survey sam-
pling context by KREWSKI and RAO (1981), who have estab-
lished asymptotic normality of nonlinear statistics given by (a)
linearization, (b) BRR, and (c) jackknife methods and consis-
tency of the corresponding variance estimators when they are
based on large numbers of strata, although with modest rates
of sampling of psus within strata. As their first-order analysis
proves inconclusive to arrange these three procedures in order
of merit, RAO and WU (1985) resort to second-order analysis
to derive additional results.

Earlier comparative studies of these procedures due, for
example, to KISH and FRANKEL (1970) were exclusively em-
pirical. Incidentally, MCCARTHY (1969) restricted BRR with
two sampled units per stratum, while GURNEY and JEWETT
(1975) extended allowing more but common per stratum sam-
ple size provided it is a prime number. KREWSKI (1978) has
examined stabilities of BRR-based variance estimation.

What now transpires as a palpable consensus among sam-
pling experts is that superpopulation modeling cannot be ruled
out from sampling practice. It is useful in adopting a sampling
strategy, but the question is whether the inference should be
based on (a) the model ignoring the design, (b) the specula-
tion over repeated sampling out of all possible samples, (c) the
speculation over repeated sampling out of a meaningful proper
subset of all possible samples, (d) the speculation over repeated
sampling in either of these two ways and also over realization
of the population vector in the modeled way.

A model, of course, is a recognized necessity (a) in the
presence of nonresponse and (b) in inference concerning small
domain characteristics that needs borrowing strength, implic-
ity or explicitly postulating similarity across domains with in-
adequate sample representation. But, in other situations, its
utility is controversial. Even if one adopts a model, inference
procedure must have an built-in protective arrangement to
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remain valid even in case its postulation is at fault. We have
mentioned a few robustness preserving techniques. We may
also add that sensitivity analyses to validate a postulated
model for the finite population vector of variate values through
a consistency check with the realized survey data are imprac-
ticable in large-scale surveys. More information is available
from RAO (1971), GODAMBE (1982), CHAUDHURI and VOS
(1988), SMITH (1976, 1984), KALTON (1983a), IACHAN (1984),
CUMBERLAND and ROY ALL (1981), VALLIANT (1987a, 1987b),
RAO and BELLHOUSE (1989), ROY ALL and PFEFFERMANN
(1982), SCOTT (1977), SCOTT, BREWER and HO (1978), and
the references cited therein.

The generalized regression estimators of CSW (1976) are
the pioneering illustrations of the outcomes of the model-
assisted approach. Their forms are motivated by an underlying
regression model, for example,

yi = βxi+ ∈i

with β as an unknown slope parameter, xi ’s as known positive
numbers, and ∈i ’s as unknown random errors.

In estimating Y = �yi = βX + � ∈i one is motivated to
estimate β by

bQ = �yixi Qi Isi

�x2
i Qi Isi

with Qi as an estimator for 1
Vm(∈i)

.
This motives the choice of

tg = �
yi

πi
Isi + bQ

(
X − �

xi

πi
Isi

)

or of

tgb = �yibsi Isi + bQ (X − �xibsi Isi) .

A tg or tgb is privileged to have the purely design-based property
of being an ADU as well as an ADC estimator for Y for any
choice of Qi as a positive number. However, a right choice of
Qi is needed in rendering tg or tgb close to Y along with an
estimated measure of its error in repeated sampling from U =
(1, . . . , i, . . . , N ) under control.
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An alternative purely design-based motivation for the in-
troduction of tg or tgb is also available, called the calibration
approach thanks to the intiative taken by ZIESCHANG (1990),
and DEVILLE and SÄRNDAL (1992), with plenty of follow-up
activities as well.

The GREG estimator tg for Y is a modification of a basic
estimator (HORVITZ–THOMPSON, HT, 1952)

tH = �
yi

πi
Isi.

Writing ai = 1
πi

and supposing positive numbers xi ’s are avail-
able, let us revise the initial weights ai for yi by way of a pos-
sible improvement in the following possible ways:

(a) The revised weights wi ’s are to be chosen such that
(b) they satisfy the side conditions, better known as cal-

ibration constants or calibration equations

�wixi Isi = �xi

and

(c) that wi ’s are close to ai ’s is terms of the minimized
distance to be measured by

(d) �[ci(wi − ai)2/ai]Isi

with suitably chosen positive constants ci ’s.
The resulting choice of wi ’s is

gsi = 1 +
(

X − �
xi

πi
Isi

) xi/(ciai)
�
(
x2

i /ci
)
Isi

, i ∈ s.

The resulting estimator for Y , namely,

�yiaigsi Isi

coincides with tg on choosing ci = 1
Qi

, i ∈ s. Then the purely
design-based tg is the same as the model-assisted GREG pre-
dictor for Y expressing tg in the form

tg = XbQ + �
yi − bQxi

πi
Isi

= XbQ + �
ei

πi
Isi
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Calling ei = yi − bQxi the residual, we may recall that it is a
special case of the QR predictors for Y introduced by WRIGHT
(1983), namely,

tQR = XbQ + �ribi Isi

with ri(≥ 0) chosen as certain non-negative constants free of
Y = (y1, . . . , yi, . . . , yN ).

ROY ALL’s (1970) predictor for Y is of the form

tR0 = �yi Isi + bQ(X − �xi Isi)
= XbQ + �ei Isi.

Thus the choices ri = 1
πi

, 1, respectively, yield from tQR the
GREG predictor and ROY ALL’s predictors. For the choice ri = 0
in tQR one gets the projective estimator

tPR0 = XbQ for Y .

It is possible also to establish tQR as a calibration estimator.
If tR0 coincides with tPR0 for a specific choice of Qi, it is

called a cosmetic predictor or estimator. One possible example
for it is the ratio estimator or predictor namely

tR = X
�yi Isi

�xi Isi
.

A QR is called a restricted QR predictor tRQR if some restric-
tions are imposed on the possible magnitudes allowed for Qi
and ri ’s. For a calibration estimator, sometimes the assignable
weights wi ’s are restricted or limited to certain preassigned
ranges like Li < wi < Ui, especially wi ≥ 0. Then they are
called limited calibration estimators. In the recent volumes
of Survey Methodology, many relevant illustrations are avail-
able. For the sake of simplicity, we have illustrated the case
of only a single auxiliary variable x, but the literature covers
several of them.

An advantage of this interpretation of a GREG estima-
tor or predictor as a calibration estimator is that it gets rec-
ognized as a robust estimator as it is totally model free, not
only for large sample sizes in an asymptotic sense. Its ADU
or ADC property alone is not its only guarantee to be robust.
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In the finite population context, CHAMBERS (1986) pointed out
the need for outler-robust estimators, and prior to him BAR-
NETT and LEWIS (1994) also discuss the problem with outliers
in survey sampling, suggesting ways and means of tackling
them.

SÄRNDAL (1996) made an epoch-making recommenda-
tion of employing procedures that bypass the need to include
the cross-product terms in the quadratic forms in which vari-
ance or mean square error estimators for linear estimators
for finite population totals are expressed covering HORVITZ–
THOMPSON and generalized regression estimators. The prime
need for this is that exact formulae for πi j for many sam-
pling schemes are hard to develop. They occur in too many
cross-product terms destabilizing the magnitudes of the vari-
ance or MSE estimators for large- and moderate-sized samples.
He prescribes the use of Poisson sampling or its special case,
Bernoulli sampling, for which πi j = πiπ j as noted by HÁJEK
(1964, 1981). His second prescription is to employ approxima-
tions for the variance or MSE estimators that are expressible
in terms of squared residuals with positive multipliers avoid-
ing the cross-product terms. He has shown that stratified sim-
ple random sampling (STSRS) or stratified Bernoulli sampling
(STBE) employing GREG estimators in suitable forms yields
quite efficient procedures. DEVILLE (1999), BREWER (1999a,
2000), and BREWER and GREGOIRE (2000) also propagate the
utility of this approach, especially by approximating πi j ’s in
terms of πi ’s with suitable corrective terms.

For sampling schemes with sample sizes fixed at a num-
ber, n, BREWER (2000) expresses

V (tH ) = �y2
i

(1 − πi

πi

)
+
∑∑

i �= j

yi yj

(
πi j − πiπ j

πiπ j

)

as

V (tH ) = �πi(1 − πi)
( yi

πi
− Y

n

)2

+
∑∑

i �= j

(πi j − πiπ j )
( yi

πi
− Y

n

)( yj

π j
− Y

n

)
,
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approximates πi j , for example, by

πi j (B ) = πiπ j

(ci + c j

2

)

with ci chosen in (0, 1), approximates V (tH ) by

V B (tH ) = �πi
(
1 − ciπi

) ( yi

πi
− Y

n

)2

and estimates it by

vB (tH ) = �

( 1
ci

− πi

)( yi

πi
− tH

n

)2
Isi

PAL (2003) has generalized BREWER’s (2000) form of V (tH ) to

V (tH ) = �πi(1 − πi)
( yi

πi
− Y

ν

)2

+
∑∑

i �= j

(πi j − πiπ j )
( yi

πi
− Y

ν

)( yj

π j
− Y

ν

)

− Y 2


1 − 1

ν
+ 1

ν2

∑∑
i �= j

πi j


+ 2Y

ν
�

yi

πi


∑

j �=i

πi j




which is correct for any number of distinct units ν(s) for a
sample s with ν = Ep(ν(s)).

Thus, with BREWER’s (2000) approximation for πi j as
given earlier V (tH ) approximates to

V AB (tH ) = �y2
i

(1 − πi

πi

)
+ �π2

i (ci − 1)
( yi

πi
− Y

ν

)2

for which an estimator is

vAB (tH ) = �y2
i

1 − πi

πi

Isi

πi
+ �πi

(
1 − 1

ci

)( yi

πi
− tH

ν

)2
Isi

Poisson’s sampling scheme needs no such approximations but
is handicapped because ν(s) for it varies over its entire range
(0, 1, . . . , N − 1, N ), which is undesirable. To avoid this,
GROSENBAUGH’s (1965) 3P sampling, OGUS and CLARK’s
(1971) modified Poisson sampling, further discussed by
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BREWER, EARLY and JOY CE (1972), and BREWER, EARLY and
HANIF’s (1984), use of collocated sampling, and OHLSSON’s
(1995), use of permanent random numbers (PRN) to effect co-
ordination in rotation vis-a-vis Poisson sampling, are all impor-
tant developments receiving attention over a protracted time
period.

In modified Poisson sampling (MPS) one has to repeat the
Poisson scheme each time it culminates in having ν(s) = 0 with
revised selection probabilities to retain πi in tact. CHAUDHURI
and VOS (1988, p. 198) have clarified that for MPS one has

πi j = πiπ j (1 − P0)

where P0 = Prob[ν(s) = 0] derivable as a solution of

N∏
i=1

[
1 − πi(1 − P0)

] = P0

because πi(1 − P0) is the revised selection probability of i for
this MPS.

For MPS, V (tH ) turns out to be

V (tH ) = �(1 − πi)
y2

i

πi
− P0

(
Y 2 − �y2

i
)

with an unbiased estimator as

v(tH ) = �(1 − πi)
y2

i

πi

Isi

πi
− P0

1 − P0

(
t2
H − �

y2
i

πi

Isi

πi

)

An alternative approach is to employ original Poisson sampling
combined with the estimator

tRH = ν

ν(s)
tH = ν

ν(s)
�yi

Isi

πi
if ν(s) �= 0

with its MSE estimators as

m1 = �

(1 − πi

πi

)(
yi − πi

ν(s)
tH

)2 Isi

πi

= 0, if ν(s) = 0
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or

m2 =
(

ν

ν(s)

)2
m1.

For any general sampling scheme, STEHMAN and OVERTON
(1994) use two approximations

πi j (1) = (n − 1)πiπ j

n − (πi + π j )/2
, πi j (2) = (n − 1)πiπ j

n − πi − π j + 1
n�π2

i

with the compulson that πi < 1 ∀i.
For circular systematic sampling (CSS) with probabilities

proportional to sizes (PPS) that are positive integers xi with
the total X, we know from MURTHY (1957) that the execution
steps are the following.

Let k = [ X
n ] and R be a random integer chosen out of

1, 2, . . . , X . Then let

ar = (R + kj )mod (X ), j = 0, 1, . . . , n − 1,

Ci = ∑i
j =0 xj . Then the sample consists of the unit N if ar = 0

and of i if

Ci−1 < ar ≤ Ci, taking C0 = 0.

For this scheme, the intended sample size nmay not be realized
unless npi < 1∀i, writing pi = xi

X . Also, πi = 1
X (number of

samples with i), πi j = 1
X (number of samples with i and j ).

But πi j turns out zero for many i, j ’s (i �= j ). CHAUDHURI
and PAL (2003) have shown that if, instead of this fixed interval
equal to k CSSPPS, one employs its revised random interval
k chosen at random out of 1, 2, . . . , X − 1 form, then πi j >

0∀i, j (i �= j ).
In order to avoid this shortcoming of CSSPPS that “πi j

equals zero for many i �= j ”, rendering nonavailability of an
unbiased estimator for the variance of a linear estimator for Y ,
HARTLEY and RAO (1962) gave their random CSSPPS scheme
where CSSPPS method is applied with a prior random permu-
tation of the units of U = (1, . . . , i, . . . , N ). For this scheme,
provided npi < 1∀i, the intended sample size n is realized,
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πi = npi and also

πi j =
(n − 1

n

)
πiπ j +

(n − 1
n2

)(
π2

i π j + πiπ
2
j

)

−
(n − 1

n3

)
πiπ j �π2

i + 2(n − 1)
n3

(
π3

i πi + πiπ
3
j + π2

i π2
j

)

− 3(n − 1)
n4

(
π2

i π j + πiπ
2
j

)
�π2

i + 3(n − 1)
n5 πiπ j

(
�π2

i
)2

− 2(n − 1)
n4 πiπ j �π3

i > 0 ∀i �= j

Let us now briefly discuss concepts of coordination in rotation
sampling and of permanent random number (PRN) technique
in sample selection.

If sampling needs to be repeated from the same popula-
tion or essentially the same population subject to incidences
of deaths, that is, dropouts, and of births, that is, addition of
units, then in estimation of a population total or mean, it seems
necessary that some of the units in every sample should be re-
tained for ascertainment of facts on one or more subsequent oc-
casions too. This is called rotation in sampling. Thus rotational
sampling involves a problem of coordination. If two samples
have an overlap of units, then there is positive coordination
and one needs to adopt a policy of maximizing or minimizing
positive coordination. If there is no overlap, then there is neg-
ative coordination. A useful technique of retaining the essen-
tial properties of a basic sampling scheme involving rotation
of units is to use PRNs for the units. OHLSSON (1995) has de-
scribed PRN technques for SRSWOR Bernoulli and Poisson
sampling schemes with rotations allowing birth and deaths in
respect of an initial population. Details are omitted here.

We conclude this text by recounting in brief one of our lat-
est innovative techniques of cluster sampling in a particular
mode. While commissioned by UNICEF in 1998, Indian Statis-
tical Institute (ISI) undertook a health survey in the villages of
an Indian district. It was found useful to first take an SRSWOR
of a kind of selection units called PHC, the primary health cen-
ters, a few of which are localized in proximity to a bigger unit
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called BPHC (big PHC) such that the villages are to be treated
in a separate and territorially nearby PHC or a BPHC. The
PHCs linked to a BPHC together form a cluster. The sampling
scheme actually employed added purposively each BPHC to
which an initially chosen PHC was linked. This is a version of
cluster sampling attaching varying inclusion probabilities to
the BPHCs in the district and thus allowing various choices of
unbiased estimation procedures. A simpler possible two-stage
sampling with BPHCs as the first-stage units and the PHCs
linked to the BPHCs as the second-stage units was avoided
with the expectation of achieving wider territorial coverage of
the district’s PHCs and BPHCs and hence of higher informa-
tion contents and resulting increased accuracy in estimation.
Details are given by CHAUDHURI and PAL (2003).
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Abbreviations Used in the References

AISM Annals of the Institute of Statistical
Mathematics

AJS Australian Journal of Statistics
AMS The Annals of Mathematical Statistics
ANZJS The Australian and New Zealand Journal

of Statistics
Appl. Stat. Applied Statistics
APSPST Applied Probability, Stochastic Processes

and Sampling Theory (see MacNeill
and Umphrey, eds. [1987])

AS The Annals of Statistics
ASA The American Statistical Association
BISI Bulletin of the International Statistical

Institute
Bk Biometrika
Bms Biometrics
CDSS Current Developments in Survey Sampling

(see Swain [2000])
CSAB Calcutta Statistical Association Bulletin
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CSTM Current Statistics Theory and Methods
(Abstract)

CTS Current Topics in Survey Sampling
(see Krewski, Platek, and Rao, eds. [1981])

CSA Communications in Statistics A
FSI Foundations of Statistical Inference,

(see Godambe and Sprott [1971])
HBS Handbook of Statistics, vol. 6, (see

Krishnaiah and Rao, eds. [1988])
ISR International Statistical Review
JASA Journal of the American Statistical

Association
JISA Journal of the Indian Statistical

Association
JISAS Journal of the Indian Society of Agricultural

Statistics
JOS Journal of Offical Statistics
JRSS Journal of the Royal Statistical Society
JSPI Journal of Statistical Planning and Inference
JSR Journal of Statistical Research
Mk Metrika
N Nature
NDSS New Developments in Survey Sampling,

(see Johnson and Smith, eds. [1969])
NPTAS New Perspectives in Theoretical and

Applied Statistics, (see Puri, Vilalane
and Wertz, eds.[1987 ])

PJS Pakistan Journal of Statistics
RISI Revue de Statistique Internationale
Sā Sankhya
SJS Scandinavian Journal of Statistics
SM Sociological Methodology
SSM Survey Sampling and Measurement, (see

Nanboodiri, ed.[1978])
St The Statistician
SUM Survey Methodology
SESA, NIDA Synthetic Estimates for Small Areas, (see

Steinberg, ed.[1979])
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Sā, 37, 117–132.

89. FULLER, W. A. (1981): Comment on a paper by ROY ALL, R. M.
and CUMBERLAND, W. G. JASA, 76, 78–80.

90. FULLER, W. A. and ISAKI, C. T. (1981): Survey design under
superpopulation models. In: CTS, 199–226.

91. FULLER, W. A., LONGHIN, M. and BAKER, H. (1994): Regression
weighting in the presence of nonresponse with application to the
1987–1988 Nationwide Food Consumption Survey. SUM, 20,
75–85.

92. GABLER, S. (1990): Minimax solutions in sampling from finite
populations. Springer-Verlag, New York.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙app February 23, 2005 14:42

352 Appendix

93. GABLER, S. and STENGER, H. (2000): Minimax strategies in
survey sampling. JSPI, 90, 305–321.

94. GAUTSCHI, W. (1957): Some remarks on systematic sampling.
AMS, 28, 385–394.

95. GHOSH, M. (1987): On admissibility and uniform admissibility
in finite population sampling. In: APSPST, 197–213.

96. GHOSH, M. (1989): Estimating functions in survey sampling.
Unpublished manuscript.

97. GHOSH, M. and LAHIRI, P. (1987): Robust empirical Bayes esti-
mation of means from stratified samples. JASA, 82, 1153–1162.

98. GHOSH, M. and LAHIRI, P. (1988): Bayes and empirical Bayes
analysis in multi-stage sampling. In Statistical Decision The-
ory and Related Topics IV, Eds. Gupta, S. S. and Berger, G. O.,
Springer, New York, 195–212.

99. GHOSH, M. and MEEDEN, G. (1986): Empirical Bayes estima-
tion in finite population sampling. JASA, 81, 1058–1062.

100. GHOSH, M. and MEEDEN, G. (1997): Bayesian methods for finite
population sampling. Chapman & Hall, London.

101. GODAMBE, V. P. (1955): A unified theory of sampling from finite
populations. JRSS, 17, 269–278.

102. GODAMBE, V. P. (1960a): An admissible estimate for any sam-
pling design, Sā, 22, 285–288.
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119. HÁJEK, J. (1981): Sampling from a finite population. Marcel
Dekker, New York.

120. HANSEN, M. H. and HURWITZ, W. N. (1943): On the theory of
sampling from finite populations. AMS, 14, 333–362.

121. HANSEN, M. H. and HURWITZ, W. N. (1946): The problem of
non-response in sample surveys. JASA, 41, 517–529.

122. HANSEN, M. H., HURWITZ, W. N. and MADOW, W. G. (1953):
Sample survey methods and theory. Vol. I and Vol. II. Wiley,
New York.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙app February 23, 2005 14:42

354 Appendix

123. HANSEN, M. H., MADOW, W. G. and TEPPING, B. J. (1983):
An evaluation of model-dependent and probability-sampling
inferences in sample surveys. JASA, 78, 776–807.

124. HANURAV, T. V. (1966): Some aspects of unified sampling the-
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sampling. Sā, 39, 1–9.

284. SCOTT, A. J., BREWER, K. R. W. and HO, E. W. H. (1978): Finite
population sampling and robust estimation. JASA, 73, 359–
361.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙app February 23, 2005 14:42

Appendix 365

285. SCOTT, A. J. and HOLT, D. (1982): The effect of two-stage sam-
pling on ordinary least squares theory. JASA, 77, 848–854.

286. SCOTT, A. J. and RAO, J. N. K. (1981): Chi-squared tests for con-
tingency tables with proportions estimated from survey data.
In: CTS, 247–265.

287. SCOTT, A. J. and SMITH, T. M. F. (1969): Estimation in multi-
stage surveys. JASA, 64, 830–840.

288. SCOTT, A. J. and SMITH, T. M. F. (1975): Minimax designs for
sample surveys. Bk, 62, 353–357.

289. SEN, A. R. (1953): On the estimator of the variance in sampling
with varying probabilities. JISAS, 5(2), 119–127.

290. SHAH, B. V., HOLT, M. M. and FOLSOM, R. E. (1977): Inference
about regression models from sample survey data. BISI, 41(3),
43–57.

291. SILVA, P. L. D. N., and SKINNER, C. J. (1995): Estimating dis-
tribution functions with auxiliary information using poststrat-
ification. JOS, 11, 277–294.

292. SILVA, P. L. D. N., and SKINNER, C. J. (1997): Variable selection
for regression estimation in finite populations. SUM, 23, 23–32.

293. SINGH, A. C. and MOHL, C. A. (1996): Understanding calibra-
tion estimators in survey sampling. SUM, 22, 107–115.

294. SINGH, D. and SINGH, P. (1977): New systematic sampling.
JSPI, 1, 163–177.

295. SIRKEN, M. G. (1983): Handling missing data by network sam-
pling. In: IDSS, 2, 81–90.

296. SITTER, R. R. (1992a): A resampling procedure for complex sur-
vey data. In: JASA, 87, 755–765.

297. SITTER, R. R. (1992b): Comparing three bootstrap methods for
survey data. Can. J. Stat. 20, 133–154.

298. SKINNER, C. J. and RAO, J. N. K. (1996): Estimation in dual
frame surveys with complex designs. JASA, 91, 349–356.

299. SMITH, T. M. F. (1976): The foundations of survey sampling: a
review. JRSS, 139, 183–195.

300. SMITH, T. M. F. (1981): Regression analysis for complex surveys.
In: CTS, 267–292.

© 2005 by Taylor & Francis Group, LLC



P1: Sanjay

Dekker-DesignA.cls dk2429˙app February 23, 2005 14:42

366 Appendix

301. SMITH, T. M. F. (1984): Present position and potential develop-
ments: Some personal views: Sample surveys. JRSS, 147, 208–
221.

302. SOLOMON, H. and STEPHENS, M. A. (1977): Distribution of a
sum of weighted chi-square variables. JASA, 72, 881–885.

303. SRINATH, K. P. (1971): Multi-phase sampling in non-response
problems. JASA, 66, 583–589.

304. SRINATH, K. P. und HIDIROGLOU, M. A. (1980): Estimation of
variance in multi-stage sampling. Mk, 27, 121–125.

305. STEHMAN, S. V. and OVERTON, W. S. (1994): Comparison of
variance estimators of the HORVITZ–THOMPSON estimator for
randomized variable systematic sampling. JASA, 89, 30–43.

306. STEINBERG, J., ed., (1979): Synthetic estimates for small
areas (Monograph 24). National Institute on Drug Abuse,
Washington, D.C.

307. STENGER, H. (1986): Stichproben. Physica-Verlag, Heidelberg.

308. STENGER, H. (1988): Asymptotic expansion of the minimax
value in survey sampling. Mk, 35, 77–92.

309. STENGER, H. (1989): Asymptotic analysis of minimax strategies
in survey sampling. AS, 17, 1301–1314.

310. STENGER, H. (1990): Asymptotic minimaxity of the ratio strat-
egy. Bk, 77, 389–395.

311. STENGER, H. and GABLER, S. (1996): A minimax property of
LAHIRI-MIDZUNO-SEN’s sampling scheme. Mk, 43, 213–220.

312. STUKEL, D., HIDIROGLOU, M. A. and SÄRNDAL, C. E. (1996):
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UE unbiased estimator 1.2 4
UMV uniformly minimum

variance unbiased
estimator 3.1.1 33

UMVUE uniformly minimum
variance unbiased
estimator 3.1.1 33

WOR without replacement 1.2 3
WR with replacement 1.2 3
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