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Foreword

ARIJIT CHAUDHURI and HORST STENGER are well known in
sampling theory. The present book further confirms their rep-
utation. Here the authors have undertaken the large task of
surveying the sampling literature of the past few decades to
provide a reference book for researchers in the area. They have
done an excellent job. Starting with the unified theory the au-
thors very clearly explain subsequent developments. In fact,
even the most modern innovations of survey sampling, both
methodological and theoretical, have found a place in this con-
cise volume. In this connection I may specially mention the
authors’ presentation of estimating functions. With its own
distinctiveness, this book is indeed a very welcome addition to
the already existing rich literature on survey sampling.

V. P. GODAMBE

University of Waterloo
Waterloo, Ontario, Canada

xiii
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Preface to the Second Edition

It is gratifying that our Publishers engaged us to prepare this
second edition. Since our first edition appeared in 1992,
Survey Sampling acquired a remarkable growth to which we,
too, have made a modest contribution. So, some addition seems
due. Meanwhile, we have received feedback from our readers
that prompts us to incorporate some modifications.

Several significant books of relevance have emerged af-
ter our write-up for the first edition went to press that we may
now draw upon, by the following authors or editors: SARNDAL,
SWENSSON and WRETMAN (1992), BOLFARINE and ZACKS
(1992), S. K. THOMPSON (1992), GHOSH and MEEDEN (1986),
THOMPSON and SEBER (1996), M. E. THOMPSON, (1997)
GODAMBE (1991), Cox (1991) and VALLIANT, DORFMAN and
ROYALL (2000), among others.

Numerous path-breaking research articles have also
appeared in journals keeping pace with this phenomenal
progress. So, we are blessed with an opportunity to enlighten
ourselves with plenty of new ideas. Yet we curb our impulse to
cover the salient aspects of even a sizeable section of this cur-
rent literature. This is because we are not inclined to reshape

b4
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xvi Preface to the Second Edition

the essential structure of our original volume and we are aware
of the limitations that prevent us from such a venture.

As in our earlier presentation, herein we also avoid be-
ing dogmatic—more precisely, we eschew taking sides. Survey
Sampling is at the periphery of mainstream statistics. The
speciality here is that we have a tangible collection of objects
with certain features, and there is an intention to pry into
them by getting hold of some of these objects and attempt-
ing an inference about those left untouched. This inference
is traditionally based on a theory of probability that is used
to exploit a possible link of the observed with the unobserved.
This probability is not conceived as in statistics, covering other
fields, to characterize the interrelation of the individual val-
ues of the variables of our interest. But this is created by a
survey sampling investigator through arbitrary specification
of an artifice to select the samples from the populations of
objects with preassigned probabilities. This is motivated by
a desire to draw a representative sample, which is a concept
yet to be precisely defined. Purposive selection (earlier pur-
ported to achieve representativeness) is discarded in favor of
this sampling design-based approach, which is theoretically
admitted as a means of yielding a legitimate inference about
an aggregate from a sampled segment and also valued for its
objectivity, being free of personal bias of a sampler. NEYMAN’s
(1934) pioneering masterpiece, followed by survey sampling
texts by YATES (1953), HANSEN, HURWITZ and MADOW (1953),
DEMING (1954) and SUKHATME (1954), backed up by exqui-
sitely executed survey findings by MAHALANOBIS (1946) in
India as well as by others in England and the U.S., ensured
an unstinted support of probability sampling for about
35 years.

But ROYALL (1970) and BREWER (1963) installed a rival
theory dislodging the role of the selection probability as an
inferential tool in survey sampling. This theory takes off pos-
tulating a probability model characterizing the possible links
among the observed and the unobserved variate values asso-
ciated with the survey population units. The parameter of the
surveyor’s inferential concern is now a random variable rather
than a constant. Hence it can be predicted, not estimated.
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Preface to the Second Edition xvii

The basis of inference here is this probability structure as
modeled.

Fortunately, the virtues of some of the sampling design-
supported techniques like stratification, ratio method of
estimation, etc., continue to be upheld by this model-based
prediction theory as well. But procedures for assessing and
measuring the errors in estimation and prediction and setting
up confidence intervals do not match.

The design-based approach fails to yield a best estima-
tor for a total free of design-bias. By contrast, a model-specific
best predictor is readily produced if the model is simple, cor-
rect, and plausible. If the model is in doubt one has to strike
a balance over bias versus accuracy. A procedure that works
well even with a wrong model and is thus robust is in demand
with this approach. That requires a sample that is adequately
balanced in terms of sample and population values of one or
more variables related to one of the primary inferential inter-
est. For the design-based classical approach, currently recog-
nized performers are the estimators motivated by appropri-
ate prediction models that are design-biased, but the biases
are negligible when the sample sizes are large. So, a mod-
ern compromise survey approach called model assisted survey
sampling is now popular. Thanks to the pioneering efforts by
SARNDAL (1982) and his colleagues the generalized regression
(GREGQG) estimators of this category are found to be very effec-
tive in practice.

Regression modeling motivated their arrival. But an al-
ternative calibration approach cultivated since the early
nineties by ZIESCHANG (1990), DEVILLE and SARNDAL (1992),
and others renders them purely design-based as well with an
assured robustness or riddance from model-dependence
altogether.

A predictor for a survey population total is a sum of
the sampled values plus the sum of the predictors for the
unsampled ones. A design-based estimator for a population
total, by contrast, is a sum of the sampled values with multi-
plicative weights yielded by specific sampling designs. A cal-
ibration approach adjusts these initial sampling weights, the
new weights keeping close to them but satisfying certain
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xviii Preface to the Second Edition

consistency constraints or calibration equations determined
by one or more auxiliary variables with known population
totals.

This approach was not discussed in the first edition but is
now treated at length. Adjustments here need further care to
keep the new weights within certain plausible limits, for which
there is considerable documentation in the literature. Here we
also discuss a concern for outliers—a topic which also recom-
mends adjustments of sampling weights. While calibration and
restricted calibration estimators remain asymptotically design
unbiased (ADU) and asymptotically design consistent (ADC),
the other adjusted ones do not.

Earlier we discussed the QR predictors, which include
(1) the best predictors, (2) projection estimators, (3) gener-
alized regression estimators, and (4) the cosmetic predictors
for which (1) and (3) match under certain conditions. Devel-
opments since 1992 modify QR predictors into restricted QR
predictors (RQR) as we also recount.

SARNDAL (1996), DEVILLE (1999), BREWER (1999a,
1999b), and BREWER and GREGOIRE (2000) are prescribing a
line of research to justify omission of the cross-product terms
in the quadratic forms, giving the variance and mean square
error (MSE) estimators of linear estimators of population to-
tals, by suitable approximations. In this context SARNDAL
(1996) makes a strong plea for the use of generalized regres-
sion estimators based either on stratified (1) simple random
sampling (SRS) or (2) Bernoulli sampling (BS), which is a
special case of Poisson sampling devoid of cross-product
terms. This encourages us to present an appraisal of
Poisson sampling and its valuable ramifications employing
permanent random numbers (PRN), useful in coordination and
exercise of control in rotational sampling, a topic we omitted
earlier.

Among other novelties of this edition we mention the fol-
lowing. We give essential complements to our earlier discus-
sion of the minimax principle. In the first edition, exact results
were presented for completely symmetric situations and ap-
proximate results for large populations and samples. Now, fol-
lowing STENGER and GABLER (1996) an exact minimax
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Preface to the Second Edition Xix

property of the expansion estimator in connection with the
LAHIRI-MIDZUNO-SEN design is presented for arbitrary sam-
ple sizes.

An exact minimax property of a Hansen-Hurwitz estima-
tor proved by GABLER and STENGER (2000) is reviewed; in this
case a rather complicated design has to be applied, as sample
sizes are arbitrary.

A corrective term is added to SEN (1953) and YATES and
GRUNDY’s (1953) variance estimator to make it unbiased even
for non-fixed-sample-size designs with an easy check for its
uniform non-negativity, as introduced by CHAUDHURI and PAL
(2002). Its extension to cover the generalized regression esti-
mator analogously to HORVITZ and THOMPSON’s (1952)
estimator is but a simple step forward.

In multistage sampling DURBIN (1953), RAJ (1968) and
J. N. K. RAO’s (1975a) formulae for variance estimation need
expression in general for single-stage variance formulae as
quadratic forms to start with, a condition violated in
RAJ(1956), MURTHY (1957) and RAO, HARTLEY and COCHRAN
(1962) estimators, among others. Utilizing commutativity of
expectation operators in the first and later stages of sampl-
ing, new simple formulae are derived bypassing the above
constraint following CHAUDHURI, ADHIKARI and DIHIDAR
(2000a, 2000Db).

The concepts of borrowing strength, synthetic, and em-
pirical Bayes estimation in the context of developing small do-
main statistics were introduced in the first edition. Now we
clarify how in two-stage sampling an estimator for the popula-
tion total may be strengthened by employing empirical Bayes
estimators initiated through synthetic versions of GREG esti-
mators for the totals of the sampling clusters, which are them-
selves chosen with suitable unequal probabilities. A new ver-
sion of cluster sampling developed by CHAUDHURI and PAL
(2003) is also recounted.

S. K. THOMPSON (1992) and THOMPSON and SEBER’s
(1996) adaptive and network sampling techniques have been
shown by CHAUDHURI (2000a) to be generally applicable for
any sampling scheme in one stage or multistages with or with-
out stratification. It is now illustrated how adaptive sampling
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may help the capture of rare units with appropriate network
formations; vide CHAUDHURI, BOSE and GHOSH (2003).

In the first edition as well as in the text by CHAUDHURI
and MUKERJEE (1988), randomized response technique to
cover qualitative features was restricted to simple random
sampling with replacement (SRSWR) alone. Newly emerging
extension procedures to general sampling designs are now
covered.

In the first edition we failed to cover SITTER’s (1992a,
1992b) mirror-match and extended BWO bootstrap procedures
and discussed RAO and WU’s (1985, 1988) rescaled bootstrap
only cursorily; we have extended coverage on them now.

Circular systematic sampling (CSS) with probability pro-
portional to size (PPS) is known to yield zero inclusion proba-
bilities for paired units. But this defect may now be removed
on allowing a random, rather than a predetermined, sampling
interval—a recent development, which we now cover. Barring
these innovations and a few stylistic repairs the second edition
mimics the first.

Of course, the supplementary references are added alpha-
betically. We continue to remain grateful to the same persons
and institutions mentioned in the first edition for their sus-
tained support.

In addition, we wish to thank Mrs. Y. CHEN for typing and
organizing typesetting of the manuscript.

ARIJIT CHAUDHURI
HORST STENGER
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Our subject of attention is a finite population with a known
number of identifiable individuals, bearing values of a char-
acteristic under study. The main problem is to estimate the
population total or mean of these values by surveying a suit-
ably chosen sample of individuals. An elaborate literature has
grown over the years around various criteria for appropriate
sampling designs and estimators based on selected samples so
designed. We cover this literature selectively to communicate
to the reader our appreciation of the current state of devel-
opment of essential aspects of theory and methods of survey
sampling.

Our aim is to reach graduate and advanced level students
of sampling and, at the same time, researchers in the area
looking for a reference book. Practitioners will be interested
in many techniques of sampling that, we believe, are not ade-
quately covered in most textbooks. We have avoided details of
foundational aspects of inference in survey sampling treated
in the texts by CASSEL, SARNDAL and WRETMAN (1977) and
CHAUDHURI and VOS (1988).

In the first four chapters we state fundamental results
and provide proofs of many propositions, although often

xxi
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leaving some of them incomplete purposely in order to save
space and invite our readers to fill in the gaps themselves. We
have taken care to keep the level of discussion within reach of
the average graduate-level student.

The first four chapters constitute the core of the book.
Although not a prerequisite, they are nevertheless helpful in
giving motivations for numerous theoretical and practical pro-
blems of survey sampling dealt with in subsequent chapters,
which are rather specialized and indicate several lines of ap-
proach. We have collected widely scattered materials in order
to aid researchers in pursuing further studies in areas of spe-
cific interest. The coverage is mostly review in nature, leaving
wide gaps to be bridged with further reading from sources cited
in the References.

In chapter 1 we first formulate the problem of getting
a good point estimator for a finite population total. We sup-
pose the number of individuals is known and each unit can be
assigned an identifying label. Consequently, one may choose
an appropriate sample of these labels. It is assumed that un-
known values can be ascertained for the individuals sampled.
First we discuss the classical design-based approach of infer-
ence and present GODAMBE (1955) and GODAMBE and JOSHI’s
(1965) celebrated theorems on nonexistence of the best esti-
mator of a population total. The concepts of likelihood and
sufficiency and the criteria of admissibility, minimaxity, and
completeness of estimators and strategies are introduced and
briefly reviewed. Uses and limitations of well-known super-
population modeling in finding serviceable sampling strategies
are also discussed. But an innovation worth mentioning is the
introduction of certain preliminaries on GODAMBE’s (1960b)
theory of estimating equations. We illustrate its application to
survey sampling, bestowing optimality properties on certain
sampling strategies traditionally employed ad hoc.

The second chapter gives RAO and VIJAYAN’s (1977) pro-
cedure of mean square error estimation for homogeneous lin-
ear estimators and mentions several specific strategies to
which it applies.

The third chapter introduces ROYALL’s (1970) linear pre-
diction approach in sampling. Here one does not speculate
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about what may happen if another sample is drawn with a
preassigned probability. On the contrary, the inference is based
on speculation on the possible nature of the finite population
vector of variate values for which one may postulate plausible
models. It is also shown how and why one needs to revise ap-
propriate predictors and optimal purposive sampling designs
to guard against possible mis-specifications in models and, at
the same time, seek to employ robust but nonoptimal proce-
dures that work well even when a model is inaccurately hy-
pothesized. This illustrates how these sampling designs may
be recommended when a model is correctly but simplistically
postulated. Later in the chapter, Bayes estimators for finite
population totals based on simplistic priors are mentioned and
requirements for their replacements by empirical Bayes meth-
ods are indicated with examples. Uses of the JAMES—STEIN
technique on borrowing strength from allied sources are also
emphasized, especially when one has inadequate sample data
specific to a given situation.

In chapter 4 we first note that if a model is correctly pos-
tulated, a design-unbiased strategy under the model may be
optimal yet poorer than a comparable optimal predictive strat-
egy. On the other hand, the optimal predictive strategy is de-
void of design-based properties and modeling is difficult. Hence
the importance of relaxing design-unbiasedness for the design-
based strategy and replacing the optimal predictive strategy
by a nonoptimal robust alternative enriched with good design
properties. The two considerations lead to inevitable asymp-
totics. We present, therefore, contemporary activities in ex-
ploring competitive strategies that do well under correct mod-
eling but continue to have desirable asymptotic design-based
features in case of model failures. Although achieving robust-
ness is a guiding motive in this presentation, we do not re-
peat here alternative robustness preserving techniques, for
example, due to GODAMBE (1982). However, the asymptotic
approaches for minimax sampling strategies are duly reported
to cover recently emerging developments.

In chapter 5 we address the problem of mean square error
estimation covering estimators and predictors and we follow
procedures that originate from twin considerations of designs
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and models. In judging comparative efficacies of competing
procedures one needs to appeal to asymptotics and extensive
empirical investigations demanding Monte Carlo simulations;
we have illustrated some of the relevant findings of established
experts in this regard.

Chapter 6 is intended to supplement a few recent develop-
ments of topics concerning multistage, multiphase, and repet-
itive sampling. The time series methods applicable for a fuller
treatment are not discussed.

Chapter 7 recounts a few techniques for variance esti-
mation involving nonlinear estimators and complex survey
designs including stratification, clustering, and selection in
stages.

The next chapter deals with specialized techniques needed
for domain estimation, poststratification, and estimation from
samples taken using inadequate frames. The chapter empha-
sizes the necessity for conditional inference involving specu-
lation over only those samples having some recognizable fea-
tures common with the sample at hand.

Chapter 9 introduces the topic of analytic rather than de-
scriptive studies where the center of attention is not the survey
population at hand but something that lies beyond and typifies
it in some discernible respect. Aspects of various methodologies
needed for regression and categorical data analyses in connec-
tion with complex sampling designs are discussed as briefly as
possible.

Chapter 10 includes some accounts of methods of generat-
ing randomized data and their analyses when there is a need
for protected privacy relating to sensitive issues under inves-
tigation.

Chapter 11 presents several methods of analyzing survey
data when there is an appreciable discrepancy between those
gathered and those desired. The material presented is culled
intensively from the three-volume text on incomplete data by
MADOW et al. (1983) and from KALTON’s (1983a,b) texts and
other sources mentioned in the references.

The concluding chapter sums up our ideas about inference
problems in survey sampling.
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We would like to end with the following brief remarks.
In employing a good sampling strategy it is important to ac-
quire knowledge about the background of the material under
investigation. In light of the background information at one’s
command one may postulate models characterizing some of
the essential features of the population on which an inference
is to be made. While employing the model one should guard
against its possible incorrectness and hence be ready to take
advantage of the classical design-based approach in adjust-
ing the inference procedures. While deriving in full the virtue
of design-based arguments one should also examine if appro-
priate conditional inference is applicable in case some cogniz-
able features common to the given sample are discernible. This
would allow averaging over them instead of over the entire set
of samples.

ARIJIT CHAUDHURI gratefully acknowledges the facili-
ties for work provided at the Virginia Polytechnic Institute
and University of Mannheim as a visiting professor and the
generosity of the Indian Statistical Institute in granting him
the necessary leave and opportunities for joint research with
his coauthor. He is also grateful to his wife, Mrs. BINATA
CHAUDHURI, for her nonacademic but silent help.

HORST STENGER gratefully acknowledges the support of
the Deutsche Forschungsgemeinschaft offering the opportu-
nity of an intensive cooperation with the coauthor. His thanks
also go to the Indian Statistical Institute, where joint research
could be continued. In addition, he wishes to thank Mrs. R.
BENT, Mrs. H. HARYANTO, and, especially, Mrs. P. URBAN,
who typed the manuscript through many versions.

Comments on inaccuracies and flaws in our presenta-
tion will be appreciated and necessary corrective measures are
promised for any future editions.

ARIJIT CHAUDHURI
HORST STENGER
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Chapter 1

Estimation in Finite Populations:
A Unified Theory

1.1 INTRODUCTION

Suppose it is considered important to gather ideas about, for
example, (1) the total quantity of food grains stocked in all the
godowns managed by a state government, (2) the total number
of patients admitted in all the hospitals of a country classified
by varieties of their complaints, (3) the amount of income tax
evaded on an average by the income earners of a city. Now,
to inspect all godowns, examine all admission documents of
all hospitals of a country, and make inquiries about all income
earners of a city will be too expensive and time consuming. So it
seems natural to select a few godowns, hospitals, and income
earners, to get all relevant data for them and to be able to
draw conclusions on those quantities that could be ascertained
exactly only by a survey of all godowns, hospitals, and income
earners. We feel it is useful to formulate mathematically as
follows the essentials of the issues at hand common to the
above and similar circumstances.
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2 Chaudhuri and Stenger
1.2 ELEMENTARY DEFINITIONS

Let N be a known number of units, e.g., godowns, hospitals, or
income earners, each assignable identifying labels 1,2,..., N
and bearing values, respectively, Y1,Yso,..., Yy of a real-
valued variable y, which are initially unknown to an inves-
tigator who intends to estimate the total

N
Y=Y,
1

orthemeanY =Y /N.

We call the sequence U =(1, ..., N) of labels a popula-
tion. Selecting units leads to a sequence s = (iy, ..., i,), which
is called a sample. Here i, ..., i, are elements of U, not neces-
sarily distinct from one another but the order of its appear-
ance is maintained. We refer to n = n(s) as the size of s, while
the effective sample size v(s) = |s| is the cardinality of s,
i.e., the number of distinct units in s. Once a specific sample
s is chosen we suppose it is possible to ascertain the values
Y, ,...,Y; of y associated with the respective units of s. Then

d =[G1,Yi),...,(n, Y;)] orbriefly
d =1[GY;)i €s]
constitutes the survey data.
An estimator ¢ is a real-valued function #(d ), which is

free of Y; for i ¢ s but may involve Y; for i € s. Sometimes we
will express t(d ) alternatively by #(s,Y ), where Y = (Y, ...,

Yn).
An estimator of special importance for Y is the sample
mean
1 N
t(s,Y)=— Y, =y
(s,Y) n(s) ; fSL i =)Y,s8ay

where f denotes the frequency of i in s such that

N
Z fsi = n(s)
=1

Ny is called the expansion estimator for Y.
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More generally, an estimator ¢ of the form

N
t(S, Z) = bs + Z bsiYi
i=1

with b;; = 0 for i ¢ s is called linear (L). Here b; and b,; are
free of Y . Keeping b; = 0 we obtain a homogeneous linear
(HL) estimator.

We must emphasize that here (s, Y ) is linear (or homo-
geneous linear) in Y;,i € s. It may be a nonlinear function of
two random variables, e.g., when s = 0 and b;; = X/ E{V [ X;
so that

N
t(S, K) — ZI]{] fSlYlX
Zl f siXi
Here, X; is the value of a variable x oni € i/ and X = E{VXi
(see section 2.2.)

In what follows we will assume that a sample is drawn
at random, i.e., with each sample s is associated a selection
probability p(s). A design p may depend on related variables
x,z, etc. But we assume, unless explicitly mentioned other-
wise, that p is free of Y . To emphasize this freedom, p is often
referred to in the literature as a noninformative design.

If p involves any component of Y it is an informative
design.

A design p is without replacement (WOR) if no repeti-
tions occur in any s with p(s) > 0; otherwise, p is called with
replacement (WR). A design p is of fixed size n (fixed effec-
tive size n) if p(s) > 0 implies that s is of size n (of effective
size n). With respect to WOR designs there is, of course, no
difference between fixed size and fixed effective size.

A design p is called simple random sampling without
replacement (SRSWOR) if

W

p(s) =
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4  Chaudhuri and Stenger

for s of size n without repetitions, while it is called simple
random sampling with replacement (SRSWR) if

p(s) = %
for every s of size n, n fixed in advance.

The combination (p, ¢) denoting an estimator ¢ based on
s chosen according to a design p is called a strategy. Some-
times a redundant epithet sampling is used before design and
strategy but we will avoid this usage.

Whatever Y may be, let

Ept) =) t(s,Y)p(s)

denote the expectation of £ and

Myt)=Ept-Y)*=> p(s)t(s,Y) - Y)>?

the mean square error (MSE) of t. If E,() =Y forevery Y,
then ¢ is called a p-unbiased estimator (UE) of Y. In this
case M,(t) becomes the variance of ¢ and is written

V,(t) = E,(t — E,t)2
For an arbitrary design p, consider the inclusion prob-
abilities

ni=2p(s);i:1,2,...,N

$31

mij = Zp(s);i#j=1,2,...,N

$31,]

and, provided mq,7s,...,7n >0, the Horvitz-Thompson
(HT) estimator (HTE)

_ Y;
tzz;i’

(see HORVITZ and THOMPSON, 1952) where the sum is over

|s| terms while s is of length n(s). It is easily seen that 7 is HL,
and p-unbiased (HLU) for Y.
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REMARK 1.1 To mention another way to write t define
1. — 1 if ies
S0 if ié¢s
fori =1,2,...,N. Then

where the sum isoveri =1,2,...,N

REMARK 1.2 Assume iy € U exists with m;, = 0 for a design p.
Then, for an estimator t

Ept =Y p@)t(s,Y)+ Y p)its,Y).
EEIN s

The second term on the right of this equation is obviously free
of Y;,. Since p(s) = 0 for all s with iy € s, the first term is 0.
Hence, E yt is free of Y;, and, especially, notequaltoY = E{V Y;.
Consequently, no p-unbiased estimator exists.

1.3 DESIGN-BASED INFERENCE

Let X1 be the sum over samples for which [¢(s,Y)-Y | >k >0
and let Xy be the sum over samples for which [¢(s,Y)—-Y | < k
for a fixed Y . Then from

M,(t) = Z1p(s)(t — Y)2+ Sop(s)(t —Y)2
> k?Prob[|t(s,Y) — Y| > k]

one derives the Chebyshev inequality:

Problle(s, ¥) — | = k1 < “ 20
Hence
M, (¢ 1
Problt —k <Y <t 4kl =1— 152( 1o (Vo) + B2

where B,(t) = E,(t) — Y is the bias of ¢. Writing o,(¢) =
V ,(¢) for the standard error of ¢ and taking & = 30, (¢), it fol-
lows that, whatever Y may be, the random interval ¢ & 30, (%)
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6 Chaudhuri and Stenger

covers the unknown Y with a probability not less than

8 1Bi(@)

9 9V,@)

So, to keep this probability high and the length of this covering
interval small it is desirable that both |B,(¢)| and o,(¢) be
small, leading to a small M,(¢) as well.

EXAMPLE 1.1 Let y be a variable with values 0 and 1 only. Then,
as a consequence of Y2 =Y,

1 _
Oyy = N Z(Yi ~Y)?

— - 1
=Y(1-Y —.
( )54

Therefore, with p SRSWR of size n,
V,(Ny) =N 2(’%

NZ
=4
From
E,y=Y

we derive that the random interval

f 1 3
Ny+3{N in N {y —2«/5}

covers the unknown NY with a probability of at least 8/9.

It may be noted that Y is regarded as fixed (nonstochastic) and
s is a random variable with a probability distribution p(s) that
the investigator adopts at pleasure. It is through p alone that
for a fixed Y the interval ¢ &+ 30,(¢) is a random interval. In
practice an upper bound of o,(¢) may be available, as in the
above example, or o,(¢) is estimated from survey data d plus
auxiliary information by, for example, 6, (¢) inducing necessary
changes in the above confidence statements.

If |B;(¢)| is small, then we may argue that the average
value of ¢ over repeated sampling according to p is numeri-
cally close to Y and, if M,(¢) is small, then we may say that
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Estimation in Finite Populations 7

the average square error E,(t — Y )? calculated over repeated
sampling according to p is small.

Let us stress this point more fully. The parameter to be
estimated may be writtenas Y = X;Y; + %, Y;, the sums being
over the distinct units sampled and the remaining units of U,
respectively. Its estimator is

tzzs:Yi+ (t—zs:Yl).

Now, ¢ is close to Y for a sample s at hand and the realized
survey datad = (i,Y; |i € s) if and only if (¢ — X,Y;) is close
to X, Y;, the first expression depending on Y; for i € s and the
second determined by Y ; for j ¢ s. Now, so far we permit Y to
be any vector of real numbers without any restrictions on the
structural relationships among its coordinates. In this fixed
population setup we have no way to claim or disclaim the
required closeness of (¢ — ¥,Y;) and X, Y; for a given sample
s. But we need a link between Y; fori e sand Y; for j ¢ s
in order to provide a base on which our inference about Y
from realized data d may stand. Such a link is established by
the hypothesis of repeated sampling. The resulting design-
based (briefly: p-based) theory following NEYMAN (1934) is
developed around the faith that it is desirable and satisfactory
to assess the performance of the strategy (p, ¢) over repeated
sampling, even if in practice a sample will really be drawn
once, yielding a single value for ¢.

This theory is unified in the sense that the performance
of a strategy (p, t) is evaluated in terms of the characteristics
E,(¢) and M,(¢), such that there is no need to refer to specific
selection procedures.

1.4 SAMPLING SCHEMES

A unified theory is developed by noting that it is enough to
establish results concerning (p, ¢) without heeding how one
may actually succeed in choosing samples with preassigned
probabilities. A method of choosing a sample draw by draw,
assigning selection probabilities with each draw, is called a
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8  Chaudhuri and Stenger

sampling scheme. Following HANURAV (1966), we show be-
low that starting with an arbitrary design we may construct a
sampling scheme.

Suppose for each possible sample s from U the selection
probability p(s) is fixed. Let

Bir=pG1),  Bii, =p01,02),..., Bi,.iy =001, 1)
o1 =21p(8), oy =Xop(s),..., o4, i = L,p(s)

s

where X; is the sum over all samples s with i; as the first
entry; X, is the sum over all samples with i1, is, respectively,

as the first and second entries in s, ..., and X, is the sum
over all samples of which the first, second, ..., nth entries are,
respectively, i1, io, ..., is.

Then, let us consider the scheme of selection such that
on the first draw from U, i; is chosen with probability «;{, a
second draw from U is made with probability

(1 - @) .
Qi1
On the second draw from U the unit i is chosen with proba-
bility
iy, iy
a1 — Bin

A third draw is made from U with probability

On the third draw from U the unit i3 is chosen with probability
iy ,ig,i3
®iyiy = Bivis
and so on. Finally, after the nth draw the sampling is termi-
nated with a probability
Bivsi,....in

Wiy, in
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For this scheme, then, s = (i1, ..., i,) is chosen with a proba-
bility

B\ i B iy,

i i1,L i1, 11seemrbpe

p(S):Oli1<1— .1> . 1 2. (1_ .1 2) . . 1 >n.1 .
oy ) Oy — ﬁll Uiy, iy iy, yin—g — ﬁlb---:ln—z

" (1 B ,Bil,...,in1> iy,...pin (ﬂil,...,in>
Uip,in 1 ) Xigyesin 1 = Bityein 1 \ Air,eonin
= Bis,....in
as it should be.

1.5 CONTROLLED SAMPLING

EXAMPLE 1.2 Consider the population U = (1,2,...,9) and
the SRSWOR design of size n = 3, p, with the inclusion prob-
abilities

mn=1/3 for i=1,2,...,9

7Tij=1/12 fOI‘ 175]

Define
q(s) =1/12

if s is equal to one of the following samples
(1,2,3) (1,6,8)
(4,5,6) (2,4,9)
(7,8,9) (3,5,7)
(1,4,7) (1,5,9)
(2,5,8) (2,6,7)
(3,6,9) (3,4,8)

and g(s) =0 otherwise. Then g obviously is a design with the
same inclusion probabilities as p. For the sample mean ¥,
which, as a consequence of 7; = 1/3 for all 7, is identical with
the HTE, we therefore have

E,y=E;y
Voy=Vyy

that is, the performance characteristics of the sample mean do
not change when p is replaced by q.
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10 Chaudhuri and Stenger

Now, consider an arbitrary design p of fixed size n and a
linear estimator #; suppose a subset S of all samples is less
desirable from practical considerations like geographical loca-
tion, inaccessibility, or, more generally, costliness. Then, it is
advantageous to replace design p by a modified one, for exam-
ple, g, which attaches minimal values ¢(s) to the samples s in
Sy keeping

E,(t) = Ey(t)
E,t —Y)?=E,(t -Y)?

and even maintaining other desirable properties of p, if any. A
resulting q is called a controlled design and a corresponding
scheme of selection is called a controlled sampling scheme.
Quite a sizeable literature has grown around this problem of
finding appropriate controlled designs. The methods of imple-
menting such a scheme utilize theories of incomplete block de-
signs and predominantly involve ingeneous devices of reducing
the size of support of possible samples demanding trials and
errors. But RAO and NIGAM (1990) have recently presented
a simple solution by posing it as a linear programming prob-
lem and applying the well-known simplex algorithm to demon-
strate their ability to work out suitable controlled schemes.

Taking ¢ as the HORVITZ-THOMPSON estimator = Y,
Yi/n;, they minimize the objective function F = 37 g, q(s)
subject to the linear constraints

D qls) =" pls) =m;
$31,J $31,J

q(s) >0 forall s

where 7;;’s are known quantities in terms of the original
uncontrolled design p.
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Chapter?2

Strategies Depending
on Auxiliary Variables

Besides y there may be related variables x, z, . . ., called aux-
iliary variables, with values

Xl,Xg,...,XN; Zl,Zz,...,ZN;...

respectively, for the units of U. These values may be partly
or fully known to the investigator; if the values of an auxil-
iary variable are positive, this variable may be called a size
measure of the units of U.

In the present chapter we discuss a few strategies of inter-
est in theory and practice. They are based on the knowledge
of a size measure and are representative, in a sense to be
explained, with respect to this measure. Unbiased estimation
of the mean square error of these strategies is of special im-
portance. A general method of estimation is presented in sec-
tion 2.3. Applications to examples of representative strategies
(which are less essential for later chapters) are considered in
section 2.4.

11
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12 Chaudhuri and Stenger
2.1 REPRESENTATIVE STRATEGIES

Let p be a design. Consider a size measure x and assume that,
approximately,

Yl' O(Xi.

Then it seems natural to look for an estimator

N
t=> byY;
i=1
with b; = 0 for i ¢ s, such that
N
Z b X;i =X
i=1
for all s with p(s) > 0. With reference to HAJEK (1959), a strat-
egy with this property is called representative with respect
tOX= (Xl,Xg, ...,XN)/.

For the mean square error (MSE) of a strategy (p,t) we
have

M,t)=E,(t-Y)?
— By (Y Yitb — 1)
- gi:zyiy,-dij
where J

dij = Ep (b — 1)(bsj — 1).

A strategy (p, t) is representative if and only if there exists a
vector X = (X1, X9,...,Xn)" such that M,(¢) =0forY; o« X;
implying

ZZXindij =0.
iJ

It may be advisable to use strategies that are representative
with respect to several auxiliary variables x1, x9, ..., xg. Let

x; = (X1, Xi9, ..., Xig)'
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Strategies Depending on Auxiliary Variables 13

be the vector of values of these variables for unit ; and write
X = X1, Xo1,.-., XN1)

Xg =Xk, Xok, ..., XnNEK) .

A strategy (p,t) is representative with respect to X,; £ =
1,..., K if p(s) > 0 implies

N N
> b Xip =Y Xip
i=1 i=1

for £ =1, ..., K, which may be written as

N N
Dbz =) .
i=1 =1

This equation is often called a calibration equation.

In sections 2.2, 2.3, and 2.4 we deal with representativity
for K = 1. In section 2.5 this restriction is dropped and the
concept of calibration is introduced.

2.2 EXAMPLES OF REPRESENTATIVE
STRATEGIES

The ratio estimator
=X Zies Y;
Zies Xi
is of special importance because of its traditional use in prac-
tice. Here, (p, 1) is obviously representative with respect to a
size measure x, more precisely to (X1, ..., Xx), whatever the
sampling design p.

Note, however, that ¢1 is usually combined with SRSWOR
or SRSWR. The sampling scheme of LAHIRI-MIDZUNO-SEN
(LAHIRI, 1951; MIDZUNO, 1952; SEN, 1953) (LMS) yields a
design of interest to be employed in conjunction with #; by
rendering it design unbiased.

The Hansen-Hurwitz (HH, 1943) estimator (HHE)

1Y y;
ty = — =L,
2 n;fmpi
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14 Chaudhuri and Stenger

with f, as the frequency of i in s, i € U, combined with any
design p, gives rise to a strategy representative with respect to
(P1, ..., Py).Forthe sake of design unbiasedness, ¢ is usually
based on probability proportional to size (PPS) with replace-
ment (PPSWR) sampling, that is, a scheme that consists of n
independent draws, each draw selecting unit i with probability
P;.

Another representative strategy is due to RAO, HARTLEY
and COCHRAN (RHC, 1962). We first describe the sampling
scheme as follows: On choosing a sample size n, the popula-
tion U is split at random into n mutually exclusive groups
of sizes suitably chosen N;(i = 1,...,n; > ] N; = N) coex-
tensive with U/, the units bearing values P;, the normed sizes
(0 < P; <1,> P; = 1). From each of the n groups so formed
independently one unit is selected with a probability propor-
tional to its size given the units falling in the respective groups.
Writing P;; for the jth unit in the ith group,

N;
Q=) Pj,
i—1

the selection probability of j is P;;j/Q;. For simplicity, sup-
pressing j to mean by P; the P value for the unit chosen from
the ith group, the Rao-Hartley-Cochran estimator (RHCE)

n
Q;
ts = Yipo
i—1 i

writing Y; for the y value of the unit chosen from the ith group
(i =1, 2,...,n). This strategy is representative with respect
to P =(Pq,..., PN) because £7Q; = 1.

Murthy’s (1957) estimator

1

=mZYiP(S|i)

i€s

l4

is based on a design p and a sampling scheme for which p (s |i)
is the conditional probability of choosing s given that i was
chosen on the first draw. If P; is the probability to select unit i
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on the first draw we have
N N
p(s) =ZPl-p(s|i), ZPi =1.
i=1 i=1

It is evident that the strategy so defined is representative with
respect to (P, Ps, ..., Py).

2.3 ESTIMATION OF THE
MEAN SQUARE ERROR

Let (p, t) be a strategy with

N
t = Z b,;Y;
i=1

where bg; is free of Y = (Yq,...,Yn) and b;; = 0 for i ¢ s.
Then, the mean square error may be written as

My(t) = B[S Yilby — 1|

N N
=Y > Y.Y;d;

i=1j=1
with
dij = Ep(bsi -1 (bsj - 1.

Let (p, t) be representative with respect to a given vector X =
(X1,...,Xn), X; >0,1 eU. Then, writing

we get
Myt)=> > Z,Z;(X;X;d;)
such that

S XiXj dij =0.

i
Define a;; = X;X; d;;. Then

Mp(t) = ZZZLZJ ajj
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16 Chaudhuri and Stenger
is a non-negative quadratic formin Z;; i = 1, ..., N subject to
>.> aj =0.
iJ
This implies for everyi =1,..., N
> ;=0
J
From this M,(¢) = 3> Z;Za;; may be written in the form
My@®) ==Y (Zi - Zj)" ay

i<j
2
Y, Y
= —ZZ <fll — X—j) Xindij.
i<j

This property of a representative strategy leads to an unbi-
ased quadratic estimator for M,(¢), an estimator that is non-
negative, uniformly in Y , if such an estimator does exist. This
may be shown as follows.

Let

N N
mp(t) => > Y,Y;dg;

i=1j=1

be a quadratic unbiased estimator for M,(¢) with d;; free of
Y anddg;j =Ounlessi € sand j €s. Then

N N N N
YNV Y dij=> pls) [ZZYL'YJ' dsij}
11 s 11

or

N N N N
ZZZiZj Xin dij = Zp(s) lZZZiZj X,’Xj dsij‘|-
1 1

s 1 1

If m,(¢) is to be uniformly non-negative, then for every s with
p(s) >0

N N

YD XX dy;

t 1
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must be a uniformly non-negative quadratic form subject to

N N

ZZXiXJdSiJ =0

1 1

because ZLN Zzlv X;Xjd;; = 0. Therefore, m,(¢) is necessarily
of the form

2
Y, Y
mp(t) = —ZZ (Z — X—j) Xin dsij-

i<j

RESULT 2.1 Let the strategy (p, t) be representative with respect
to X = (Xq1,Xo,...,XnN) and assume M is a uniformly non-
negative quadratic function in Y;, i € s such that

E,M=M,).
Then, M must be of the form

where dg;j =0 unlessi e sand j €s.

REMARK 2.1 Even if representativity does not hold for a strategy
(p,t)

M = ZZYin dij = ZY; di; + Z ZYin dij
iJ i I£]
may be estimated unbiasedly, for example, by

9, I I
m ZY dii -+ Zgj Y;Y;d; _—
where I;; =11, provided m;; >0 for all i # j and hence m; >
Oforalli. But, in order that this may be uniformly non-negative,
we have to ensure that d;j, m;;’s are so chosen as to make m
a non-negative definite quadratic form, which is not easy to
achieve. CHAUDHURI and PAL (2002) have given the following
simple solution to get over this trouble. For X; #0, i €U they
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18 Chaudhuri and Stenger

define

N
Bi=> diX;
j=1
and show

2
Y, Y; Y?
M:—ZZ Xindij(yLi_f> +Zfllﬁl

1<i< j<N J i
Consequently, they propose

2
I (Y Y, Y2 I
~3Y XiXjdi Y (Xll _Xj) 3 i

1<L<J<N ij

as an unbiased estimator for M above.

2.4 ESTIMATION OF Mp(T) FOR SPECIFIC
STRATEGIES

2.4.1 Ratio Strategy

Utilizing the theory thus developed by RAO and VIJAYAN
(1977) and RAO (1979), one may write down the exact MSE
of the ratio estimator ¢; about Y if ¢; is based on SRSWOR in

n draws as
XX
DI ML R:
1<i<j<N (n>
x | X2 Z # _XZ#
§31,j (Zies Xi)z $3i (Zies Xi)
N
- X
Srxt ()
because

Y X
ZXi =;Yibsilsi with bsizm

ies

th =X ZYi

ies

/
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has
dij = Ep(bsilsi — 1) (bsjIsj — 1)
Ly 1
=) [ 32 Soxr X
n 8§31, ] EE]
N
X wx ()
SBJ (ZZGSX ) ]
= B;j, say.
Writing
2
Y, Y;
= XiX; lf - X_]
we have

— Z Z a;j B ij-
i1<j
Since for SRSWOR, r;; = ”E”N U for every i, j (i # j) an obvi-
ous uniformly non-negative quadratlc unbiased estimator for
M is
- N(N -1)

M =— ZZa,JBUISU

n(n_ i<j

It is important to observe that M and M are exact formulae,
unlike the approximations

N-n1X

M = =N (Y; - RX;)?
N_lnzlx RX))

. N(N —n) Ao
M =N—""""N"(Y; — RX;

N =D 263( )

where R = Y/X,R = y/x and

1 1
y=->Y,x="> X,

i€s i€s

due to COCHRAN (1977). For the approximations »n is required
to be large and N much larger than n. These formulae are,
however, much simpler than M and M because B;; is very
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20 Chaudhuri and Stenger

hard to calculate even if X; is known for everyi = 1,..., N.
To use M’ it is enough to know only X; for i € s, but to use M
one must know X; fori ¢ s as well.

2.4.2 Hansen-Hurwitz Strategy

For the HANSEN-HURWITZ estimator #9, which is unbiased
for Y, when based on PPSWR sampling, the variance is well
known to be

g
=%2Pi{%—Yr
__ZZPP F_%]

l<]

admitting a well-known non-negative estimator

a5l

r<r

Ug =
n2(n —

1)Z [yr ’42

where y, is the y value of the unit drawn in the r th place, while
pr is the probability of this unit to be drawn.

n(n —

2.4.3 RHC Strategy

Again, the RHC estimator ¢35 (see section 2.2) is unbiased
for Y because writing E¢ as the expectation operator, given
the condition that the groups are already formed and Eq as
the expectation operator over the formation of the groups, we
have

n N;

R

i Pij

EC(t3) = Z ZYJ P, Q
ij Wi
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and hence E,(t3)=Eg[Ec(t3)]=Eq(Y)=Y. Also, writing
Ve, Ve as operators for variance corresponding to Ec, Eg,
respectively, we have

M =V,(t3) = Eg[Vc(t3)] + VglEc(t3)]

S Pij Py (Yi;Qi Yy Q ’
2.2 2 QiQi(Pij Pik)]

1 1<j<k<N;

= Eqg

2
n Y. Y,
-E%|T L A (P——P;;)

1 1<j<k<N;
2
" | N;(N; Y Yk
1 [N(N_l) 1<j<k<N P
2
ZlNz ' Yk
= PiP,| == —-—] =Vs.
NN —1) IXEM;N P, P 3

By Cauchy’s inequality, n>"] Ni2 > (XN;)2 = N2, hence
SINZ > NTZ and Y7 N? is minimal if N; = % for all i pro-
vided, as assumed here, N/n is an integer. Then, ¢35 has the
minimal variance

V.

P, P,

2
N Y, Y;]° N-n
V(t3) (N 1)ZZPP[ ]_N—l

1<j<k<N

If % = 1/f is not an integer, then to minimize X]N i2 and
equivalently to minimize V3 one should take £(<n) of the N;’s
as equal to [N ] and the (n — k) remaining of them equal to
[Y]+1 with £ so chosen that S» N; = N. By [x] we denote the
largest integer not exceeding x > 0.

RHC have themselves given a uniformly non-negative un-
biased estimator for V3 as vg derived as below. Let vs be such
that E,(v3) = V3 and let

_ .
e=) pz Qi
i=1"1
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Then, Ep(t32 —v3) = Y 2. Also,

[(n [N y2 P..
Ep(e) = Eg Z(Z;‘é_@ﬁ)

L1 1 ]

[ n Ni Y2 N Y2
3> (zp—%%) S

| 1 1Y 1 !

Writing
N 2 2
Y; SNZ2-N
V= V=21 "y

Z T NN -1

an unbiased estimator for V ise — (t§ —v3). So

mEp(e—t§+U3>=V3=Ep(Ug)
or

mEp(e—t3) = [1—4N(N _1) Ep(l)3).
So

is an unbiased estimator for V3. This may be written as

CNZ-N||&Y5, .
ZPZ Q‘_t3
i—1 Lij

U3 = NZ_ENLZ

N2-N & ?
Z ZNZ Z [_ - t3] Qi

and taken as a uniformly non-negative unbiased estimator for
V3. These results are all given by RHC (1962).

REMARK 2.2 OHLSSON (1989) has given the following alterna-
tive unbiased estimator for V ,(t3)
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He also claimed that v's possibly is better than vs, showing their
numerical illustrative comparisons based on simulated obser-
vations. But in their illustrations they allowed N;’s to deviate
appreciably from

S ]+

which choice has been recommended by RHC as the optimal
one for t3. CHAUDHURI and MITRA (1992) virtually nullified
OHLSSON’s (1989) claims demonstrating vs to remain quite
competitive with v's when N;’s are chosen optimally. Of course
the two match completely if one may take N; = % as an integer
foreveryi =1,2,...,n, as is also noted by OHLSSON (1989).

2.4.4 HT Estimator ¥

Since 7 is unbiased for Y (see section 1.2), its MSE is the same
as its variance, the following formula for which is given by
HORVITZ and THOMPSON (1952)

V1=Vp(f):z (l—m)—i—zz J(JTLJ ;).
i#£]

A formula for an unbiased estimator for V; is also given by
HORVITZ and THOMPSON as

Z (1_ z)ﬁ+ZZY Yj(nlj_nzﬂj){:lj

izj i

assuming m;; > 0 fori # j.
IfY;,=cmforalli e U
Y

= Z—l = cv(s)

ies 71

|

and Y =c¢ > ;. If v(s) = nforevery s with p(s) > 0,thatis, 7 is
based on a design p,, then, since >_ 7; = n as well, the strategy
(p, ) is representative with respect to (71, 7o, ..., 7n)".

In this case it follows from RAO and VIJAYAN’s (1977)
general result of section 2.3 (noted earlier by SEN, 1953) that
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one may write V ,(?) alternatively as
v, v;\°
ZZ(nan mii) | — — —
i<j TT; T

Hence, SEN and YATES and GRUNDY’s unbiased estimator for
V4 as given by them is

Y, Y;\?I
02_22(77177] 7sz <___> =

TT, T T
i<j l J ij

assuming m;; > O foralli # j.For designs satisfying m;mw; > n;;
for all i # j vg is uniformly non-negative.

If v(s) is not a constant for all s with p(s) > 0 represen-
tativity of (p, f) is violated. To cover this case, CHAUDHURI
(2000a) showed that writing

al_1+ Znu an

J#l

for i € U one has a third formula for V,(?) as

Y_Z
=Vo+ Z j-[_l-ai
i

and hence proposed
Y2 I
U — v _l P ——
s=v2+ ) P

as an unbiased estimator for V(¢ ). This v3 is uniformly non-
negative if
min; > m; foralli #j

a; >0 foralli eU.

CHAUDHURI and PAL (2002) illustrated a sampling scheme for
which the above conditions simultaneously hold while repre-
sentativity fails.
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2.4.5 Murthy’s Estimator ¢4

Writing
2
Y, Y;
5]
we have
-2
Y, Y
M:Vp(t4) = _ZZPin [Fﬁ _P_j'
i<j i

pGsli) . N\ (pGli),
<Ep K p(s) L 1)( p(s) Ifj 1)]

- J

l< 7 s31,j p(S)
b=<J p(s)’>0 J
because
p(SIL) }
E ISZ
[ p(s) 2 PGl

=Zp(s|z)=1 for i=1,...,N.
$31

One obvious unbiased estimator for V,(¢4) is

M=> Y q 2( )[p(sll ,J)p(s) = p(s|)p(s|j)]

1<i<j<N
which follows from

ZISZJp(slz D= psli,j)=1
$31,]

writing p(s|i, j) as the conditional probability of choosing s
given that i and j are the first two units in s. It is assumed
that the scheme of sampling is so adopted that it is meaningful
to talk about the conditional probabilities p(s|i), p(s|i, j).

Consider in particular the well-known sampling scheme
due to LAHIRI (1951), MIDZUNO (1952), and SEN (1953) to be
referred to as LMS scheme. Then on the first draw i is chosen
with probability P;(0<P; < 1, 2V P;,=1),i=1,...,N and
subsequently (n — 1) distinct units are chosen from the re-
maining (N — 1) units by the SRSWOR method, leaving aside

© 2005 by Taylor & Francis Group, LLC



26 Chaudhuri and Stenger

the unit chosen on the first draw. For this scheme, then
N -1
p(s)=ZPi/<n_1>.
LES
If based on this scheme ¢4 reduces to the ratio estimator
tr = Z Y; / Z P;.
ies i€s
Writing C, = (]Z:rr ) , it follows that for this LMS scheme
p(S|l) = 1/C17p(3|l,.]) = 1/02
E,(tr) =Y
M =E,(tg - Y)*=V,(tr)
1

1
=2 2w [1‘0_1 2 5P

1<i<j<N $31,j

An unbiased estimator for M is

~ L N -1 1
M= a4 - .
Z Z JZiesPiln_l ZiesPi]

1<i<j<N

It may be noted that if one takes P; = X;/X, then ¢z reduces
to t1, which is thus unbiased for Y if based on the LMS scheme
instead of SRSWOR, which is p-biased for Y in the latter case.

2.4.6 Raj’s Estimator ¢5

Another popular strategy is due to RAJ (1956, 1968). The sam-
pling scheme is called probability proportional to size without
replacement (PPSWOR) with P;’s (0 < P; < 1,XP; = 1) as
the normed size measures. On the first draw a unit 7; is cho-
sen with probability P;,, on the second draw a unit ia(# 1)
is chosen with probability P;,/(1 — P;,) out of the units of U
leaving iy aside, on the third draw a unit ig(s# i1, i) is chosen
with probability P;, /(1 — P;, — P;,) out of U leaving aside iy, ig,
and so on. On the final nth (n > 2) draw a uniti,(#£ i1, ..., ,-1)
is chosen with probability

P
— P,

in

1-P,—P,—...,-P,,
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out of the units of U minus iy, s, ...,i,_1. Then,

o
P;,
Y.
ea=Y; + P—:(l - P;y)
Y;,
e; =Y, +---+Yij_1 +P—'(1_Pi1 _“‘_Pij—l)
ij
Jj = 3,...,n are all unbiased for Y because the conditional

expectation
E; lej |(i1,Yi1),---,(ij—l,Yij,l)]
N
=(Yi+...,+Yij_l)+ Z Y,=Y.

k=1
(Fi1semij—1)

So, unconditionally, E,(e;) =Y forevery j =1,...,n, and
1 n
ts = — Z ej,
n “
Jj=1

called Raj’s (1956) estimator, is unbiased for Y.

To find an elegant formula for M =V ,(¢5) is not easy, but
RAJ (1956) gave a formula for an unbiased estimator for M =
V,(t5) noting e, e; (j < k) are pair-wise uncorrelated since

E,(ejer) = E [Ec(ejer | (i1,Y;), ..., (-1, Y4 )]
=E [ejE.(ex|(1,Ys,), ..., (1, Y4, )]
=YE(;)=Y?=E,(e; Ep(er)

that is, cov,(ej,er) = 0. So,

1 n
Vults) = — > Vyle;)
n ot

and
TR
BT - &9 T8

is a non-negative unbiased estimator for V ,(¢5).
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Incidentally, it can be shown that V,(¢5) is smaller than
the variance of #, with respect to PPSWR:

N y?2 Y
Vo) =S L P, [—‘—Y}

pen =33 Y =Y R [

2

Y; Y,

— P,-P-—l——]]

125i<jZ§N J[P Pj

=V.

Viples) = Ep[Vplea |Gy, Yi D+ Vp[E (e | (i1, Y;)))]

2
P.
=E i ,Writin i = d
;E;VQQJ [Q QJ] 8Qi=1_p
@,j#i1)
Y, Y;
_E|Y Y PP, l P.]
1<i<j<N J
G, j #i1)
Y; Y,
o anmn [l 0]
1<i<j<N P; P,
Y, Y;
Vples) =E |> > RiR; [__F]
1<i<j<N J
@, #i1)
" Py Pk/(l—Pl) Qs
writing Ry = - 1
( 1-P; - P 1——_P 1-@Q;
2
—EY Y @@y |- T
1<i<j<N Q Qj
(i, ] #i1,ig)
Y, Y;
_EZ Z(l Ql Q])QLQJ[ —] <V (62).
1<i<j<N Ql Q]
(@, ) #i1,i9)
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Similarly, V,(ex) < V(e;) forevery j <k =2,...,n. So,
Vpler) V

1 n
Vplts) = -5 > Vile)) <

j=1 "

which is the variance of ¢, with respect to PPSWR.

Clearly, t5 depends on the order in which the units are
drawn in the sample s. So, one may apply Murthy’s (1957)
unordering on ¢5 to get the estimator

te =Y p(s)its(s/, X)/ > p(s)
s'~s s'~s

for which V ,(t6) < V,(t5) < V,(t2). Here s = (iq,...,1,) is

a sample drawn by PPSWOR scheme and )", ., denotes the

sum over all samples obtained by permuting the coordinates

of s. This estimator tg is called Murthy’s (1957) symmetrized

Des Raj estimator (SDE) based on PPSWOR sampling.

2.4.7 Hartley-Ross Estimator #;

Another estimator based on SRSWOR due to HARTLEY and
R0SS (1954), called Hartley-Ross estimator (HRE) is defined

as follows.
Let
Y;
Ri—X—.i,lzl,z, .,N.
— 1 Y, 1
Rzﬁz—l,r—r—L%Rl
Define
1 Xy, 1 &y, 1 X
= — — - — — - — X
¢ NE ; NZXj X NZ: J
1= j=1 Jj=1
1 X x1 Ny, _ __
=—> Y, - —— L ~-Y-XR
Nzl: NN%:XZ-
Then 7 and
~ N-1 1 (N —1n
=2 § =X —7) =
C N n—IZ(R 7)( x) N(n—l)( )
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based on SRSWOR in n draws are unbiased estimators of R
and C, respectively. So,

- (N-Dn,_
X +—N(n_1)(y—rx)

is an unbiased estimator of Y and the HRE

(N —-Dn, _

t; = X7 + m(y —7x)

is an unbiased estimator of Y. #7 is regarded as a ratio-type
estimator that is exactly unbiased for Y. Other strategies will
be mentioned in subsequent chapters.

2.5 CALIBRATION

Consider a design p and the corresponding HT estimator £.
Such a strategy may not be representative with respect to a
relevant size measure x with values X1, X9, ..., Xy. Then, it
is important to look for an estimator

> bgY;

which, in combination with p, is representative with respect
to (X1, X9, ..., Xn) and, at the same time, is closer to f in an
appropriate topology than all other estimators yielding repre-
sentative strategies.

The relevant ideas of DEVILLE (1988) and DEVILLE and
SARNDAL (1992) are presented below in a general framework,
with auxiliary variables x1, xo, . .., x;. Define (see section 2.1)

x; = (X1, Xig, ..., Xip)'
N

X = X;
i—1

and consider an estimator

N
t=t(s,Y)=> a4Y;
i—1
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with weights a,; not satisfying the calibration equation

N
dagx;=x
i=1

(see section 2.1). Then we may look for new weights b; sat-
isfying the calibration equation but kept close to the original
weights a,. Let a measure of the distance between the new
and the original weights be a function

> (s — a5)?/ Qi (2.1)
i€s
with @; > 0;i =1,2,..., N to be determined; note that a;; =
bi; =0fori ¢s.

RESULT 2.2 Minimizing Eq. (2.1) subject to the calibration
equation

Z bsi&i =X

leads to

¢ i Y

e

~
Il
—

a5Y; +

e

N
Il
—

N "IN 1y
x— Y agx;| | Qixix;| Y QixY;.
i=1 i-1 i=1

(2.2)

PROOF: Consider the Lagrange function
N N
D (b —a)? /@i =21 | D byx; —x
i=1 i=1

with partial derivative 3/0bg;
2(bs; — as;)/ Qi — 21'x;

where .. = (A1, ..., Ap) is a vector of Lagrange factors. Equating
the partial derivative to 0 yields

bsi = QiA'x; + ag
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leading to
N
(Qir'x; +as)x; =«
i=1

N "IN
M= lx =) aux;| |Y Qixx;
i=1 =1

and the estimator T stated in Eq. (2.2).

-1

EXAMPLE 2.1 Let

1 .

as; = — for L€s
T

(and 0 otherwise) for which the calibrated estimator takes the

form

fn :Zyi/ni +

ies

x—y x/m

i€s

/ -1
[Z Qi&i&é] > QixY;

ies i€s

I, coincides with the generalized regression (GREG) esti-
mator which was introduced by CASSEL, SARNDAL and
WRETMAN (1976) with a totally different approach, which we
will discuss in section 6.1.
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Chapter 3

Choosing Good
Sampling Strategies

3.1 FIXED POPULATION APPROACH

3.1.1 Nonexistence Results

Let a design p be given and consider a p-unbiased estimator
t, that is, B,(t) = E,(¢ —Y) = 0 uniformly in Y. The perfor-
mance of such an estimator is assessed by V ,(¢) = E,(t — Y )?
and we would like to minimize V ,(¢) uniformly in Y. Assume
t*is such a uniformly minimum variance (UMV) unbiased
estimator (UMVUE), that is, for every unbiased ¢ (other than
t*) one has V,(¢*) < V,(¢) for every Y and V,(t*) < V,(¢) at
least for one Y .

Let @ be the range (usually known) of Y ; for example,
Q=Y :0q <Y, <b,i=1,..., N} witha;, ;i =1,...,N)
as known real numbers. If ¢; = —oc0 and b; = 400, then  coin-
cides with the N -dimensional Euclidean space RY ; otherwise
Q is a subset of RV . Let us choose a point A= (A;,..., A, ...,
Apx) in © and consider as an estimator for Y

ta=tals,Y)

=t"(s,Y) —t"(s,A +A

33
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34 Chaudhuri and Stenger

where A = X A;. Then,

Ep(ta) =Ept*(s,Y) —Ept*(s,AA+ A=Y —-A+ A=Y
that is, ¢4 is unbiased for Y. Now the value of

Vp(ta) = E,lt*(s,Y) —t*(s, A + A— Y ]?

equals zero at the point Y = A. Since ¢* is supposed to be the
UMVUE, V,(t*) must also be zero when ¥ = A. Now A is
arbitrary. So, in order to qualify as the UMVUE for Y, the ¢*
must have its variance identically equal to zero. This is possible
onlyifone has a census, thatis, every unit of U isin s rendering
t* coincident with Y . So, for no design except a census design,
for which the entire population is surveyed, there may exist
a UMV estimator among all UE’s for Y. The same is true if,
instead of Y, one takes Y as the estimand. This important non-
existence result is due to GODAMBE and JOSHI (1965) while
the proof presented above was given by BASU (1971).

Let us now seek a UMV estimator for Y within the re-
stricted class of HLU estimators of the form

t=ty=1t(s,Y) =) byY;.
i€s
Because of the unbiasedness of the estimator we need, uni-
formlyin Y, Y equal to

E(ty) =) p(s) {Z bsiY;

i€s

N
=>Y;
i=1
Allowing Y; to be zero for every j=1,..., N we derive for

all

Z bsip(s) =1.

$31

Z bsip(s)] .

$31

To find the UMV estimators among such estimators based on
a fixed design p, we have to minimize

Ey(tg) =Y pls) [Z bsiYi

ies

2
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subject to
stip(s)=1 for 1=1,...,N.

$31

Hence, we need to solve

2 N
3b ZP(S) (Z bSLY> - Z)\i (Z bsip(s) - 1)

i€s $31

i€s

p(s)

introducing Lagrangian undetermined multipliers A;. There-
fore, for s with p(s) >0ands>i

> bgY
jes
for all Y with Y; # 0. Letting Y; # 0,Y; = 0 for every j #i
this leads to a possible solution
)“.

by = F} =b;, say

1
free of s, leading to b; = 1/7;.
From the above it follows that the UMYV estimator, if avail-
able, is identical with the HT estimator and, in addition, sat-

isfies
PRI
e T 2Y;

for every s > i with p(s) > 0, provided Y; +# 0. For example, if
§131,8 31, p(s1) >0,p(sg) >0,Y; #0

then we need
Y; Y;
Z—l:Z—L forall Y
S1 Trl So nl

for the existence of a UMV estimator in the class of homo-
geneous linear unbiased estimators (HLUE). This cannot be
realized unless the design p satisfies the conditions that for
s1, so with p(s1) > 0, p(se) > 0, either s;Nsy is empty or s; ~ so,
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meaning that s; and sy are equivalent in the sense of both
containing an identical set of distinct units of U.

Such a design, for example, one corresponding to a sys-
tematic sample, is called a unicluster design (UCD). Any
design that does not meet these stringent conditions is called
a non-unicluster design (NUCD). For a UCD it is possible
to realize

Y, Y

uniformly in Y , but not for an NUCD. So, for any NUCD,
a UMV estimator does not exist among the HLUFE’s.

This celebrated nonexistence result really opened up the
modern problem of finite population inference. It is due to
GODAMBE (1955); the exceptional character of uni-cluster de-
signs was pointed out by HEGE (1965) and HANURAV (1966).

If the class of estimators is extended to that of linear
unbiased estimators (LUE) of the form

tL = bs + Z bsY;
ies
with b, free of Y such that
Ep(bs) = 07 Ep(tL) =Y

uniformly in Y, then it is easy to apply BASU’s (1971) ap-
proach to show that, again, a UMV estimator does not ex-
ist. However, if b, = 0, then BASU’s proof does not apply and
GODAMBE’s (1955) result retains its importance covering the
HLUE subclass.

3.1.2 Rao-Blackwellization

An estimator ¢ = ¢(s, Y ) may depend on the order in which the
units appear in s and may depend on the multiplicities of the
appearances of the units in s.

EXAMPLE 3.1 Let P, (0 < P; < 1, E{VPi = 1) be known numbers
associated with the units i of U. Suppose on the first draw a
unit i is chosen from U with probability P; and on the second
draw a unit j(# 1) is chosen with probability lf—i"i'
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Consider RAJ’s (1956) estimator (see section 2.4.6)

1[v, Y, 1
=t(,j)==|— Y+ LA -P)||l == .
tp =t@,j) 2| P, +< i+ PJ( l))] 2(61 +e2), say

Nouw,

Ny;
Ep<e1>:E{ } S iip -y
l 1

12

and

Y .
=Y, +-2L1-P;
e2 1 + PJ ( j)
has the conditional expectation, given that (i, Y;) is observed
on the first draw,

Ec(es) = Y+Z[ SLa- P)] =Y +>Y; =Y
J# NE:

and hence the unconditional expectation E,(e3) =Y. So tp is
unbiased for Y, but depends on the order in which the units
appear in the sample s = (i, j) that is, in general

tp(, j) #tp(j,1).

P

EXAMPLE 3.2 Let n draws be independently made choosing the
unit i on every draw with the probability P; and let t be an
estimator for Y given by

1n
rlpr

t =

where y, is the value of y for the unit selected on the rth draw
(r =1,...,n) and p, the value P; if the rth draw produces
the unit i. This t, usually attributed to HANSEN and HURWITZ
(1943), may also be written as
1 Xy,
tgg = Z f st

and, therefore, depends on the multiplicity fs of i in s (see
section 2.2).
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With an arbitrary sample s = (i1, io, ..., ), let us associate
the sample
§ = {j17j27 7"'7.jk}

which consists of all distinct units in s, with their order and/or
multiplicity in s ignored; this § thus is equivalent to s (s ~ §).

By Q let us denote the parameter space, that is, the set
of all vectors Y relevant in a situation, say, the cases

Q=RN
Q={Y:0<Y;fori=1,2,...,N}
Q={Y:Y;=0,1fori=1,2,...,N}
Q={Y:0<Y;<X;fori=1,2,...,N}

with X1, Xo, ..., Xn > 0, being of special importance.
Now consider any design p, yielding the survey data

d=@Y[i €s) =((1,Y;),...,0Y;))

compatible with the subset
Qy ={Y €eQ:Y; asobservedfor ics}

of the parameter space. The likelihood of Y given d is
Ly(Y) = p(s)[4(Y) = Py(d)

which is the probability of observing d when Y is the under-
lying parametric point, writing

I;(Y)=1(0) if Y € Qq(¢ Qq).
Define the reduced data
d=G,Y;li€3).

Then, for all d
1Y) =1;(Y)

and
Ly(Y)=p®I;(Y)=Py(d).

For simplicity we will suppress Y in Py(d) and write P(d |d)
to denote the conditional probability of observing d when d is
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given. Since
P(d)=Pdnd)=P(d)P(d|d) or
p&I(Y) = pR)I;Y)P(d|d)

it follows that for p(8) > 0, P(d|d) = p(s)/p(8) implying that
d is a sufficient statistic, assuming throughout that p is a
noninformative design. Let ¢ = #(d) be any function of d that
is also a sufficient statistic. If for any two samples sq, Sz, Wi’Eh
p(s1), p(sg) > 0 and corresponding entities §7, 5, d1,ds,d 1,d o
it is true that ¢(d1) = t(d3), then it follows that
P(dq1) = P(d1Ntldy)) = P(t(dq1)P(d1lt(d1))
= P(t(d2)P(d1]t(d1))
P(d3)
=——>" __P(dtd
Pldyit(dyy) D111

and hence
P, (Y) o p($)Iy,(Y)

implying that d 1 = d 9 and hence that d is the minimal suffi-
cient statistic derived from d. Thus a maximal reduction of
data d sacrificing no relevant information on Y yields d .

Starting with any estimator ¢ = #(s,Y ) for Y depending
on the order and/or multiplicity of the units in s chosen with
probability p(s), let us construct a new estimator as the con-
ditional expectation

t* = E,(t|d)
that is,
06, Y) = Y6, Yp) | X p).
s'~s §'~s
Here > .., refers to summation over all samples s’ equivalent
to s.
Then

E,(t")=E,@)
E,(tt*) = E,E,(tt*|d)] = E,[t*E ,(t|d)] = E ,(t*?)
and
E,(t —t)? = E,(t?) + E,(t*?) — 2E,(tt*) = E,(t*) — E,,(t*?)
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giving E ,(¢2) > E ,(¢*?); hence
Vo) = V(t%)

equality holding if and only if for every s with p(s) > 0,¢(s,Y) =
t*(s,Y). The Rao-Blackwellization of ¢ is t*. We may state
this as:

RESULT 3.1 Given any design p and an unbiased estimator t for
Y depending on order and/or multiplicity of units in s, define
the Rao-Blackwellization t* of t by

FsY) = Y s, Y)p(s) / S p(s)

s'is'~s s'is'~s

where the summation is over all s’ consisting of the units of s,
possibly in other orders and /or using their various multiplici-
ties.

Then, t* is unbiased for Y and is independent of order
and/or multiplicity of units in s with

V,(t*) < V@)

equality holding uniformly in 'Y if and only if t* =t for all s
with p(s) > 0, that is, if t itself shares the property of t* in being
free of order and /or multiplicity of units in s.

So, within the class of all unbiased estimators for Y based
on a given design p, the subclass of unbiased estimators inde-
pendent of the order and/or multiplicity of the units in s is a
complete class, C, in the sense that given any estimator in
the class UE but outside C there exists one inside C that is
better, that is, has a uniformly smaller variance. This result is
essentially due to MURTHY (1957) but in fact is a straightfor-
ward application of the Rao-Blackwellization technique in the
finite population context.

EXAMPLE 3.3 Reconsider Example 3.3.1. For i # j and s =
@ J)
s’ =(j,1)
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is the only sample with p(s’) > 0 and s’ ~ s. From

o P;P;
p(l,J)—l_—Pi
1
p(, j)+p(j,0) 1 4 1 Oli+O{j’
1-P; 1-P;
we derive
t*(s,Y) = (G, ), Y)—— 4+ £((j,1),Y)
o +oj o + o

o Y; a; Y;

_l’_ <
o +a; P aj+a; P

which is symmetric in i and j, that is, independent of the order
in which the units are drawn.

To consider an application of Result 3.1 suppose p is a
UCD and #p = Zjesbs; Y; with 50 p(s) = 1 for every i is an
HLUE for Y . If a particular ¢; = ¥b};Y; is to be the UMVHLUE
for Y, then it must belong to the complete subclass Cg of the
HLUE class. Let sy be a typical sample containing i; then for
every other sample s > i, which is equivalent to sy because p is
UCD, we must have b* = b} ; as a consequence of ; € Cg. So,
1=205; Esazp(s) woi Tl g1v1ng b0 = b} = L for every s > i,
that is, ty must equal the HT estimator t which is the unique
member of Cg. Consequently, £ is the unique UMVHLUE for a
UCD. This result is due to HEGE (1965) and HANURAV (1966)
with the proof later refined by LANKE (1975).

3.1.3 Admissibility

Next we consider a requirement of admissibility of an estima-
tor in the absence of UMVUESs for useful designs in a mean-
ingful sense.

An unbiased estimator ¢; for Y is better than another
unbiased estimator ¢y for Y if V,(¢1) < V,(¢2) for every Y e
Q and V,(t1) <V ,(t2) at least for one Y € Q. Subsequently,
the four cases mentioned in section 3.1.2 are considered for
without explicit reference.
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If there does not exist any unbiased estimator for Y better
than¢;,then ¢ is called an admissible estimator for Y within
the UE class. If this definition is restricted throughout within
the HLUE class, then we have admissibility within HLUE.

RESULT 3.2 The HTE

t_Z—

i€s

is admissible within the HLUE class.
PROOF: For tp in the HLUE class and for the HTE t we have

V,(ty) = ZYZ SBZEp)|+ Y D YY1 bybgipls)| —
EEY i#] EEI]
_ Tij 2
V(@) = ZY /mi+ Y > Y)Y p Y2

i#]

Evaluated at a point Y =(0,...,Y; # 0,...,0), [V,(t) —
V(D] equals

S 02 pls) — -

X TT,
§31 t

Y? >0 (3.1

on applying Cauchy’s inequality. This degenerates into an equa-
lity if and only if bs; = b;, for every s > i, rendering t, equal to
the HTE t. So, for ty other than t,

[Vp(ts) = Vp(®)ly_yw > 0.

This result is due to GODAMBE (1960a). Following
GODAMBE and JOSHI (1965 ) we have:

RESULT 3.3 The HTE ¢ is admissible in the wider UE class.

PROOF: Let, if possible, t be an unbiased estimator for Y better
than the HTE t. Then, we may write

t=t(s,Y)=%ts,Y)+Ms,Y)=F+h
with h = h(s,Y ) =t —t as an unbiased estimator of zero. Thus,

0=Ep(h) =) h(s,Y)p(s). (3.2)
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For t to be better than t, we need V ,(t) <V ,(¢)
or > R, Y)p(s) < =2 #(s, Y)h(s,Y)p(s). (3.3)

Let X;(i =0,1,...,N) consist of all vectorsY = (Yq,...,
Yn) such that exactly i of the coordinates in them are non-
zero. Now, if Y € X, then t(s,Y) = 0, giving h*(s,Y)p(s) =0
implying h(s,Y )p(s) = O for every s and for Y € X,.

Let us suppose that r = 0,1,...,N — 1 exists with
h(s,Y )p(s) = O for every s and every

Y eX,. (3.4)
Then, it will follow that h(s,Y )p(s) = O for every s and every

Y in X, 1. To see this, let Z be a point in X, 1. Then, by Eq.
(3.2) and Eq. (3.3), we have

0=>"p(s)h(s, Z)
S p()hs, 2) < -2 p(s)E(s, Z)h(s, Z).

Let S denote the totality of all possible samples s with p(s) > 0
and S; the collection of samples s in S such that exactly i of
the coordinates Z; of Z with j in s are non-zero. Then, each
S; is disjoint with each Sy for i # k and S is the union of
S;,i=0,1,...,r + 1. So we may write

r+1

0=>"3" ps, 2)
0 seS;
r+1 r+1
SN ph*(s,2) < =2 Y p(s)E(s, Z)h(s, Z).
0 seS; 0 seS;

Now, by Eq. (3.4),

p(8)h(s,Z) =0 foreverysinS;,i=0,1,...,r. (3.5)
So it follows that

0= Y p(s)h(s, 2)

Sesr+1

> ph*s,2) <=2 > p(s)i(s, Z)h(s, Z). (3.6)

seS; 41 seS, 1
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But, for every sin S, 1

N

_ Z; Z;
t(s, Z) = Z jT—L equals Z n_l
14

ies 't i=1

Since the latter is a constant (for every s) we may write by Eq.
(3.6),

N
S phs, 2) < 2 [Z 5] S p()his, Z) =0,

SESr+1 i t SESr+1

leading to p(s)h*(s, Z) = 0 for every sin S, 1 or p(s)h(s, Z) =0
for every s in S;,i = 0,1,...,r + 1 using Eq. (3.5), that is,
h(s, Z)p(s) = Oforeverysin S, thatis, h(s,Y )p(s) = O for every
sandeveryY in X, 1. But h(s,Y )p(s) = 0 for every s and every
Y in X, as already shown. So, it follows that h(s,Y )p(s) =0
for every s and every Y in Q if t is to be better than t. So, for
every sample s with p(s) > 0, t must coincide with t itself.

Admissibility, however, is hardly a very selective crite-
rion. There may be infinitely many admissible estimators for Y
among UEs. For example, if we fix any point A = (A4, ..., Ax)’
in @, then with A = lev A; we can take an estimator for Y as

Y, — A
tAzz

3 IT;
ies v

+A

Obviously, ¢4 is unbiased for Y. Writing W; = Y; — A; and con-
sidering the space or totality of points W = (W1, ..., Wy ) and
assuming it is feasible to assign zero values to any number
of its coordinates, it is easy to show that ¢4 is also admissible
for Y within UE class. The estimator ¢4 is called a general-
ized difference estimator (GDE). If the parameter space of
Y is restricted to be a close neighborhood N (A) of the fixed
point A, then it is easy to see that E,(f) = Y = E,(ta) but
Vp(ta) < V(%) for every Y in N (A) showing inadmissibility
of £ when the parametric space is thus restricted. In practice,
the parametric spaces are in fact restricted. A curious reader
may consult GHOSH (1987) for further details.
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3.2 SUPERPOPULATION APPROACH

3.2.1 Concept

With the fixed population approach considered so far it is diffi-
cult, as we have just seen, to hit upon an appropriately optimal
strategy or an estimator for Y or Y based on a fixed sam-
pling design. So, one approach is toregard Y = (Yq,...,Yn)
as a particular realization of an N -dimensional random vec-
tor n = (n1,...,nn), say, with real-valued coordinates. The
probability distribution of 5 defines a population, called a su-
perpopulation. A class of such distributions is called a su-
perpopulation model or just a model, in brief. Our central
objective remains to estimate the total (or mean) for the par-
ticular realization Y of 5. But the criteria for the choice of
strategies (p, t) may now be changed suitably.

We assume that the superpopulation model is such that
the expectations, variances of 5;, and covariances of ;, 1; exist.
To simplify notations we write E,,, V,,, C,, as operators for ex-
pectations, variances, and covariances with respect to a model
and write Y; for n; pretending that Y is itself a random vector.

Let (p1, t1) and (pg, £2) be two unbiased strategies for esti-
mating Y, thatis, £, t; = Ep,to =Y . Assume that pq, ps are
suitably comparable in the sense of admitting samples of com-
parable sizes with positive selection probabilities. We might
have, for example, the same average effective sample sizes;
that is,

Z Is|p1(s) = Z Is|pa(s)

where > extends over all samples and |s| is the cardinality
of s.
Then, (p1, t1) will be preferred to (po, to) if

EmVpl(tl) = Emsz(tZ)

REMARK 3.1 We assume that the expectation operators E, and
E,, commute. This assumption is automatically fulfilled in
most situations. But to illustrate a case where E, and E,, may
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not commute, let

p(s) = %ZXL-/X and t=X ZYi/ZXi
( n—1 ) s s s
where X = Zzlv X;and X;s, 1 = 1,..., N are independent
realizations on a positive valued random variable x. Define
X =(X1,...,Xn) and let Ec, E, denote, respectively, opera-
tors of expectation conditional on a given realization X and the
expectation over the distribution of x. Then, we may meaning-
fully evaluate the expectation

EmEp(t) = ExECEp(t)
where again we may interchange Ec and E, to get

> s Ec(Y;1X)
> Xi '

But here we cannot meaningfully evaluate E, E,,(t)=E, ExEc(t)

because p(s) involves X;’s that occur in t on which E,, = E.E¢

operates. Such a pathological case, however, may not arise in

case X;’s are nonstochastic. To avoid complications we assume

commutativity of E, and Ep,.

EcE,(t) = E,Ec(t) = XE, (

3.2.2 Model M,
Let us consider a particular model, M1, such that for i =
1,2,...,N
Yi=u +oig
with
uwi €R,0; >0
E,s =0
Ve =1
Cm(é‘i,Sj) = 0 fOI‘ i ;ﬁ_]
that is,
En(Yi) =
Vn(Y;) = of
Cn(Y;,Y;)=0 for i+#j.
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Then, we derive for any UE ¢
EnVy(t) =EnE,(t —Y)? = E, En(t — Y)?
=E En [(t — En(t) + (Ep(t) — Ep(Y))
—(Y —E,Y)?
=E V() + Ep02(1t) — Vip(Y) (3.7)

writing A,(t) = E,,(t — Y ). The same is true for # and any
other HLUE ¢;. Thus,

E,V,(ty) — E,V,(2)

> ofbk =Y of/nf

i€s i€s

=Y of [Zblp(s)— —L]

Les

p [B2(t) — AZD)]

2
+Ep |(Enty — 0 — |35 —
ies

ies Tt

2
> E, |(Emnty — p1)* — [Z & — M] (3.8)
by Cauchy’s inequality (writing u = ;).

To derive a meaningful inequality we will now impose
conditions on the designs. By p, we shall denote a design for
which p,(s) > 0 implies that the effective size of s is equal to
n. If, in addition, 7; = nu;/u foreveryi = 1,2, ..., N, we write
Pn as Pny.

Then, from Eq. (3.8) we get

EnVy, () — EnVy, (£) > Ep, [En(ty) — pl* >0
because, for p,,,,

Hi _
ies i

Thus, we may state:
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RESULT 3.4 Let p,, be a design of fixed size n with inclusion

probabilities
mn=n.i=12 . N.
N

Then, for model M1, we have
EnVy,, ts) = EnVp,, (£)
where ty is an arbitrary HLUE and

- Y, m Y;
=y vty

i
; TT;
1€s

Thus, among the competitors (p,,, t) the strategy (p,,, ) is
optimal.

However, this optimality result due to GODAMBE (1955)
is not very attractive. This is because p,, is well suited to ¢
since V,() = E,[Y;c, 2 — Y12 equals zero if 7; = nY;/Y and
although such a 7; cannot be implemented, it may be approx-
imated by 7; = nX;/ X if Y; is closely proportional to X;; or, if
E..(Y;) x X;, V() based on p,, should be under control. But
this does not justify forcing this design on every competing es-
timator ¢, each of which may have V,(¢) suitably controlled
when combined with an appropriate design p,,.

3.2.3 Model M,

To derive optimal strategies among all (p, ¢) with ¢ unbiased
for Y let us postulate that Y;,Y5, ..., Yy are not only uncor-
related, but even independent. We write My for M; together
with this independence assumption.

Thus, the model My may be specified as follows:

Assume forY =(Y{,Yo,...,Yn)

Yi = ui + o0&

with p;, 0; asconstantsand ¢; (i = 1,2, ..., N) as independent
random variables subject to

Emé‘i =0
Ve = 1.
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Consider a design p and an estimator

t=1t(s,Y)=t+h
with

Y;

= % -
and

h=h(s,Y)
subject to

Ey(h) =) hs,Y)p(s) =0
implying that

> hs,Y)p(s)=—> ks, Y)p(s)

sieEs si¢s

foralli =1,2,..., N. Then, for m = Mo,

ZYL‘—M

. TT;
ies L

N . .
:EmZ[Y‘ “l}Zh(s,mp(s)
1

T; X
L s3i

E,Cn(t,h) = EE,, h(s,Y)

__E, Al {Yi—l/«i
. :

}Zh@, Y)p(s)

T sF

=0.

where the last equality holds by the independence assumption.
By Eq. (3.7) we derive for¢t =t + h

EnV,(t) = EpVau(®) + EpViu(h) + Ep02(1t) — V(YY) (3.9)
Writing

t;,L = tM(S,K) = Z |:

ies

Y, —wi

=i+h
P ]-I—M +n,
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with

he =-S5 4w

ics T
we note that V,,(h,) = 0, Ap,(¢,) = 0 and so,
EnV,y(t) =E,Vp(@) — Vi (Y)

=Y o2 <— - 1) (3.10)
From Eq. (3.9) and Eq. (3.10) we obtain
EnVy(t) —EnV,(t) =E, V() + E,AZ() >0 (3.11)
and therefore

E,Vy@) > E, V()
-t (5 1)

RESULT 3.5 Let p be an arbitrary design with inclusion proba-
bilities m; > 0 and

Y —
t, = % -
(u = > ;). Then, under model Mo
E,V,@) > E,V,(t,)

we(

+u (3.12)

for any UE t.

In order to specify designs for which Yo7[=—1] may attain
its minimal value, let us restrict to designs p,,. ' Then Cauchy’s
inequality applied to

N N 2

Suy %

1 1 T
gives

Ngg Giz

i=1 Tl

2[1
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Writing p,, for a design p, with
noj

>0

(3.13)

=

we have

BaVpi0)> BVt = Yo [ 2 -1
(Z"l —N 02 =BV, ().

RESULT 3.6 Let p,and p,, be fixed size ndesigns, pn, satisfying
Eq. (3.13). Then, under Mo,

E,V, () > E me(t )
(ZUL Z 2

for any UE t; here u;, al- are defined in Mgy and

Y —
t, = Z i ‘ Mi
ies v
REMARK 3.2 Obviously,

Y, Yo i
tM=Z;—<ZIU>Z%+M. (3.14)

N n N
ies 1 ies !

+u

If we have, in particular, u; > 0 and

0; X Wy
fori =1,2,...,N, then t, reduces to the HTE
. i oY
F— Sl _ 41 TN T 3.15
Z TT; n Z o; ( )
IASES
because of

N
T, = nOi/ZOi.
i

3.2.4 Model My,

Now, pn, and ¢, are practicable only if o1, 09, ..., 05 and u;,
Ue, ..., LN, respectively, are known up to proportionality
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factors. A useful case is
i o< X;

where X1, Xo, ..., Xn > 0 are given size measures and y >0 is
known. The superpopulation model defined by Mo with these
proportionality conditions is denoted by My, .

Consider, for example, Mgos. This model postulates inde-
pendence of ¢1,¢9,...,ey andfori=1,...,N

Y, =X;8+0X;s;
with

Emei =0

Ve = 1.

Assume ./\/l22 and Eq. (3.13). Then 7; « X; and ¢, reduces to

W lx

IASH]

Then, according to Result 3.6
- 9 X2 9

ifai2 :o*in2 fori=1,2,...,N.
RESULT 3.7 Let m = Mayg, i.e., Moy with

w; o< X;
0.2 o<X2.

Let t be a UE with respect to the fixed size n design p, while p,,
is a fixed size n design with inclusion probabilities m; = n§
Then

EVp,(t) > E,V,, (F)
X2
2| _ 2

ifcri2=02Xi2fori=1,2,...,N.
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This optimality property of the HTE follows from the works
of GODAMBE and JOSHI (1965), GODAMBE and THOMPSON
(1977), and HO (1980).

3.2.5 Comparison of RHCE and HTE
under Model M.,

Incidentally, we have already noted that if a fixed sample-
size design is employed with 7; o Y;, then V,(f) = 0. But
Y is unknown. So, if X = (X4,...,X;,..., Xxn) is available
such that Y; is approximately proportional to X;, for example,
Y; = BX; +¢;, with 8 an unknown constant, ¢;’s small and un-
known but X;’s known and positive, then taking 7; « X;, one
may expect to have V,(¢) under control. Any sampling design
p with 7; « X; is called an IPPS or 7PS design—more fully,
an inclusion probability proportional to size design. Nu-
merous schemes are available that satisfy or approximate this
7 PS criterion for n > 2. One may consult BREWER and HANIF
(1983) and CHAUDHURI and VOS (1988) for a description of
many of them along with a discussion of their properties and
limitations. We need not repeat them here.

Supposing n as the common fixed sample size and N /n =
1/f asaninteger let us compare f based on a 7 PS scheme with
t3 based on the RHC scheme with N /n as the common group
size and P; = X;/X as the normed size measures. For this we
postulate a superpopulation model My, :

Yi = BX; + e, Em(er) = 0, Vin(ey) = 02X

where o, y are non-negative unknown constants and Y;’s
are supposed to be independently distributed. Then, with 7; =
nPi = nX,- / X

2
N -nl Y, Y;
=E - XiX; |- -
"lN—h£2;1J<& X)
2
Y, Y;
- > (wmj — ;) (—l - —J>
Y TT; g
1<Jj
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=o? [%_1nZZXX (x772+x77%)

i<j

i<j

B ( Xor ) (x77° +XJV.‘2)]

=0 [N (XZX” -3 x7)

—ln
(Y xoy )t s
o2 D Ny xr - (S x) (S XY

2772
- G(% inl;nl) cov (X771, X;).
Writing y — 1 = e and noting that X; > Oforalli =1,...,N,it
followsthat X; > X; = X! > X‘JZ ifa>0and X; > X; = X? <
X% ifa <0, implying that for y <1, cov(Xl?’fl, X;) <0 and for
y > 1, cov(Xl?’fl,Xi) > 0 and, of course, for y =1, cov(Xg’fl,
X;) =0. So,

for y <1, E,V,(RHCE) < E,,V ,(HTE),
for y > 1, E,,V,(RHCE) > E,,V ,(HTE),
for y =1, E,,V,(RHCE) = E,,V ,(HTE).

Thus, when y <1, HTE is not optimal when based on any
7 PS design relative to other available strategies. So, it is nec-
essary to have more elaborate comparisons among available
strategies under superpopulation models coupled with empir-
ical and simulated studies. Many such exercises are known
to have been carried out. Relevant references are RAO and
BAYLESS (1969) and BAYLESS and RAO (1970), and for a re-
view, CHAUDHURI and VOS (1988).

Under the same model My, above, CHAUDHURI and
ARNAB (1979) compared these two strategies with the strategy
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involving ¢z based on LMS scheme (see section 2.4.5) taking
the samen, X;,and P; = X;/X as above for all the three strate-
gies. Their finding is stated below, omitting the complicated
proof.

for y <1,E,,V,(tg) < E,,V,(RHCE) < E,,V ,(HTE),
for y > 1,E,,V,(tg) > E,,V,(RHCE) > E,,V ,(HTE),
for y =1,E,V,(gr) = E,,V,(RHCE) = E,,,V ,(HTE).

3.2.6 Equicorrelation Model
Following CSW (1976, 1977), consider the model of equicor-
related Y,’s for which

En(Y;) = a; + BX;

o; known with mean @, 8 unknown, 0 < X; known with X X; =
N,
Vm(Yz) = UZXiz

Cn(Y;,Y;) = po?X; X, — <p<l.

1
N -1
Linear unbiased estimators (LUE) for Y are of the form

t=t(s,Y) =as+ Y bsY;
i€s
with ag, bg; free of Y such that for a fixed design p
1
E,(as) =0,stip(s) =N fort=1,...,N.

s31
To find an optimal strategy (p, #) let us proceed as follows. First

note that writing c;; = bs; X,

x 1% N
1= N - NZXZ' =chsip(8) ZZP(S) {chi]'
1 S

1 s3i i€s

(3.16)
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Again we have

E,V,(t) = E,Vy(t) + EpEn(t) — En(Y)]? -V, (Y)

o BEX?+p0? Y > bybg XX
i1#£j€s

:Ep

12

as + wa(az ,BXZ) —a—p

i€s

p

= o2 Zp(s) [Zcm > chzcs,]

i1#£j€s

+E,

2
as _E+Zaibsi +IBZCSi _,B]

i€s i€s

S (ox) e x|

Note that

Z p(s) [Z citpd cmcSJ]

1€s i#j€s

2
=>_p(s) {{1—(1—/0)} (chi) +(1—p)zcs2i]

ies i€s

ZP(S){(V Csi) ZCEZH

2
>1—-(1-p) {Zp(s){ (chi> —Zcfl}] (3.17)

by Cauchy’s inequality and Eq. (3.16).

2
=Y pls) (chi) —(1-p)

i€S
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To maximize the second term in Eq. (3.17) subject to
Eq. (3.16) we need to solve the following equation:

=2p(s) | D ¢si | —2c5ip(s) — Ap(s)
i€s
where a Lagrangian multiplier A has been introduced. Then,
for p(s) > 0,
A

chi —Csi = E

ies
Assuming a design p,, we get by summing up overi € s
ni

chi =
i€s 2(n o 1)
giving
ni
1=) p()) csi=g—
s i€s 2(n o 1)
hence

1
chi =1 and ¢y = Py

i€s

Note that equality holds in Eq. (3.17) for ¢;; = % Since

_ Csi _ 1
bSL o Xi o nXi
we derive, following CSW (1976, 1977),
2
Eplas—a+ Y absi+BY csi—B| =0,

ies ies
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choosing

N %
s =0 — — Y —.
i€s Z
This leads to the optimal estimator

¢ T 1 ZYi_ai nXi nXi
a =0 AT ’ T = = .
N X N

: TT;
L€S

It follows that
EnV,, () > EpV, (t)

—rfian o-)

i (St (v - )
:gﬂl‘”[ szj
n

where we have written f = as will be done throughout.
RESULT 3.8 Consider the equicorrelation model
Yi=a +BX; + X;¢
with E,&; =0 and
Vin(e) = o®
Crl(eiyej) = po?,i # j.
Define a = Zai/N and

ty =0+ — Z _al

i€s

Then, for any linear estimator t that is unbiased for Y,
EnVp, ) > EnVy, ()

_2lop > X7
_“_?_P_fﬁﬁﬂ‘
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3.2.7 Further Model-Based Optimality Results
and Robustness

Avoiding details, we may briefly mention a few recently availa-

ble optimality results of interest under certain superpopula-

tion models related to the models considered so far.
Postulating independence of Y;’s subject to

(@) En(Y;) =o +BX;

with X;(> 0),a = (a1, ...,an)’, 8 known
and

(b) Vn(Y;) =o?f?
o(> 0) unknown, f;(> 0) known,i=1,...,N

GODAMBE (1982) showed that a strategy (p}, e*) is opti-
mal among all strategies (p,,e) with E, (e) =Y in the sense
that

EmVpn(e) = 02

(S 1) fn= 3 1] = EaViste

for all Y. Here p} is a p, for which 7; equals

N
7Ti*=nfi/2fj
=1

and
N
et = (Y —o; — X)) /m + ) (e + BX;)
ies 1
=t(a, ), say
which is the generalized difference estimator (GDE) in this
case.

TAM (1984) revised the above model, relaxing indepen-
dence and postulating the covariance structure specified by

Cu(Yi,Y ;) = po®fif
with p(0 < p < 1) unknown, but considered only LUEs
e=as+ Yy byY;=eg, say.

ies
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With this setup he showed that
12
BV plen) = EnBpler - ¥ = ¥ )| =10 57 12

=EnEp:(e* —Y)?
= EmVp;i(e*)

It is important to observe here that the same strategy (p;;, e*)
is optimal under both GODAMBE’s (1982) and TAM’s (1984)
models provided one admits only linear design-unbiased esti-
mators based on fixed sample-size designs.

If in (a), B is unknown but « is known, then adopting a
design p,, for which

nX; .
= 7’,1: 1,...,N
one may employ the estimator

X Yi—Oli
EZ[ X;

i€s

N
] + > a; =t(a), say,
1

to get rid of B in («, B). But E,V,, [t(e)] will differ from
E,Vp:(e*) under GODAMBE’s (1982) and TAM’s (1984) models
and the extent of the deviation will depend on the variation
among the X;/f;,i =1,...,N. So, t(«) is optimal if X; « f;
and remains nearly so if X;/f;’s vary within a narrow range.

If both o and B8 are unknown, then a course to follow is to
try the HORVITZ-THOMPSON (1952) estimator

_ Y;
E=> —*
i€s TTi

instead of the optimal estimator #(«, 8). Then, since
where A, (e) = Ej (e — Y ), for any p-unbiased estimator e of

Y, GODAMBE (1982) suggests employing a p, design p,q, say,
such that each of

(@  Ep, A5
(b) E, @ —t(a,p))?
(c) E, 0%2(F) —E, AL(ta,B)

Pno—m
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is small so that E,,V, () may not appreciably exceed
E,Vp:(t(a, B)). If these conditions can be realized then it will
follow that 7, which is optimal in the special case when «o; = 0,
i = 1,...,N and f; «X;, approximately remains so even
otherwise. Such a property of a strategy is called robustness.
A reader may consult GODAMBE (1982) for further discussions
and also for reviews IACHAN (1984) and CHAUDHURI and VOS
(1988).

MUKERJEE and SENGUPTA(1989) considered ey, as above,
but a more general model stipulating

En(Yi) = pi, Cn(Y;, Y j) = vy
and obtained the optimality result
EnVp(er) = EnEp(er —Y)? 210711 -1V1
= EmEﬁn(éL - Y)z
= EmVI_)n(EL)
Here V =(v;;), 1is the N x 1 vector with each entry as unity,
O =(@;;), Djj = > 551 j VI Pn(s), v =ijth element of the in-
verse of the matrix V, which is an n x n submatrix of V con-
taining only the entries for i € s. Further,
A=07'1

A¢ is an n x 1 subvector of A with only entries for i € s, b, is an
n x 1 vector with entries b,; fori € s, and

by =V i,

N
as=> wi— Y bsiui.
1 ies
e, is ey, evaluated at as = @; and b, = b, and p,, is a p, design
for which 1’®11 is the least.

An important point noted by these authors with due illus-
trations and emphasisin this case is that the optimal estimator
er, here need not be the GDE.

A common limitation of each of these three optimality
results above is the dependence, except in special cases, of
both the design and the estimator components of the optimal
strategies on model parameters, which in practice should
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be unknown. One way to circumvent this is to use a simpler
strategy that is free of unknown parameters but optimal when
a special case of a model obtains and identify circumstances
when it continues to be so at least closely under more com-
prehensive modeling, which we have just illustrated. A second
course may be to substitute unknown parameters in the op-
timal strategies by their suitable estimators. How to ensure
good properties for the resulting strategies thus revised is a
crucial issue in survey sampling, which we will discuss fur-
ther in chapter 6.

3.3 ESTIMATING EQUATION APPROACH

Following the pioneering work of GODAMBE (1960b) and later
developments by GODAMBE and THOMPSON (1986a, 1986b)
we shall discuss an alternative approach of deriving suitable
sampling strategies.

3.3.1 Estimating Functions and Equations

SupposeY =(Yq,...,Yn) isarandom vectorand X = (X7, ...,
X ) is a vector of known numbers X;(> 0),i =1,...,N. Let
the Y;’s be independent and normally distributed with means
and variances, respectively

60X, and al-2, i=1,...,N.
Ifallthe Y;’si = 1,..., N are available for observation, then
from the joint probability density function (pdf) of Y
N 1 . )2
]_ ——2(Yl—9Xl)
p(Y,0) = e i
i:q oV 2
one gets the well-known maximum likelihood estimator (MLE)
0o, based on Y, for 6, given by the solution of the likelihood
equation

9
— 1 Y,0) =
a9 08 p(Y,0)=0

as

6 =

1
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On the other hand, let the normality assumption above be
dropped, everything else remaining unchanged, that is, con-
sider the linear model

Y, =0X; + ¢
with ¢;’s distributed independently and
En(e) =0,Vy(e) =02, i=1,...,N.

10

Then, if (Y;,X;), i = 1,..., N are observed, one may derive
the same 0y above as the least squares estimator (LSE) or as
the best linear unbiased estimator (BLUE) for 6.

Such a 0y, based on the entire finite population vector
Y = (Yq,...,Yn), is really a parameter of this population
itself and will be regarded as a census estimator.

IfX; =1, 0; = o foralli above, then 6y reducestoY/N =Y.

We shall next briefly consider the theory of estimating
functions and estimating equations as a generalization that
unifies (see GHOSH, 1989) both of these two principal methods
of point estimation and, in the next section, illustrate how the
theory may be extended to yield estimators in the usual sense
of the term based on a sample of Y; values rather than on the
entire Y itself

We start with the supposition that Y is a random vector
with a probability distribution belonging to a class C of distri-
butions each identified with a real-valued parameter 6. Let

g=8X,0)
be a function involving both Y and 6 such that
(a) g—‘g(z, 0) exists for every Y
(b) E,g(Y,0) =0, called the unbiasedness condition
() En%(Y,0) #0

(d) theequationg(Y, 6) =0 admits a unique solution 6, =
6o(Y)

Such a function g = g(Y, 0) is called an unbiased estimating
function and the equation

gY,0)=0

is called an unbiased estimating equation.
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Let G be a class of such unbiased estimating functions for
a given C. Furthermore, let g be any estimating function and
0 the true parameter. If Y happens to be such that |g(Y, 0)] is
small while |g—§(X, 0)| is large, then 6y with g(Y, 6p) = 0 should
be close to 8; note that using TAYLOR’s expansion this is quite
obvious if g(Y , 0) is linear in 6.

Since g(Y, 0) and g—fé’(z, 0) are random variables, this ob-
servation motivated GODAMBE (1960b) to call a function g
in G as well as the corresponding estimating equation gg = 0
optimal if forallg € G

En(g§(Y.0) _ Eng*(Y,0)

E.mw,0] [EJgae]

(3.18)

If in a particular case Y has the density function p(Y, 60),
not necessarily normal but satisfying certain regularity condi-
tions (cf. GODAMBE, 1960b) usually required for MLEs to have
their well-known properties (cf. CRAMER, 1966), then this op-
timal gy turns out to be the function

d
— 1 Y,o0).
a9 108 p(X,0)
Consequently, the likelihood equation
9 log p(Y,6)=0
Y g plr,0)=

is the optimal unbiased estimating equation, implying that the
MLE is a desired good estimator 6, for 6.

Without requiring a knowledge of the density function of
Y and thus intending to cover more general situations, let it
be possible to find unbiased estimating functions

d)l(Yl)Q), LZl,,N

that is,

(a) En¢;(Y;,0)=0
(b) %@(Yi, 0) exists forall Y
(C) Ema%¢i(Yi> 9) ;ﬁ 0
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Then,
N N
g=8Y,0)=> ¢i(Y;,0)a;(0) = $ia;, say,
1 1

with differentiable functions ¢;(0) is an unbiased estimating
function, which is called linear in ¢;(Y;,0);i =1,2,...,N.If
we restrict to such a class L(¢), then a function gy € L(¢), sat-
isfying Eq. (3.18) for all g € L(¢), is called linearly optimal.
If, in particular, the Y;’s are assumed to be independently
distributed, then a sufficient condition for linear optimality of

go=80Y,0) => ¢i(Y;,0)

is that
8 .
Emaig(yi, 0) = k(O)End2(Y,, 0), (3.19)
fori =1,2,..., N, where £(9) is a non-zero constant free of Y .

The condition Eq. (3.18), taking g = Y¢;q; and gy = Z¢;
in L(¢), may be checked on noting that for

Y b i
= = ,U = =
Em@(Z@aL‘) Em@2¢i
one has E,,(uv) = E,,(v?), giving E ,(u?) — E,,(v?) = E,,(u —
v)2 > 0.

EXAMPLE 3.4 Let the Y;’s be independently distributed with
E,(Y;) =0X;, X; known, V,,(Y;) = crl-z. Taking
X;(Y; —6X;)
$i(Y;,0) = (—2

0;

and checking Eq. (3.19) one gets
N X(Y; - 6X)

go=z 3

i o;

and as a solution of gy = 0:
B = > YiXi/Ul?'
7 X7 /of
This is the same MLE and LSE derived under stipulations con-
sidered earlier.
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3.3.2 Applications to Survey Sampling
A further line of approach is now required because 6 itself
needs to be estimated from survey data

d=0GY;lies)

available only for the Y;’s with i € s, s a sample supposed to
be selected with probability p(s) according to a design p for
which we assume

mi=>» p(s)>0 forall i=1,2,...,N.
$31

With the setup of the preceding section, let the Y;’s be indepen-
dent and consider unbiased estimating functions ¢;(Y;,0);i =
1,2,...,N. Let

0o = 6p(Y)

be the solution of g(Y , #) = 0 where
N
2Y,0 = ¢:(Y;,0)
1

and consider estimating this 6 using survey datad = (i, Y;|i €
s). For this it seems natural to start with an unbiased sam-
pling function

h=h(s,Y,0)

which is free of Y; for j ¢ s and satisfies

(a) %(s, Y ,0) existsforall Y

(b) Enilt(s,Y,0)+#0

(c) Eph(s,Y,0)=g(Y,6)forallY, the unbiasedness con-
dition.

Let H be a class of such unbiased sampling functions. Follow-
ing the extension of the approach in section 3.3.1 by GODAMBE
and THOMPSON (1986a), we may call a member

ho = ho(s, Y, 0)
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of H and the corresponding equation 4y = 0, optimal if
EnE,hXs,Y ,0)

[EnE, 2, Y,6)]

(3.20)

as a function of & € H is minimal for A = hj.
Because of the unbiasedness condition (c) above, one may
check that

s, 1] -5 1]

E,(h—g)?=E,h* - g%
So, to minimize Eq. (3.20) it is enough to minimize
E,E,(h— E,h)?
This is in line with the criterion considered in section 3.2.
It follows that the optimal A is given by
#i(Y;,0)

T

ho =ho(s,Y,0) =
ies

To see this, let
a=u(s,Y,0)="hs,Y,0) —hos,Y,0).

Then, noting 0=FE,a(s,Y,0), and checking, with the argu-
ments as in section 3.1.3 that E,aho=0, one may conclude
that

EnE 02 = ELE,(hy +@)? = EnEph2 + EnE (b — ho)?
> EnE,h3

thereby deriving the required optimality of Ay.
On solving the equation

ho(s,Y,0) =0

for 6 one derives an estimator 6y, based on d, which may be
regarded as the optimal sample estimator for 6y, the census
estimator for 6 based on Y derived on solving the equation

gY,0) =0.
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EXAMPLE 3.5 Consider the model

Y, =0+¢;
where the ¢;’s are independent with E,,e; =0, V8 = cri2. Then
the estimating function

N N
(Y; —0)
Y iV, 0) =) —5—
i i 9
is linearly optimal, but does not define the survey population
parameter Y , which is usually of interest. Therefore, we may
consider the estimating equation gy = 0 where

o= ¢i(Y;,0)=> (Y;—06)

is unbiased and, while not linearly optimal, defines

6o=Y
and the optimal sample estimator
o = > Yi/m
> 1/m

for 6y. Incidentally, this estimator was proposed earlier by
HAJEK (1971).

In general, the solution 6; of

g=>Y ¢i(Y;,0)=0

where ¢;(Y;,0),i =1,2,..., N are unbiased estimating func-
tions is an estimator of the parameter 6 of the superpopulation
model, provided all Y1, Y, ..., YN are known. In any case, it

may be of interest in itself, that is, an interesting parameter of
the population. The solution 6, of the optimal unbiased sam-
pling equation hy = 01is used as an estimator for the population
parameter 6.

If g is linearly optimal, then the population parameter 6,
is especially well-motivated by the superpopulation model.
EXAMPLE 3.6 Consider, for example, the model

Y, =0X; +¢
with X1,Xs,...,Xn >0, €1, €9, ..., &N independent and

Epne =0,Vye =0?X!,y > 0.
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Define
X;(Y; - 0X;)
$(Y;,0) = "1~
14 15 le

It is easily seen that
> 6iY;,0)=0
is linearly optimal. So the solution
_ S XYi/X]
> X7/ X]
should be estimated by the solution of
o)
ies i
that is, by
b _ Lies Y. X /m;
5 )
Zies X i y/ T
Two cases of special importance are
(a) y =1 Then
_ >y,
> X;
(b) y =2.Then
60 = iz& éO _ Dies Yi/XiT[i.
N ~ X; Dies 1/m;
Finally, it is worth noting that among designs p, with

pn(s) > 0 only for samples s containing a fixed number n of
units, each distinct, the subclass p,y for which

N 1/2
m:n[quﬁ?/ZEmd)iZ] ,i=1,2,...,N
1

is optimal because for each of them the value of

2
ZN En(¢?)
= _—

. TT;
i 12

P Zies Y;/mi

o =

B Zies Xi/ni.

Y

¢i(Yi’ 9)
> T

T

EnE,

ies

is minimized.
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Thus, among all strategies
(pn, t(d))

the optimal class of strategies is
(Png, 0(d))

where 6 = 0(d) is derived on solving

3 IT;
ies v

3.4 MINIMAX APPROACH

3.4.1 The Minimax Criterion

So far, the performance of a strategy (p, ¢) has been described

by its MSE M, (¢), which is a function defined as the parameter

space 2, the set of all vectors Y relevant in a given situation.
Now, 2 may be such that

sup M,(t) = R,(¢), say,
YeQ

is finite for some strategies (p, t) of a class A fixed in advance,
especially by budget restrictions. Then it may be of interest to
look for a strategy minimizing R,(¢), with respect to the pair
(p, ).

Let A be the class of all available strategies and R,(¢) be
finite for at least some elements of A. Then

r*= inf R,(¢t)= inf supM,(t) < oo
(p,t)eA (p,t)eA YeQ

and r* is called minimax value with respect to 2 and A; a
strategy (p*,t*) € A is called a minimax strategy if

Rpy:(t*) =r".
For given size measures x and z with

0 < X;; 1=1,2,...,N
0<%, <272/2;, 1=12,...,N
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where Z = ZJIV Z; let us define the parameter space

X Y, Y
l

Of special importance is the class of strategies
A, = {(p,t) : p of fixed effective size n, ¢ homogeneously
linear}.

3.4.2 Minimax Strategies of Sample Size 1

We first consider the special case A1, consisting of all pairs
(p, t) such that

p(s) > 0 implies [s|=1
t(s,Y)=tG,Y)=Y;/q, q¢; #0.

Writing p; = p(i) each strategy in A; may be identified with
a pair (p,q); p,q € RY, and its MSE is

Y. 2
S b [_l _ Y} .
qi
Now, following STENGER (1986), we show that
sup »_ p; {Yi Y]z
Kesgz bi qi
is minimum for
pbi= X

q-=é=q* say
l Z 19 9

*
= pi ’ Say’

(i=1,2,...,N) such that (p*, g*) is a minimax strategy.
Y Q.. 1mphes Y + AZ € Q,, for every real A and the MSE of
a strategy (p, @) evaluated for Y +AZ is

Y, +1Z; 2
> opi |—/— :

-Y —-Z
This quadratic function of A is bounded if and only if
Zi _ Z=0
qi
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which is equivalent tog; =¢;". So R,(¢) < oo for (p,q) = (p, 1) €
Aq if and only if ¢ = ¢*. Now, for

v, ]
A(p) = sup Y p; l—L —Yl

%
ZE Q2 qL

we have

A(p*) = sup Y p}

YeQy, -

i

2
E—Y] = 72

For p # p* there exists j with p; = pj +¢,¢ > 0.
It is easily seen that

P} —2p3q; +q;* > 0.
So we may define
) ) '
Y;/ =q}</\/p}f —2piqi+q;* for i=j
=0 for #j.
The total Y V) of Y /) is equal to YJ(‘j) and

) 2 ‘ . 2
Zp [YiJ _Y(j)] :Z2pJ —2quj+qj2
] P} —2pjqj +4;

l

e(1—2q7)

=77
P} = 2pjd; +4;°

14

> Z*
because Z; < Z/2 implies 1 —2g; > 0.
Obviously, Y € Q,, and
A(p) > Z% = A(p*)
for all p.
RESULT 3.9 Consider the class of strategies (p,t) where p is a
fixed size 1 design, and t is homogeneously linear (HL).

In this class the minimax strategy with respect to Q. is as
follows: Select unit i with probability

X
pi:f
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and use the estimator
Y;
q
where q; = % and Z; < Z/2 for all i.

Note that the minimax strategy is unbiased if and only if
X and Z are proportionate.

Consider the special case X; =Z; fori=1,2,..., N. The
minimax strategy for Q,, and Ay obviously consists in select-
ing a unit with x-proportionate probabilities and using the
estimator

Y;

X;
if the unit 7 is selected.

REMARK 3.3 The same strategy has been shown to be minimax
in another context by SCOTT and SMITH (1975). Their param-
eter space is

Q= eRY :0<Y; <X, for i=1,2,...,N}

where it is assumed that a subset Ugof U = {1,2,..., N} exists
with

Y X =X/2.

iEUO

They prove that the above strategy is minimax within the set
A7, say, of all strategies (p,t), p an arbitrary design of fixed
sample size 1 and

ti,Y) =XYi/X;.

This result may also be stated as follows: The design of fixed
sample size 1 with x-proportionate selection probabilities is
minimax if Q, is relevant and ¢(i, Y ) = XY,/ X, is prescribed.
An exact generalization for arbitrary sample sizes n is not
available, but an asymptotic result will be presented in
chapter 6.
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3.4.3 Minimax Strategies of Sample Size n > 1

In the special case X; = Z; = 1 we have the parameter space
1 -
Q1 = {XERN : FZ(YL'—Y)Z =< 1}

and, according to the above result, the minimax strategy within
Aj consists of choosing every unit with a probability 1/N and
employing the estimator NY; for Y if the unit i is selected.

A much stronger result has been proved by AGGARWAL
(1959) and BICKEL and LEHMANN (1981). They consider 11
and the class A} of all strategies (p,, t), p, a design of fixed
effective size n and ¢ arbitrary, and show that the expansion
estimator Ny based on SRSWOR of size n is minimax.

Unfortunately, it seems impossible to find analogously
general results for other choices of X and Z; however, in chap-
ter 6 we report some results valid at least for large samples.

In the present section we give two results for n > 1 pos-
tulating additional conditions on n in relation to N and X1,

Xo,...,XN.
Assume fori =1,2,...,N
Z; =1

and
Xi n—1 1

(3.21)

X n N-2
According to the last condition, the variance of the values
X1,Xo, ..., Xn must be small. This condition implies that

N -2 X i n—1
=-n-—— - —

N-2nX N —-2n
(i=1,2,...,N) are positive with sum 1. Denote by prus the
LAHIRI-MIDZUNO-SEN design based on the probabilities Pq,
P,, ..., Py, that is, in the first draw unit ¢ is selected with
probability P; ;i = 1,2, ..., N and subsequently n — 1 distinct
units are selected by SRSWOR from the N — 1 units left after
the first draw. STENGER and GABLER (1996) have shown:

P; (3.22)

RESULT 3.10 Let t be the expansion estimator for Y and prys
the LAHIRI-MIDZUNO-SEN design based on Pi, P, ..., Py
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defined in Eq. (3.22). Then

(pLms, ©)

is minimax in A, with respect to the parameter space
X, -
Q1= {XGRN : Z:YL(Yi—Y)2 < 1}

provided Eq. (3.21) is true. The minimax value is

N N —n

n N-1

Another example of a very general nature seems to be
important. GABLER and STENGER (2000) assume

N-2n>3/1-X;/X,

where X, = max{X1, Xo,..., Xny}. By this inequality, situa-
tions are eliminated in which the x values of one or a few units
add up to 1 or nearly so, such that random sampling is not
suggestive. The inequality ensures that

N
(N —2n)z = Z V22 - X;
1

admits a unique solution z,. We define for:i =1,2,..., N

2o +1/22 — X;
T — Xl
and obtain the estimator

(s, Y) =Y al¥; =

ies

DiesdiY
YiesdiXi
which is of fundamental importance. Defining «; = d;X; for
1=1,2,...,N,t*(s,Y ) canbe written as a HANSEN-HURWITZ
type estimator
Zi es % %
Zies o
The parameter space is assumed to be defined as

Q={(Y eRYN : YUY <1}

t*(s,Y) =
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where U is a N x N non-negative definite matrix with
UX =0.
The «;’s do not depend on U . For
D = diag(dq,dg,...,dN)

V*=D"1 (I — 5) D'+ XX
n

GABLER and STENGER (1999) show that
1
MSE(Y; p,t) > ————
;l;g X p,t) tr(UV*)

for all strategies (p,t) € A,.

Under the assumption that the variance of X1, Xo, ...,
Xy isnot too large a design, p* is constructed such that (p*, ¢*)
is minimax.
REMARK 3.4 GABLER (1990) assumes that designs p with
3|s|p(s) = n, n fixed, are prescribed while all LEs

t(S, Y)=0bs+ stiYi

i€s

are admitted. He considers Q, and derives the minimax value
1 [~ n n
I G (i [ ——
" T { ( N) N "“}
where
1 -
Oxx = o > (X - X)2.

We will not discuss GABLER’s class of strategies. His re-
sult is mentioned especially because the same minimax value
r* will play an important role in our asymptotic discussion of
Q, and A, in chapter 6.
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Chapter 4

Predictors

Writing a finite population total Y as Y =%,Y; =%,Y; + %, Y;
an estimator ¢ =¢(s,Y) for it may be written as t =X;Y; +
(t — 35Y;), where X4(%,) is the sum over the distinct units
sampled (unsampled). Here a sample s is supposed to be chosen
yielding the survey data d =(i, Y;|i € s). To find a value ¢(d)
close to Y is equivalent to deriving from Y;,i € s a quan-
tity, t(d) — XsY;, which is close to X, Y;. In order to achieve
this we need a link between Y;,i ¢ s and Y;,i € s. So far,
a link established by a design p has been exploited. Even
where a superpopulation model entered the scene, we did not
use it to bridge the “gap” between Y;,ics and Y;,i ¢s. We
only took advantage of the model when deciding for a spe-
cific strategy (p,t) and then based our conclusions on p
alone.

In section 4.1 we follow ROYALL (1970, 1971, 1988), con-
sidering an approach for estimation founded on a superpopu-
lation from which Y at hand is just a realization.

In section 4.2 we assume that a suitable prior density
function of Y is given and derive Bayes estimators.

77
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4.1 MODEL-DEPENDENT ESTIMATION

We assume that the values Y;; i=1,..., N may be consid-
ered to be realizations of random variables, also denoted as
Y;; i=1,..., N and satisfying the conditions of a linear model
(regression model). In sections 4.1.1-4.1.4 models with only
one explanatory variable are considered, sections 4.1.5-4.1.7
deal with the linear model in its general form.

4.1.1 Linear Models and BLU Predictors

Let a superpopulation be modeled as follows:
Y, =8X;+¢,i=1,...,N

where X;’s are the known positive values of a nonstochastic
real variable x; ¢;’s are random variables with

En(e) =0, Vile) = 02, Culei,ej) = pijoioj,

writing E,,,, V., C,, as operators for expectation, variance and
covariance with respect to the modeled distribution.

To estimate Y = %,Y; + X, Y;, where X, Y; is the value of
a random variable, is actually to predict this value, add that
predicted value to the observed quantity X;Y;, and hence ob-
tain a predicted value of Y, which also is a random variable in
the present formulation of the problem.

Since

DYi=BY Xit+) &
with E,, 3, ¢ = 0, a predictor for X, Y; may be 8%, X;. Here B

is a function of d (and X) and for simplicity we will take it as
linearin Y,

B = Z B;Y;, say.
S

The resulting predictor for Y

t=>Y;+8> X,
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will then be model-unbiased (m-unbiased) if

0=E,(t-Y)
_ B, (zmﬁzxi—zn—zn)
. (32&- LAY X, —z&)
that is, if

B = EmB
=En ) Bi(BX; +e&)
i€s
=B> BX;
ies
which is equivalent to
ZBiXi =1
ies
Note that the predictor for Y then takes the form
t=>Y" <1+BiZXj>Y
i€es r
= ayY;, say,
i€s
and
ZasiXi = ZXi (1 + B; ZXJ>
i€s r
= ZXL + ZXiBi . ZXJ
S S r
=X.

This is the equation known from representativity and calibra-
tion.
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For a linear m-unbiased predictor a measure of error is
Vit —Y)=En[(t =Y) — En(t — Y))?

-5 [prn-yn]
- KZX) (B—B)— ;m - ﬂXi)r

= M, say.

M is a function of the coefficients B;, i € s and may be mini-
mized under the restriction ;B;X; = 1. Let B,;,i € s be the
minimizing coefficients. The corresponding predictor

lo = ZYL + ZXZ ZBoiYi
S r )
is naturally called the best linear unbiased (BLU) predic-
tor (BLUP) for Y.

EXAMPLE 4.1 For illustration purposes, let us simplify the
above model by assuming o; =0 X;(0 >0, unknown) and p;; =
p[—ﬁ < p < 1, unknown). Then,

2 2
= < Xi) Ep, [ZBi(Yi —ﬂXi)] +En lZ(Yi _ﬁXi)]

2% X.E, lz B;(Y; — pX;) Z(Yi - ,BXi)]

:(12[(;)() {ZB2X2+pZZB B; XX, }

i1#£j€s

+ZX2+,OZZXX [ZX]pZZBXX]

i#£jer i€s,j ¢s

2

2 [(zxi) {ora-py it +a-pn 3

o) (o) |

A choice of B; that minimizes M subject to ;csB; X; =1 is
B; =1/nX; fori € s, assuming n as the size of s. The resulting
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minimal value of M, My is
2
My = o2(1 — p) {ZX? + <ZX1> /n]
r r

=Vaulto—Y)=E,(ty - Y)?

writing to for the linear m-unbiased predictor with the above
B;’s called BLUP, that is,

to = ZY + - lzX ] [ZXL-] =) Y +B8) X
r S r
It is easy to see that
1 Y;
P=n2x,
occurring in ty, is the BLU estimator of B.

EXAMPLE 4.2 Now, we assume, p;; =0 for all i+ j. Hence
En(Y)=BX;, Vp(Y;) = 02 but C,,(Y;,Y;) = 0,i # j, that is,
we have (cf. section 3.2.2) My with u; = BX;. Then the BLUP
for' Y comes out as

'S VX /o2
tpru =) Y+ 2o Yikifoj ]
S

L Zs Xz2 / Gi2
which reduces to the well-known ratio estimator, now to be
called the ratio predictor,

=Tl o] - x[pr]/[2] -xo

if in particular, crl? =02X;,i =1,...,N, writing y (%) as the
sample mean of y (x). It follows, under this model, that
My = Vu(tg — Y) = En(tg - Y)?

2
sl paend
Z r r 5
= En [Zr Y- pXD) - XY - X )]
—<1— £=

writing x, for the mean of the (N —n) unsampled units.

3d

r

er o2,
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4.1.2 Purposive Selection

We introduce some notations for easy reference to several mod-

els.

Arbitrary random variables Y1,Y5o, ..., Yy may be writ-
ten as

Y =pi+e
where €1, 69, ... , ény are random variables with

En(e) =0, Viu(e) = 0f, Cules, ej) = pijoio;

fori,j=1,2,...,N andi # j.
A superpopulation model of special importance is defined
by the restrictions

w; = BX;
crl-z = J2X3/

with known positive values X; of a nonstochastic variable x.
This model is denoted by

My, if pjj =p forall i #j
My, if p;j =0 forall i #j
Mg, if e1,e9,...,en areindependent

(cf. section 3.2.4). If the assumption u; = BX; is replaced by
mi =a+ BX;

we write M’;,, instead of M, for j = 0,1, 2.
In the previous section we have shown that the ratio pre-
dictor ¢ is BLU under M7 and has the MSE

N2
~n
It follows from the last formula that if the n units with the
largest X;’s are chosen as to constitute the sample on which to
base the BLUP ¢z, then the value of M will be minimal. So, an
optimal sampling design is a purposive one that prescribes to

select with probability one a sample of n units with the largest
X; values.

Xz,
M, (1— )2 g2,
X
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Let the optimal purposive design be denoted as p,,. It
follows that

Ep,wvm(tR - Y) = Ep,wEm(tR - Y)2 < Eanm(tR - Y)2

for any other design of fixed sample size n.
Consider the model M}y, that is,

Yi=a+BX;+¢
with uncorrelated €1, €9, . .. , ex of equal variance o2. Let

t=t(sY)=) Y+ &Y,
s S

be an m-unbiased linear predictor forY = >, Y; + >, Y;, that
is,

E,, (t - ZYi> =E,, (Zg,-Yi> = (a+BX)).
This implies

(a) Zgi =N -n

(b > &aXi=) X
Note that (a) and (b) may be written as

> gXj =) X/ k=01
S r

Obviously,
M=V,t-Y)=E,(t-Y)>

2
= Ep, [Z&'Yi —Y (@+pX) - (Vi —a— ,BXi)]
2
=En [Z&'Yi - E, (Z&'YL) - Zé‘j]
2
E,, (Zgié?i - ZSi)

Zg?—}—N —n) o2,

© 2005 by Taylor & Francis Group, LLC



84 Chaudhuri and Stenger

To minimize this, subject to (a), (b), we are to solve
0

0=— [M—k <Zgl - N —l—n) — U (Zngz —ZXZ>‘|
8gl s S r
taking A, 1 as Lagrangian multipliers and derive
N N(X —x)
=— =1 — (X, — %) =g, .
8i (n )+Zs(Xi_x)2( i —X) 8io, SAY
The resulting BLU predictor

to=> Yi+Y gioYi=NI[y+bX —x)]
with
b= (Y- X %)/ Y (Xi - %)

is usually called a regression predictor. The model variance
of tg is

My=V,(ty-Y) = [(N —n)+ ngol o2
e b (x — X)? 9
=N ln(l f)+7zs(Xi—f)2 o

M achieves a minimum if x equals X. So, the optimal design
is again a purposive one that prescribes choosing one of the
samples of size n that has x closest to X. Note that forx = X
the predictor ¢y is identical with the expansion predictor
Ny. Analogous optimal purposive designs may also be derived
for more general models.

RESULT 4.1 Let M, be given. Then, the regression predictor

to =to(s, Y)
—N|y- Es(;s( < )f)f—cl)z V%)
is BLU for Y. Its MSE is minimum if
x=X
in which case
to(s,y) = Ny.
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REMARK 4.1 Consider the model Mge with the BLUP t, given
in Example 4.1.

Viu(to — Y) is minimized for the purposive design pno. If;
in addition, the €;’s are supposed independent, that is, Mog is
assumed, then V,,(to — Y ) reduces to

X;)?
2 X2 (Zr 14 .
? Xr: ot n

For this same model an optimal p-unbiased strategy was found
in section 3.2.4 as (pny, t) among all competitors (p,, t) with

E, (t)=Y forevery Y

in terms of the criterion E,E, (t — Y )2. We may note that for
Dnx

_ Y/ XY
t = - = — _-
Zs:ni nzs:Xi

has E,,(f) = X, that is, like to = Y, Y; + 1(55 ) 3, X; the
HTE t is m-unbiased. So, it follows that

EmEp,w(to - Y)2 = Ep,wEm(to - Y)2
<E, Ent,—Y)?
<E, E,t-Y)?=E,E, (-Y)

Thus, the strategy (pno,t,) is superior to the strategy (pny,t),
which is optimal in the class of all (py,t), t py-unbiased.

For any p-unbiased estimator for Y that is also m-unbiased
under any specific model, a similar conclusion will follow. So,
if a model is acceptable and mathematically tractable, there is
obuviously an advantage in adopting an optimal model-based
strategy involving an optimal purposive design and the perti-
nent BLUP rather that a p-unbiased estimator.

4.1.3 Balancing and Robustness for M,

In practice, we never will be sure as to which particular model
is appropriate in a given situation. Let us suppose that the
model Mj; is considered adequate and one contemplates
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adopting the optimal strategy (p,o, tr) for which
N2(1 - f) Xz, ,
o
n x

Vi(tr =Y) =My =

as noted in section 4.1.1. We intend to examine what happens
to the performance of this strategy if the correct model is M7;.
Under M},

X

and thus ¢z has the bias
X

which vanishes if and only if ¥ equals X. So, if instead of the
design p,,, which is optimal under M1, one adopts a design
for which ¥ equals X, then tg, which is m-unbiased under M1,
continues to be m-unbiased under M/, as well.

A sample for which ¥ equals X is called a balanced sam-
ple and a design that prescribes choosing a balanced sam-
ple with probability one is called a balanced design. Hence,
based on a balanced sample, ¢r is robust in respect of model
failure.

It is important to note that ¢tz based on a balanced sample
is identical to the expansion predictor Ny.

REMARK 4.2 Ofcourse, a balanced design may not be available,
for example, if there exists no sample of a given size admitting
x equal to X. In that case, an approximately balanced design
suggests itself, namely the one that chooses with probability
one a sample of a given size for which X is the closest to X. If
the sample size nis large, then simple random sampling (SRS)
without replacement (WOR) leads with high probability to a
sample, which is approximately balanced. This is so because
by CHEBYSHEV’s inequality, under SRSWOR,

_ N —ns?
Problf—X| <el > 1— Nnng—z,

writing 8% = 15 Y (X; - X)2.

forany ¢ > 0,
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An obvious way to achieve a balance in samples is to strat-
ify a population in terms of the values of x, keeping each stratum
internally as homogeneous as possible.

Let the sizes N1,No, ... ,Ng of the H strata be suffi-
ciently large (with Z{{ Ny, = N) and assume that samples are
drawn from the H strata independently, by SRSWOR of suffi-
ciently large sizesny, ng, ... ,ng (Z{J ny, = n) with ny/Np small
relative to 1. Then, the stratum sample mean X will be quite
close to the stratum mean Xpof x forh=1,2, ... , H. ROYALL
and HERSON (1973) is a reference for this approach.

4.1.4 Balancing for Polynomial Models

We return to the model M, of 4.1.2 and consider an extension
M,;, defined as follows:

k .
Y, = Z ,BJXLJ + &
j=0
En(g) =0,Vy(e) =02, Cnlei,e5) =0, fori # j
wherei, j = 1,2, ..., N. By generalizing the developments of
section 4.1.2, we derive.

RESULT 4.2 Let M;, be given. Then, the MSE of the BLU pre-
dictor t, for Y is minimum for a sample s of size n if

— E T = — E : ’OI‘ = .
. 1 N n 1 J > > >

If these equalities hold we have
to(s,Y)=Ny.

A sample satisfying the equalities in Result 4.2 is said to
be balanced up to order k.
Now, assume the true model Mj agrees with a statisti-
cian’s working model M, in all respects except that
k _
En(Y) => B;X]
0

with & > k. The statistician will use ¢, instead of £, the BLU
predictor for Y on the base of M, .. However, if he selects a
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sample that is balanced up to order %’
t)(s,Y)=t,(s,Y) =Ny

and his error does not cause losses.

It is, of course, too ambitious to realize exactly the bal-
ancing conditions even if £’ is of moderate size, for example,
k' =4 or 5. But if n is large the considerations outlined in Re-
sult 4.1 apply again for SRSWOR or SRSWOR independently
from within strata after internally homogeneous strata are
priorly constructed.

But how it fares in respect to its model mean square error
under incorrect modeling is more difficult to examine. Since
a model cannot be postulated in a manner that is correct and
acceptable without any dispute and a classical design-based
but model-free alternative is available, it is considered impor-
tant to examine how a specific model-based predictor, for ex-
ample, t,,, fares in respect to design characteristics ifit is based
on a sample s chosen according to some design p. On such a
sample may also be based a design-based estimator ¢4, and one
may be inclined to compare the magnitudes of the design mean
square errors M, (ty) = E,(tn, —Y)? and M, (t;) = E ,(t4 — Y ).
Since Mp(tm) = Vp(tm) + Blz,(tm) and Mp(td) = Vp(td ) + Bg(td)
it may be argued that if the sample size is sufficiently large,
as is the case in large scale sample surveys, in practice both
V(tn) and V,(¢7) may be considered to be small in magni-
tudes. But | B, (¢y,)| is usually large and appreciably dominates
both |B,(¢3)| and V,(¢,) and, consequently, for large samples
M, (t,,) often explodes relative to M,(¢;), especially if £, is
based on an incorrect model.

The estimator #; itself may or may not be model-based,
but even if it is suggested by considerations of an underlying
model, its model-based properties need not be invoked; it may
be judged only in terms of the design, and, if it has good de-
sign properties, it may be considered robust because its perfor-
mance is evaluated without appeal to a model and hence there
is no question of model failures. However, if the sample size is
small and the model is not grossly inaccurate, then in terms of
model- and design-based mean square error criteria m-based
procedures may do better than ¢;, as we have seen already.
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These discussions suggest the possibility of considering
estimators that may be appropriately based on both model and
design characteristics so that they may perform well in terms
of model-based bias and mean square error when the model
is correct, but will also do well in terms of design-based bias
and mean square error irrespective of the truth or falsity of
the postulated model. To examine such possibilities, in view of
what has been discussed above it is necessary to relax the con-
dition of design unbiasedness and to avoid small sample sizes.
In the next section we examine the prospects of exploration
in some other directions, but we will pursue this problem in
chapters 5 and 6.

4.1.5 Linear Models in Matrix Notation

Suppose x1, X9, ... , X are real variables, called auxiliary or
explanatory variables, each closely related to the variable
of interest y. Let

x; = (X1, Xig, ..., Xi)'
be the vector of explanatory variables for unit i and assume
the linear model

Y, =x;f+¢
fori =1,2,...,N.Here

B=(B1,B2 -, Br)

is the vector of (unknown) regression parameters; 1, ¢o, .. .,
en are random variables satisfying

Emé‘i =0
Vimei = v
Cnlei,ej) =vj,i #j
where E,,, V,,, C,, are operators for expectation, variance, and
covariance with respect to the model distribution; and the ma-

trix V = (v;;) is assumed to be known up to a constant o2.
To have a more compact notation define

XZ(Y17Y27 ’YN)/
X:(£173£2’ 7&N)/:(le)

§:(81782’ "‘78N)/
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and write the linear model as

Y=XB+¢
where
Ene=0
Vin(e) =V

Assume that n components of Y may be observed with the ob-
jective to estimate $ or to predict the sum of all N —n compo-
nents of Y that are not observed. It is not restrictive to assume
that

Y, =(Y1,Yy,...,Y,)
is observed; define
Y, =Y,u1,...,YN)
and partition X and V correspondingly such that

Vs V.
V = ss sr )
<Vrs Vrr

Assume

N

S nYi=yY
1

is to be predicted. Modifying slightly the approach of section
4.1.1 (to predict 1'Y) we use g; Y . as a predictor of Z; Y, and
add the predicted value to the known quantity

yY,
to get as a predictor for y'Y’
(y,+8)Y,

Where ZS = (y17 Y2, oo Vn)/ andgs = (gl)g2> e 7gn)/-
8, will be chosen such that

Em[(ﬁ +gs)/Xs - Z/X] =0
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and
Vol(ys +8)Y s — y'Y]?

is minimized. The linear predictor defined by these two prop-
erties is called the best linear unbiased (BLU) predictor
(BLUP) of y’Y . Assuming that the inverses of the occurring
matrices exist it may be shown:

RESULT 4.3 The BLU predictor of y'Y is

to=y Y +y, [X,p+ViVI(Y, - X,
where

B=X.,V X)X VY

Ss 8§ —S

is the BLU estimator of 8. Further,
Vilto) = v, (Vir = VsV Ve )y,
+3 (X, = ViV Ve )X VT X!
< (X, = VisV'Va )y,
For a proof we refer to VALLIANT, DORFMAN, and ROYALL
(2000).
4.1.6 Robustness Against Model Failures

Consider the general linear model described in section 4.1.4.
TAM (1986) has shown that a necessary and sufficient condi-

tion for
T'Y, =) TY;
S
tobe BLU for Y = 1'Y is that

K = (Vss, Vsr)>
and M(X,) is the column space of X,.
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In case V,s = 0 these conditions reduce to (q) and
(b) V(T —1,) e M(X,)

as given earlier by PEREIRA and RODRIGUES (1983).

By TAM’s (1986) results one may deduce the following.

If the true model is as above, M, but one employs the best
predictor postulating a wrong model, say M*, using X* instead
of X throughout where

X = (X*’ X):

then the best predictor under M* is still best under M if and
only if

"X, =1X

using obvious notations. This evidently is a condition that
the predictor should remain model-unbiased under the correct
model M. Thus, choosing a right sample meeting this stipula-
tion, one may achieve robustness. But, in practice, X will be
unknown and one cannot realize this robustness condition at
will, although for large samples this condition may hold ap-
proximately. In this situation, it is advisable to adopt suitable
unequal probability sampling designs that assign higher selec-
tion probabilities to samples for which this condition should
hold approximately, provided one may guess effectively the
nature for variables omitted but influential in explaining vari-
abilities in y values. If a sample is thus rightly chosen one may
preserve optimality even under modeling deficient as above.
On the other hand, if one employs the best predictor using W*
instead of X when W*=(X, W), then this predictor contin-
ues to remain best if and only if the condition (b) above still
holds. But this condition is too restrictive, demanding correct
specification of the nature of V , which should be too elusive in
practice. ROYALL and HERSON (1973), TALLIS (1978), SCOTT,
BREWER and HO (1978), PEREIRA and RODRIGUES (1983),
RODRIGUES (1984), ROYALL and PFEFFERMANN (1982), and
PFEFFERMANN (1984) have derived results relevant to this
context of robust prediction.
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4.2 PRIOR DISTRIBUTION-BASED APPROACH

4.2.1 Bayes Estimation

Fruitful inference through the likelihood based d cannot be
obtained without postulating suitable structures on Y . IfY is
given a suitable prior density function g(Y ), then a posterior
given d is

q;(Y) =q(¥Y) 14(Y)c(d)

where c¢(d) is a function of d required for normalization. This
form is simplistic if g(Y) is so. If a square error loss function
is assumed, then the BAYES estimator (BE) for Y is

writing K. for an operator for expectation with respect to the
posterior pdf gx. If g is suitably postulated in a mathematically
tractable and realistically acceptable manner, then it is easy
to find Bayes estimators for Y. Let us illustrate as follows.

Suppose Y; ~ N (0, 02) and 6 ~ N (i, ¢2), meaning that
Y,’s are independently, identically distributed (iid) normally
with a mean 0 and variance o2 and 6 itself is distributed nor-
mally with a mean x and variance ¢2. As a consequence, 0 is
distributed inglependently ofg; =Y, —0,1=1,..., N. Then,
writing ¢ = :5_2’ W=1-[1-Fl w‘f’m , for a sample s of size n
with sample mean y, the BAYES estimator of Y is

tg =N [Wy+(1—-W)ul.

Of course it cannot be implemented unless u, o, and ¢, or at
least u and v, are known.

Leaving this issue aside for the time being, it is impor-
tant to observe that an optimal sampling design to choose a
sample on which a ¢p is to be based is again purposive, as
in the case of using m-based predictors. For optimality one
must assign a selection probability 1 to a sample that yields
the minimal value for the posterior mean square error of ¢p
to be called the posterior risk, in this case with a square
error loss, viz Eg.(tp — Y )2. This is a function of s plus other
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parameters involved in ¢. Because of the appearance of un-
known parameters here, to implement a Bayesian strategy in
large-scale surveys is practically impossible. However, there
is a way out in situations where one may have enough sur-
vey data that may be utilized to obtain plausible estimates of
the parameters involved in the BAYES estimator. Substitut-
ing these estimates for the nuisance parameters in the Bayes
estimator (BE) one gets what is called an empirical Bayes
estimator (EBE), which is often quite useful. Let us illustrate
a situation where an EBE may be available.

4.2.2 James-Stein and Empirical
Bayes Estimators

Suppose 61, ...,0, are k > 3 finite population parameters,
that is, totals of a variable for mutually exclusive population
groups required to be estimated. Let independent estimators
t1, ... tp, respectively, be available for them and suppose it is
reasonable to postulate that ¢; ~ N (6;, 02) with 02 known.

Then, writing S = Z’f t? it can be shown, following JAMES
and STEIN (1961), that

k—2
§ =81, ...,8,) where §; = [1— S 02] t
is a better estimator for 0 = (61, ... ,6;) thant = (¢1, ... , )
in the sense that

k k
ZEei((Si — Qi)2 < ZEQi(ti — 902 =ko?
1 1

This shrinkage estimator § is usually called the James-
Stein estimator (JSE). But a limitation of its applicability is
that all ¢ must have a common variance o2, which must be
known.

Assume further that it is plausible to postulate, in view
of the assumed closeness among 6;’s, that 6; ~ N (0, ¢2), with ¢
as a known positive number. Then the BEs for 6; are

tg; = 1—m ti,lzl,...,k.
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Now S /(02 + ¢?) follows a x? distribution with % degrees of
freedom and, therefore,

k—2 o2
E 2l = :
[ s ‘ } 02 + ¢2
Hence §; can be interpreted as an EBE for 6;,i =1, ..., k. In
this case, with a common ¢2 JSE and EBE coincide.

4.2.3 Applications to Sampling
of Similar Groups

Suppose there are £ mutually exclusive population groups of
sizes N; supposed to be closely related from which samples of
sizes n; are taken, yielding sample means

1%
yi:—ZYij, i=1,...,k,
nij:1

Y,; denoting the value of jth unit of ith group. Let
Yij ~ N(6;,0%),6; ~ N(u, ¢,

(with 6;’s independent of ¢;; =Y;; —6; forevery j =1, ... ,n;).
Define ¢ = 02/¢? and
eV W 1—A—f B fi= T fori=1,.. k.
‘(p‘ +nL Nl b b b

Then, the BE of Y Y;; = T is
tg; = n;y; + (N; —n;) [Bip + (1 — B))y;]
= N;[W;5; + (1 — Wp)u].

Assuming n; > 2 and writing n = Z]f ni,

1 k
i=;;m%
1 k
BMS = -—— 3 ni(y; = )"
T
1 n,

k i
WMS = S5 Gy —3)°
n—~k =]

J
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k
g=gnm,...,m)=n->Y ni/n
1

one may estimate, following GHOSH and MEEDEN (1986),

1 (k—1)BMS k-1 :
1/v bylal = max {0, [(k 3 WMS 1} 2 } assumingk >4

Then the EBE for T;, the total of the ith group, is
tgpi = NilW 3 + (1 — Wil

writing W; =1—(1— f)B;,i=1,...,k.

Again, suppose that # are estimators of parameters 6;
based on independent samples or on the same sample but 6;’s
supposed closely similar. Then further improvements on #’s
may be desired and achieved if additional information is avail-
able through auxiliary well-correlated variables in the follow-
ing way. First, let us postulate that ¢, ~ N (6;,02),i =1, ..., k.
Let x1,...,x, be p(>1) auxiliary variables with known val-
ues X;;(j = 1,...,p;t = 1,...,k) such that it is further
postulated that 6; ~ N (x;8, ¢2), 6; independent of ¢; — 6;,i =
1, ..., kx; = (Xli,...,ij)’, B =(B1,...,Bp), a p vector of
unknown parameters, with p < £ — 3. Assuming that the ma-
trix X' X of order p x p, with X' = (x4, ..., x5 ) has a full rank,
the regression estimator for 6; is ¢ = x/[(X'X)~! X't], writing

t =(t1, ...,t) . Then the BAYES estimator of 6; is
2
o
921: = ti* + 11— m (tl - tl*)
— 42 t¥ + ¢—2 t:
T o242 o2+ 2| "
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Writing S* = Y% (4; — )%, we have E[*-2-2] = 2" yielding
the JSE of 9; as

k—p-—-2
=t 4+ 11— ————|(t; -t
l l+|: S* :|( l)

0'2 0’2
—k—p—-2 o tr+{1—(k—p—2) = b
(k—p—2) ot { (k )S*}t

which is, of course, an EBE. In particular, if p=1,X;=1,
i=1,...,k, then

k
%Zti =1, say, S* = Z(ti —1? and
1

3 =

l

{k—3

S 02} t+ {1 — 02} L.

S*

Further generalizations allowing o2 to vary with i as 2 render
JSEs unavailable, but EBEs are yet available in the literature
provided o are known. This latter condition is not very re-
strictive because from samples that are usually large 0? may
be accurately estimated.

The BAYES estimators, as we have seen, are completely
design-free, and in assessing their performances design-based
properties are never invoked. The JAMES—STEIN estimators,
whenever applicable, and their adaptations as empirical
BAYES estimators, may start with design-based estimators,
model-based estimators, or design-cum-model-based estima-
tors, but these estimators get their final forms exclusively from
considerations of postulated models. Also, only their model-
based properties like model bias, model MSE, and related char-
acteristics are studied in the literature. Details omitted here
may be found in works by GHOSH and MEEDEN (1986) and
GHOSH and LAHIRI (1987, 1988). Their design-based proper-
ties are not yet known to have been seriously examined. In the
context of sample surveys, the question of robustness of BAYES
estimators, JAMES—STEIN estimators, and empirical BAYES
estimators is not yet known to have been seriously taken up
or examined in the literature.
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4.2.4 Applications to Multistage Sampling

Let us suppose, following LITTLE (1983), that a finite popu-
lation U of N units with mean Y is divided into C mutually

exclusive groups U, with sizes N, and group means Y. Then,

C
S N,=N,7 =Y P, ¥,
1

Let a sample s of size n be taken and denote by s, the sample
of ng units selected from group U, and y, the corresponding
mean. Then

C C
an=n;5/= anyg.
1 1

Let Y, denote the y variable value for the ith unit of the gth
group and assume that all Y,; are independently distributed
with

Yai ~ N(ug, 02Vy)

where V1, Vy,..., Ve > 0areknown,o > 0and u1, ug, ..., 4c
are unknown. In practice n,’s are quite small for many of the
groups and even ng =0 for several groups. One solution is to
reduce the number of groups by coalescing several similar
ones and thus ensure enough n, per group with the number of
groups reduced. Another alternative is to employ multistage
sampling designs or clustered designs where several n,’s are
taken to be zero deliberately. We may turn to such designs and
see how an extension of the above approach may be achieved,
yielding fruitful results.
Following SCOTT and SMITH (1969), we assume

1g ~ N (1, 8%)

where g and Yy — pug;g = 1,2, ..., C are independent and
wu is given a noninformative prior. Then one may derive the
BLUP for Y as

t = Z [(ng ¥g) + (Ng — ng) {Ag¥g + (1 = 1¢)¥}]
g

= Z [ng(1 — Ag) (g — ¥) + Ng {Ag¥g + (1 — Ag)y }]
g

S|
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writing
52
Ag= ———r
82 + 0-2 E
ng

for ng > 0 and A; = 0 for ng =0,

= () /(Sm)

Note that fig; = Mgy + (1 — Ag)y is a predicted value for unit i
in group g. Thus, in this case only some of the groups are sam-
pled and from each selected group only some of the units are
selected. The units observed have values known and for them
no prediction is needed. For those units that are not observed
but belong to groups that are represented in the sample, there
is one type of prediction utilizing the sampled group means,
but there is a third type of unit with values not observed and
not within groups represented in the sample, and hence they
are predicted differently in terms of overall weighted sample
group means.

This ¢ is really a BAYES estimator and is not usable unless
82 and o2 are known. Since §, o are always unknown they have
to be estimated from the sample; if they are estimated by §2, 62
respectively ¢ becomes an EBE. Writing ig(ye) for A4(y) with
82, 02, therein replaced by 2, 2, one gets the EBE as

t=> Ing(1—3g)(Fg — ¥e) + Nglhgyg + (1 — AT}
8

g~
If N, = 0, then
= ZNg{)A&gyg +(1- )A»g)ye}
g

which is a combination of §hrinkage estimators. If ng = 0 for a
group, then Az = 0; hence A, = 0, too.
Now, assume

Yz ~ N(Bog + 1 Xgi, 02Vg)
ﬂog ~ N(ﬁo, 52)
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where X; is the value of an auxiliary variable x for unit i of
group U, and the notation and independence assumptions are
analogous to the above considerations. Then an unobserved
value is predicted by

flgi = Ag{Tg + B1(xgi — X)) + (1 — Ag) {F + P1(xg — %)}

where
52
)\.g = 0'2 s
(82 4+ e V)
g _
y:Z gyg’ i:zkg g
Z)\g Z)‘g
and
Bi=D > YulXy —%)/V, / >.D Xy — %)%/ V|
g sg 8 Sg
Then the BLUP is

= Z[ngyg + (Ng - ng)[)hg{yg + B\l(xrg - 3_Cg)}
g

+(1 =)y + B1(Trg — D]
= [ng(1 — 1)y, + Ng{hgy, + (1 — 1)y}
8

+ (Ng — ng) Br{rg(Trg — Tg) + (1 — Ag)(Xpg — X)}]

writing X, for the mean of units of group g that do not appear
in the sample.
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Chapter5

Asymptotic Aspects
in Survey Sampling

5.1 INCREASING POPULATIONS

It may be of interest to know the properties of a strategy as
the population and sample sizes increase. To investigate these
properties we follow ISAKI and FULLER (1982) and consider a
sequence of increasing populations

UicUycUscC ...

of sizes N1 < No < ... and a sequence of increasing sample
sizes nq < Ny < .... The units of Ur are labeled
1,2,...,Nr

with values
Yi,Y9, ..., YN,

of a variable y of interest and, possibly, with K vectors
&19 &27 )&NT

defined by K auxiliary variables x1, ..., xg.

101
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The discussion of the sequence of populations is greatly
simplified by appropriate additional assumptions. To formu-
late such an assumption we define

U ={1,2, ..., Ny}
U@ ={Ni+1,N1+2, ..., Ny}

U(3)={N2+1, Ny +2, ...,N3}

Assumption A: U(1),U(2), ... are of the same size, that is,
Ny =TN,

and
nr=Tm

forT =1,2,....Inaddition, fori =1,2, ..., N1
Y, =Y N, =Yion, =

X; =Xj4N, = Xj42N; =

According to this assumption U (2), U (3), ... are copies of
U(1); Uy is the union of U (1) with its first T' — 1 copies.
Note that Assumption A implies that

o 1 TN,
Yr= Y;
T TN, ; i

1 TN,

OyyT = T_]Vl Z (Y; - ?T)z
1

are free of T' and, similarly, for moments of the K vectors. So
we may drop the index T' and write

Y, oy

without ambiguity as long as Assumption A is true.
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5.2 CONSISTENCY, ASYMPTOTIC
UNBIASEDNESS

For T =1,2,...let (pr,tr) be a strategy for estimating Y r
by selecting a sample s of size np from Ur.

pr and {7 may depend on auxiliary variables; however,
pr does not depend on the variable of interest y and ¢7 does
not involve Y;’s with i outside sp.

Let

KZ(Y17 Y27 )

be a sequence of y values subject to Assumption A, but other-
wise arbitrary. Given Y,

tT(ST,K)—Y; T=1,2, ... (5.1)
is a sequence of random variables with distributions defined
by

pr; T=1,2,...

tr is asymptotically design unbiased or more fully asymp-
totically design unbiased (ADU) if

JNim Ep(tr —Y) =0,

Exact unbiasedness of ¢ of course ensures its asymptotic un-
biasedness.

By describing the sequence Eq. (5.1) of random variables
as converging in probability to 0 we mean

Tli—I>noo Pr {‘tT —?’ > 8} =0

for all ¢ > 0; here Pr is the probability defined by pr.

In this case tr is called consistent for Y (with res-
pect to p7) or more fully asymptotically design consistent
(ADC).

This type of consistency is to be distinguished from
COCHRAN’s (1977) well-known finite consistency for a finite
population parameter, meaning that the estimator and the
estimand coincide if the sample is coextensive with the
population.
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EXAMPLE 5.1 Accept condition A and let pr denote SRSWOR
of size

n=Tn
from a population of size
N =TN;.

For a sample s = st define

1
tT:tT(S,Z)=—ZYi.
n S

Then,
EthT =Y
B mN -n
Verltr) == N7
Hence,

Oyy TNl—Tnl —0

TLI—IPOOVPT (tT) - ’I“h—I>noo Tnl TN1 -1

and it follows that tr is a consistent estimator of Y .

5.3 BREWER’S ASYMPTOTIC APPROACH

Looking for properties of a strategy as population and sample
sizes increase presumes some relation between pq, po,... on
one hand and between #1, #9, . .. on the other hand.

In this and the next section relations on the design and
estimator sequence, respectively, are introduced.

Consistency of an estimator ¢7 is easy to decide on if As-
sumption A is true and pr satisfies a special condition consid-
ered by BREWER (1979):

Assumption B: Using Assumption A and starting with an arbi-

trary design p1 of fixed size ny for U(1), then pr is as follows:
Apply p1 not only to U(1) but also, independently, to U(2),

...,U(T) and amalgamate the corresponding samples

s(1),s(2), ...,s(T)

© 2005 by Taylor & Francis Group, LLC



Asymptotic Aspects in Survey Sampling 105

to form
sp =s(1)Us(2)U --- Us(T).

A design satisfying Assumption B to give the selection
probability for st is appreciably limited in scope and applica-
tion.

Some authors have considered such restrictive designs,
notably HANSEN, MADOW and TEPPING (1983). However, in-
teresting results have been derived under less restrictive as-
sumptions as well as by alternative approaches.

We mention ISAKI and FULLER (1982) proving the con-
sistency of the HT estimator under rather general conditions
on pr. In fact, they even drop Assumption A, a condition that
seems quite rational to us.

BREWER’s approach should be adequate where it is advis-
able to partition a large population I/7 into subsets of similar
size and structure and to use these subsets as strata in the se-
lection procedure. This is acceptable only if there is no loss in
efficiency. But it is doubtful that this may always be the case.

We plan to enlarge BREWER’s class of designs and obtain
a class containing the designs in common use and with the
same technical amenities as BREWER’s class.

Assumption By: Using Assumption A and letting
TT1,7T2y vy JTN1

be the inclusion probabilities of first order for p1, we have

T =Wi4N, = .., Ti(T-DN;; L =1, ..., Ny. (5.2)

The inclusion probabilities of second order m;; satisfy the
condition

mi; —mim; <0 (5.3)
foralli,j=1,2, ..., TN, with

i—jl=N1,2Nq, .... (5.4)

Assumption By is obviously less restrictive than Assump-
tion B. We want to motivate it more fully.

It is natural to give units with identical/similar K-vectors
the same/nearly the same chance of being selected. If a
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design pr is of this type, the first-order inclusion probabili-

ties 71, o, ... of the population units are made to satisfy the
condition
X =X; =T =T7j (5.5)

implying Eq. (5.2) as a consequence of Assumption A.
In addition, it is desirable not to select too many units
with the same or similar K vectors implying

x; =x; = m; —mmwy <0. (5.6)

and, therefore, Eq. (5.3).

5.4 MOMENT-TYPE ESTIMATORS

To establish meaningful results of asymptotic unbiasedness
and consistency, the estimators #1, t5, ... of a sequence to be
considered must be somehow related to each other. Subse-
quently, a relation is assumed that is based on the concept
of a moment estimator we define as follows: Let A;, B;,C;, ...
be values associated with i € U . Then, for s C U with n(s) =n

1 1 1

-y A, -  Bi, —)» A B;C; 5.7

n zs: 15 n ; Al 12 n XS: 2 l 13 ( )
are sample moments. Examples are

1~Y;, 1 1 X1 X;

=3 2> XY, e

n=- m n=;

D
where Y;, X;1, X;o are values of variables y, x1, xo, respectively,
and 7; inclusion probabilities defined by a design fori € U.

1§: 1%: 1§:
—S A, =S AB;, —YS A BC
N &0 N&TTe N T

are population moments corresponding to the sampling mo-
ments Eq. (5.7).

A moment estimator ¢ is an estimator that may be writ-
ten as a function of sample moments m'Y, m@®, ... K m":

t=fFf(mP m?, . .., m". (5.8)
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Obvious examples of moment estimators are the sam-
ple mean, the HT-estimator, the HH-estimator, and the ratio
estimator.

Now, let t; be a moment estimator, that is,

(1) (v)
tlzf(ml ,...,mlv)
where m(ll), ce m(l") are sample moments for s;.
Then, 7 may be defined in a natural way:

ir=1f (m(Tl),m(T%), ,m(qf)) (5.9)
where m(Tj) is the sample moment for sy corresponding to m(lj ),
Jj =12, ...,v. As an example, we mention the ratio estimator

t1 = 7231 Yi X

Esl Xl
for which
tr = o Vi X.
ZST Xi

From this example it is clear that ¢{{ may depend on popula-
tion moments also (here X). These need not be noted explicitly
in Eq. (5.9) because, according to Assumption A, population
moments are free of 7.

Of considerable importance are @R predictors, consis-
tency and asymptotic unbiasedness of which are discussed in
chapter 6.

5.5 ASYMPTOTIC NORMALITY AND
CONFIDENCE INTERVALS

Let p denote SRSWR of size n and ¢ the sample mean, that is,
withs = (i1, ..., i)

1
t(s, Y) = E(Yi1 +Yi,+---+Y;) =7,say.

Yi, ..., Y, are independent and identically distributed (iid)
with expectation Y and variance o,,. Hence, according to the

© 2005 by Taylor & Francis Group, LLC



108 Chaudhuri and Stenger

central limit theorem
y-Y
is asymptotically standard-normal.

1 2
= Y, —
Syy n_1§<l y)

i€s

is consistent for o,,, hence by SLUTSKY’s Theorem (cf.
VALLIANT, DORFMAN and ROYALL, 2000, p. 414)

y-Y

Syy
n

is also standard-normal and confidence intervals may be de-
rived. For the confidence level 95% we derive, for example, the
interval

[y— 1,96,/22; 54 1,96,/Sy—y].
n n

Note that there is no need to consider a sequence of populations
in connection with SRSWR. This is different for SRSWOR.
Let pr denote SRSWOR of size nr and tr = y the sample

mean.
Then,
EpT tr =Y
Vpp(tr) = 27 N = nr

np Nr—-1
HAJEK (1960) and RENYI (1966) have proved under weak con-
ditions (by far less restrictive than Assumption A)

yr—Yr

T=12, -
OyyT Nr—nr
np Nrp-—1

is asymptotically standard-normal. Here o,,7 may be replaced
by a consistent estimator

1
1 X Yi-yr)

lesT

SyyT =
Yy nr
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It should not be misleading to write N7, nr, Y7, y7, Syyr
without subscript 7'. A 95% confidence interval is then given
as

S n S n
y—1 ﬂ(l——);— 1 ﬂ<1——) .
[y ,96,/n )Y+ L96y— N

To have one more example of practical importance, consider
the ratio strategy (p7 tr). Here, pr is SRSWOR of size ny and

tp (s, Yrp)= 3_271"-
xXTr
We have

_ X Y
tT(ST,KT)—YT=—T< T_>
where

Xr /%7

is consistent with limit 1. Further,

Yr_ . Yr_
Yr — X—T xXT VPT Yr — —X—T xXT
— — 5\ 2
Y N —n Y Y
= \/ﬁ (yT - ?ET>/ N -1 (Uyy - Z?O—yx + <:> Uxx)

X

is asymptotically standard-normal under the weak conditions

stated by HAJEK (1960) and RENYI (1966). Hence, according
to SLUTSKY’s Theorem

X

- o\ 2
- N — Y Y

is asymptotically standard-normal
Now, the expression

Y 1'%
Oyy — 2? Oyx + < Oxx
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may be estimated consistently by its sample analogy such that
confidence intervals are derived in a straightforward way.

For strategies with designs of varying selection probabili-
ties it is easy to derive confidence intervals under Assumptions
A and B. However, the relevance of these intervals may be
questionable. For a central limit theorem proved under much
weaker assumptions for the HT estimator, we refer to FULLER
and ISAKI (1981).
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Chapter 6

Applications of Asymptotics

6.1 A MODEL-ASSISTED APPROACH

6.1.1 QR Predictors

In section 3.1.3 we saw that the generalized difference estima-
tor (GDE)

tA=Z[Yi_Ai] + i::Ai

s i

is a design-unbiased estimator of Y with A = (A4, ..., A4;, ...,
Ay) as a vector of known quantities and that it has opti-
mal superpopulation model-based properties in case A; = u; =
E,(Y;),i=1,..., N.Butthe u;’s are usually unknown in prac-
tice.

If one gets estimates fi; for u; then a possible estimator
for Y is

Y — N
0T[54+ S
1

S

Consider the model
Y=XB+¢e

111
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with
E.(e) =0
Vanle) =V, V diagonal.
Write for; =1,2,...,N
x; = (Xi1,..., Xig)'
i = &/,ﬁ
Then a natural choice of i; would be
[/«i = x_/i ﬁ
with the BLU estimator

A

p= (X;Vszlls)_l (xV51Y,)

for 8. If V is not known, a suitably chosen n x ndiagonal matrix
Qs with positive diagonal entries ; might be used to define

Bo=(XiQ:X) " (X,QY,)

-1
= (Z Qﬁﬁé) (Z Qi&in)
i = &;éQ

Note that, in spite of the unbiasedness of ¢4, t; will be p biased
in general. Alternatively, in view of the model, we might be
willing to use the predictor

N

DYi+d =) Yi—p)+Y
i€s r s 1

with fi; = x; é , or, more generally, {i; = x; é @ which is m unbi-

ased but p biased in general. In both cases we are

concerned with functions of Y;, i € s, having the following struc-
ture

N
tep=Y Ri(Yi—p)+Y i
s 1

N
=Y Riei+> i
s 1
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where
1% =9_C£§Q, e, =Y; — [l
with a diagonal matrix @, @; >0, and real numbers R,

R, ..., Ry. These moment-type functions are called QR pre-
dictors and may finally be written as

N
>l - Rl o
N 1 ) -1
=Y RY;+ [Z xi—> R; &Z} (Z Q; &ﬁﬁé) (Z Qi&iYi)
s 1 s s s

tor =tQr(s,Y) => R;Y;+
S

EXAMPLE 6.1 The choice R; = 1 for all i yields the linear pre-
dictor (LPRE)

tor=> Yi+ > i
S r
If Q; =1/V;;, in addition, we obtain the BLUP, namely,
terup =Y Yi+ Y xiBp. .
S r
-1
=YY+ «f (Z&l &{/Vii) (Z&l Yi/Vii>-
S r S S
If R; =0, then
N
tQo = Z i,
1

is called the simple projection predictor (SPRO). If R; =
1/7;, then

N

tqus =30+ (¥i = i) + 30

s Tl 1

Y; N 1 .

-T e (Sa- Tk

with

Bo= (XiQ X,) " XiQ,Y,
is the GREG predictor.
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A suitable choice for @; is not easy to make, but usual
choices are

Q 1 1 1
, =— or — or .
LV i i Vii
REMARK 6.1 For later reference we give QR predictors in matrix
notation.
Define

R = diag (R4, ..., Ry)
Il = diag(my,..., IN)
and let R, mg be the submatrices corresponding for s. Then
ter = 1,RY ; + (Iy X — l;ZRsL)éQ
and especially
tux = L1 'Y + (L X - LI X)B,,

6.1.2 Asymptotic Design Consistency
and Unbiasedness

Introducing the indicator variable I defined by

7.1 if ies
$T10 if i¢s

we may write {gr/N in the form
1 /N N N -1
t=t(s,y) = N (Z&’l - > IR, &2) : (Z I; Q &ia_c;>
1 1 1

N 1 N
A LiQixY; | + =Y Iq R Y.
1 N 7

We want to prove the consistency of this estimator and use
Assumption A. Obviously,

1 [Nr Np Ny -1
tr =tr(sr,Y) = No Soxi =Y IgiRixi| - D Lepi Qixix]
T\ 1 1 1

1 Nz

N7
A I Qix Yi | + > I RiY;
(1 l Nr 45
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where fori =1,2,..., Ny
Qi = Qi+N, = Qitan, =
R; =R Ny, =Rion, =...
and, for the sample sr,

;1 if iesr
i =10 if Q¢ s

Defining
1
fir = T(ISTL‘ + Igpivn, + ..+ Ispivcr—1)N,)

we have

1 (& s N
tr = (Z&; -3 fiTRixg) (Z fir Qi&i&g)
1\ 5 1

N1 1 Nl
A FirQix Y | + > fir R
1 N145
Now, let pr be of type Bg. Then

ISTi’ISTi+N17 v

are identically distributed with a common expectation 7; and
a common variance 7;(1 — ;). Hence,

1 1
Vo (Fiz) =Vpr <T[IsTi +.. ]) = Tn(1-m)
_ m(l—m)
B T
because of the assumption of nonpositivity of
CprUspis IspisNy,) = it Ny — TiTigN,

for a By-type design pr. From CHEBYSHEV’s inequality follows
that f;, converges in probability to x;. Also according to the
consistency theorem, ¢7 is consistent (ADC) for

1 N, Ny _1
N, > x> m Rx} (Z 7 Qi&ixé) > miQixY;
1 1

1
+ N_l Z ﬂiRiYi.
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The last expression is equal to Y if, for j = 1,2, ..., Ny,

Nil (>xi =Y mRxi) (3 in&i&é)_l ;i QA
+ N_ln‘] TN,

which may be written
/ / / -1
1= (Z&l - Zﬂi Ri&;‘) (ZﬂiQi&'&) 7Tij3_Cj + 7 Rj
=adn;Qjx; +7; Rj, say,
with a = (a3, a, . .., ag)’. This condition is equivalent to

1-7n;R;
1 J Y
Q&J: ] ] :LLj, say,
Tj Q

for j =1,2,..., Ni. Defining

XN,
the last equation gives
Xa=u

that is, u is an element of the column space M(X) of X:

ueMX).
For the special case K = 1, x denoting a single auxiliary vari-
able with values X1, X5, ... > 0, we derive that ¢ is consistent
(ADC) if and only if
uj = L el J,och.
7j Q]

RESULT 6.1 Consider a sequence of populations satisfying con-
dition A with K-vectors

X;
Ql:i=12. .
R;
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Let pr be of type By with inclusion probabilities w1, 7o, . .. such
that

1-m R;
7 Q;
Then, the QR predictor
1 (X QXY 1
— X; — X, | = — Y,
N (; ZR > s Qi X7 NXS:R

(with x as a single auxiliary variable) is consistent (ADC)

X Xi.

forY.
EXAMPLE 6.2 We follow LITTLE (1983) and consider an arbi-
trary design p with inclusion probabilities 1, s, ..., 7N . Writ-

ing n(1) for the smallest inclusion probability, ) for the next
larger one, etc., we define

Ug =i el 7 =mng).

Assume that Y1,Ys, ..., YN are independently distributed but
for i € U(g), alternatively,
Yi~N(a; 02V(g)

~N(a+BX;; o*zV(g))

~ N(og) ; 02V(g))

~ N(ag +BX;; 0°Viy)

~ N + B Xi; 0°V(g)
where V(g and X; are known and o2, a, a), B, Bg) are un-
known parameters.

According to RESULT 4.3 the BLU predictors are of the
QR type. They are ADC in the first two cases if all

Vie————; g=1,2, ...
) 7(2) g

are equal. Assume this is not true. The BLU predictor is never-
theless consistent in the second alternative if

Xi=Xg forallieclUy
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and aq, ag exist with

1_
Vig —_ &

qe))
In the other three cases the BLU predictors are at any rate con-
sistent according to the general criterion above. So, the pres-
ence of a non-zero intercept term o(g) in these regression models
really ensures the ADC property of the BLUPs; hence LITTLE
(1983) recommends basing BLUPs on such models. But the in-
tercept term must be estimated for each group, and this requires

large enough samples from all groups that are not always
available.

=a; +ay X(g).

6.1.3 Some General Results on QR Predictors

In the sequel we present some results given by WRIGHT (1983)
and SARNDAL and WRIGHT (1984).
It is easily seen that the ADC condition is always true for

1
Ri=— for 1=1,2,..., N.
7
Therefore,

RESULT 6.2 All GREG predictors are consistent and ADU.
Let tgr be an arbitrary QR predictor that is consistent; that is,
1—m iRi

7 Qi
Consider the associated GREG predictor ¢g1/, for which

=adx; for i=1,2,...,N.

1 . .
tQi —tQrR =Y ;(Yi —x;8q) — LsRi(Y; — x;Bq)
S 14
1- JtiRi ~
N T TNy
zs: niQi Ql( i &zﬁQ)

=> dx%;Q;(Y; — x}Bq)

=a (Z Qix;Y; — > Qi&i&éﬁQ) :
According to the definition of ﬁ Q the last difference equals 0;
hence
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RESULT 6.3 Let tgr be consistent. Then,

lQr = 1Q1/x
The following is easily seen:

RESULT 6.4 Let 0 € R* be such that x;0 > 0 and define

1
Q; x

mix;0

~ 1
Qx| -1 [xio
T
(i=1,2,...,N). Then the SPRO predictor tgo and the LPRE

tg1 are consistent and hence ADU. For the special case K = 1,
taking

171
*
fox | = —1
Qi Xi Lfi }
one gets the LPRE proposed by BREWER (1979).

REMARK 6.2 Let us write

N -1rn
B = [Z Qi&ﬁﬁ] [Z Qi&iYi] = (X'@X)"\X'QYy)
1 1

which is an estimate of B based on all thevaluesY;;i =1,2, ...,

N, an analogue of é both coinciding for s = U. This B is

called a census-ﬁtte(? estimator for B and
Iaci = &;E
a census-fitted estimator of ; = E,(Y;). The residual
E; =Y~ [
for a census fit obviously cannot be ascertained from a sample
at hand. But for a consistent tqr, an asymptotic formula for the

design variance V ,(tgr) or design mean square error M,(tgr)
is available, as given by SARNDAL (1982)

2
E;, E;
V= iy =) | = — =L
zi:qz(jm] ) T ”j]
where
Ei=Y;,—x;B,
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writing
N -1 N
B, = (Z ﬂiQi&‘&é) > mQixY;.
1 1
REMARK 6.3 For Q defined in RESULT 6.4 consider
tor=1Y,+(UNX - 1,X)Bg
torr = 1Y+ (Iy X — LI X0 B,
where Tl is the diagonal matrix with diagonal elements
i, 1 €8.

Lty is attractive in a model-based approach, 91/ In a design-
based approach.
Now, BREWER (1999a) shows

tor =tg1. =1, say

and calls t a cosmetic estimator.

6.1.4 Bestness under a Model

To choose among different @;’s satisfying the ADC and equiv-
alently ADU requirement in case R = 1, BREWER (1979) rec-
ommended as a criterion

L= lim EnE, {[toir(sr, Y1)~ Y1)*/T}
where Y; = x;8 + ¢; is assumed with
Em(si) = 0
Chlei,ej) =0?, ifj=i (6.1)
=0, ifj +#i
(i,,j =1,2,...,TN). He has shown that

o[1 ]
LZZai [Tfi 1

holds with equality for the LPRE defined by @} (see RESULT
6.4).
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Now, every QR predictor with the consistency and ADU
property is a GREG predictor, ¢g1/,, and

-1

N 1 N
tQux —Y = lz x;— > I ;3_64 lz I Qi&ﬁi;} lz I QixiYi]
1 i 10T 1

N4 N N
+ Y Ig—=Y; =) I;Y;, - ) (1-1Y;
1 T 1 1
-1

N N 1 N
= lelsj lzlj =D L 53—4 [21: I Qiﬂ_ci&i] Qjx;

1

N
+ [— - 1”1@ -3 (- I,)Y;.
1

7
With s replaced by sy and N by N T we obtain

tQiar — Y.

It is easily checked that E,,(¢g1/-7 —Y7) = 0 and under Eq.
(6.1)

En [touar — Y1)? = Vi [tQi/nr — Y]
1

NT NT 1 NT
= ZISTJ{lZ£; _ZISTL';EQ] lz IsTiQili-’_C;‘| Qj&j
1 1 L 1

1 2 ) NT )
+ [JT—L — 1}} 0; —I—XI:(I—ISTJ)GJ-.
Hence
2
E, ([th/nT -Yr| /T)
-1

N 1 N
=) ij{ [ZEQ - fiT;xé] lz fiTQi&i&é] Qjx;
1 i 1
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and

lim E,E,, ([tQUﬂT —YT]2/T)

T—>oo

IZT[J' {;—1} O’?‘FZ(].—JTJ‘)O’?
o

that is, every QR predictor with the consistency property has
the common limiting value

=o[:-]

which is equal to the lower bound of BREWER’s (1979) L.
Restricting to p, designs, the minimum value of BREWER’s
lower bound is

ol g2

If, in partlcular, oj=0f;,j=1,..., N with 6(> 0) unknown
but f;(>0) known, so that ¥ = 02V with V = diag(flz, cee,
f %), the strategy ( Dnf >eq) is regarded as best when
e =10V +1'X - 111X )B(Q;)

is based on the p, design p,s for which
_ i

> fi
By best we mean a strategy involving an ADU predictor for

which the above minimal value is attained.
TAM (1988a) has shown that

() 1.X,=1X
(b) Q11 —kVSY%1) e M(X,)

are sufficient conditions for a strategy (p,,er) wither, = 1.Y
to be best in estimating Y. Here £ = % > fjand

V = diag(ff,...,fz%):(vgss Ver)

i=1,...,N.

T
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It may be noted that (a) here is a condition of model unbiased-
ness. This is relevant in prescribing conditions for robustness.
If a working model differs from a true model one may go wrong
in misspecifying the design parameters m; and/or misspecify-
ing V. As long as both the conditions (a) and (b) are satis-
fied by a strategy the latter is robust even if one goes wrong
in postulating the right model in other respects. TAM (1988a,
1988b) and BREWER, HANIF and TAM (1988) give further re-
sults useful in fixing conditions on design parameters, on the
features of models in achieving the ADU property and/or in
bestowing optimality properties on several alternative design-
cum-model-based predictors and related strategies. One may
consult further the references cited in the above two, especially
the works due to SARNDAL and his colleagues.

6.1.5 Concluding Remarks

For a fuller treatment and alternative approaches by asymp-
totic analyses in survey sampling along with their interpre-
tations, one may refer to BREWER (1979), SARNDAL (1980),
FULLER and ISAKI (1981), ISAKI and FULLER (1982), ROBIN-
SON and SARNDAL (1983), HANSEN, MADOW and TEPPING
(1983), and CHAUDHURI and VOS (1988). We omit the details
to avoid a too technical discussion.

Robustness has been on the focus relating to LPREs.
GREG predictors by virtue of their forms acquire robustness
from design considerations in the sense of asymptotic design
unbiasedness, as we noticed in the previous section. At this
stage let us turn again to them to examine their robustness.

An LPRE is of the form ¢, = ¥,Y; + %, fi; where E,,(Y;) =
;. If u; is a polynominal in an auxiliary variable x, for sam-
ples balanced up to a certain order every tpry is bias robust,
thatis, E,,(tgry — Y ) = 0, and asymptotically so for large sam-
ples selected by SRSWOR, preferably with appropriate strat-
ifications. But ¢p;y is not usually MSE robust, by which we
mean the following: Let us write ¢,  for the predictor, which
is BLU under a model m’; its bias, MSE, and variance un-
der a true model, m, are, respectively, B,,(t,), My, (¢,), and
Viltm — Y). Then, Mp(t,) = Vplt —Y) + B2(t,) and
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M, (t,,) = V(¢ — Y ) because B,,(t,,) = 0. Even if | B,,(¢,,/)] is
negligible, V,,,(¢,,, — Y ) may be too far away from V,,(¢, — Y)
and so may be M,,(¢,,) from M,,(¢,,). So t,,, even if bias robust,
may be quite fragile in respect to MSE.

Very little with practical utility is known about MSE ro-
bustness of LPREs. More importantly, nobody knows what the
true model is; even with a polynomial assumption it is hard to
know its degree, and in large-scale surveys diagnostic analy-
sis to fix a correct model is a far cry. So, it is being recognized
that even for model-based LPREs robustness should be exam-
ined with respect to design, that is, one should examine the
magnitude of

Mp(tr) = Ep(t, — Y)? = V(¢1) + B2(t1).

Since the sample size is usually large, we may presume V ,(¢1,)
to be suitably under control and we should concentrate on
|Bp(tr)|. In section 4.1.2 we saw how a restriction B,(¢) = 0
may lead to loss of efficiency, especially if a model is accu-
rately postulated. An accepted criterion for robustness studies
is therefore to demand that ¢, be ADC. Similar are the desir-
able requirements for any other estimator or predictor.

6.2 ASYMPTOTIC MINIMAXITY

In practice it is difficult to find a strategy (p*, t*) which is
minimax in the strict sense, that is, with the property

sup Mp,«(t*) = 1nf sup M,(t) =r*, say

YeQ PEA YeQ
where 2 is the set of all relevant parameters Y and A the set of
all strategies available in a situation. So, CHENG and L1 (1983)
have reported how one may derive strategies (p’,¢') that are
approximately minimax in the sense that

sup M,(¢")

YeQ
comes close to r*.

A more satisfactory approach is to aim at strategies that

are asymptotically minimax. In describing this approach
we follow STENGER (1988, 1989, 1990) to show, for example,
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that the ratio estimator, when based on SRSWOR, is asymp-
totically minimax. The RHC strategy, however, which is ap-
proximately minimax in the sense defined by CHENG and LI
(1983), is not minimax in our asymptotic setup.

6.2.1 Asymptotic Approximation
of the Minimax Value

For a population U and a size measure x with X, Xo, ...,
Xn >0 we define (c.f. section 3.4.2)

Q=Y eRYN:0<Y,<X; foralli=1,2,...,N}

Ap = {(p,t) : p a design of fixed size n, t = stiYi}

ies
Define, as in section 5.1, Xn 1, XN 42, ..., XNy With
Xi=Xi N =Xiton = ...

fori = 1,2,..., N, which may be interpreted as reproduc-
ing T — 1 times the population U with the known x values
leading to an extended population (1,2,...,NT) and Xy =
(Xl, .. .,XNT).

Define Y = (Y1,Y9,...,YnN7) where Y; is the value of
the variate under study for the unit ;. We assume the param-
eter space

QxTz{zTeRNT . 0<Y; <X; for i=1,2,...,NT}

It is worth noting that Y, € ,, is assumed, but not
Yi=Yin=....

RESULT 6.5 Let A, 7 be the class of all strategies (pr, t1) where
pr is a design of size T'n used to select a sample st from Ur
and

tr =tr(sy,Yp) = beiYi

iesr

a homogeneously linear estimator. Then, assuming

n%fl for i=1,2,...,N (6.2)
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we have

. 109 n n
where

rr = infsup M, (¢7)
AnT Qe

1 —
Oxx = N Z(Xz _X)2-

Hence,

L (1) ] <
approximates Tr .
PROOF: Definefori =1,2,...,N

U =@Gi+N,i+2N,...,i+(T —1)N)

and consider a design pr of size nT selecting a sample st

that is composed of samples s1, 89, ...,sy of sizesTf1,Tfo, ...

Tfn fromU,Usy,...,Up, respectively. f{ =(f1, fo,..., fn)

may be a random vector; we assume that, conditional on f,s;

is selected by SRSWOR of size T'f;. o
The MSE of the estimator

> u(f)y;

where y; is the mean of the y values of all T f; units of U; in the
sample is then

2 oy 1 — [ v 1 + 1
My=Ef; > t(f) ‘. T_1+[Zfi(L)Yi—ﬁZYz}

where the expectation operator E ¢ refers to f and Y (o) is
the mean (variance) of the y values of all units in U;.

Now, under condition (6.2) the design may be chosen such
that

with Tf; an integer and Xf; = n, provided T is large enough.
Setting 7;(f) = 1/N and taking into account ojy, < Xi2/4

© 2005 by Taylor & Francis Group, LLC



Applications of Asymptotics 127

we derive
N 2
1 X: 1 T 1
< Tt -
rT—Zl N24 (a5 1T -1 T

lim Trp <ry.
T—o0

Assume (p,t) € Apr exists with
T sup Mpy(t) <ry.

Qxr

Define for j = 1,2, ..., N a vector Y7 with

Yj=Yj+N=Yj+2N=...=Xj
andY; =0fori #j, j+N, j+2N,....ThenY") € Q,, and
X2 r,
E[TJ(L)XJ—WJ] o

which implies

X; Tx /
N ?<Erj(f)X <—+

X; r
2 2 Tx
Therefore, by Cauchy’s inequality
ETJZ(L)X? - [E'Tj(L)Xj]2 1 [&_ /r_x}2
fi ~ Ef; EfJ T
and because of sup o;y, > X-Z(T —1)/(4T)
XX(T-1J71 1 1
Mo B{3 il
b Mo = {Z O |fr-1 7-1
1 1 Xi I'x 2 _Xi ry]
=\ S wr v V7] SN HVE b
From n = X Ef; we derive, therefore,
1 X; =7 1 [Xi 12
T infsup My > in [Z[ﬁ - ”TH — ZZ N + 7|
Obviously, the right-hand side converges to r, and the desired
result follows.

[\
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In a similar way, asymptotic approximations may be de-
rived for the minimax value with respect to other parameter
spaces introduced in section 3.4.1. By equating x and z in Q,,
we obtain

1 1 Y 12
Qxx:{KGRN: YZZ{YZ_EXL] 502}
and by defining X; = Z?
1 Y, 12
szz:{ZERN: ZZLZZ{YL'—ZZL'] Scz}.

The asymptotic approximations of the minimax values (with
respect to A,) are
2

X-¢ and

n] 1
1-—| =Y 2z
n N } N Z !
respectively, as has been shown by STENGER (1989); here ¢ is
the unique solution of

n
X; —X;|=N
2 / {§+N }
and satisfies

J— n
c=X[1-g]

C
Ixx = —
n
C2

Iy, =

with equality if and only if X1 = X9 = ... = Xy.

6.2.2 Asymptotically Minimax Strategies

To introduce the notion of asymptotic minimaxity of a strategy
we consider the following modification of Q,2,:

Q(L)={XERN:O<Yi<L for i=1,2,...,N and

ZLZ?Z (YL- — %Zi)Z < 02}

where L > 0 is given. Q(TL) is correspondingly defined by Z;
instead of Z and A,r has the same meaning as earlier. Suppose
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a sample of size nT is selected by SRSWOR and denote by
yr,Zr the sample means of the y and z values, respectively.
For the MSE M7 of the ratio estimator

7L
2T
we then have (cf. STENGER, 1990)
c2 n] 1 X A
TsupMp < |1— 2| =S z224 2
i [ N}NZLJr T

with A free of T'. Hence

hm TsupMT<c—[1—£} ZZ2—r

T —o0 Q(L)

such that the ratio strategy achieves the asymptotic approxi-
mation of the minimax value with respect to Q) and A, in an
asymptotic sense and may be called an asymptotically mini-
max strategy.

To give a more general definition of asymptotic minimax-
ity let Q be any parameter space defined by a vector X (or
vectors X and Z). Qr is the subset of RV T given by X7 (or X,
and Z7). Let a design pr of fixed size nT and an estimator
t7 be defined by X1 (and Zy) without T' appearing explicitly.
Then (p1,t1) may be called asymptotically minimax if for
the MSE Mt of (pr, t1)

hm T sup My
—)OO
equals the asymptotic approximation of the minimax value
with respect to Q and A,,.
It is easily seen that the MSE M7 of the RHC strategy of
size nr satisfies

T supMT =

2
c [1 n} NT Yz
Qxx n

" N|JNT -1
Hence,

c2

lim T supMp = —
T—o00 n

[1 - %} X2 > Tx
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and the RHC strategy is not asymptotically minimax with re-
spect to Q,, and A,,.

6.2.3 More General Asymptotic Approaches

In an asymptotic theory the actual population U is usually
treated as an element of a sequence of populations U1, Us, ...
with increasing sizes N1, No, ... and the vector X of values of
an auxiliary variable x as an element of a sequence of vectors
X4,X,,... associated with U1, Uy, ... . In section 6.2.1, U and
X are the first elements of sequences defined in a very special
way such that doubts may arise on the relevance of the results.
Therefore, more general approaches will be described.
Define for £ e R

1
G(§) = N [number of X; in X with X; < &].

Replacing N and X in the definitions of 2, and G by N1 and
X7 we obtain

Qxyw GT(S)

Consider sample sizes ni, ng, ... such that

exists and define

rr = inf sup M, (t7).
A"T QxT

Now, imposing suitable conditions on Gr; T = 1,2,... the
limit of ny - rp for T — oo should exist. In fact, let

Lim Gr(§) =T(&)

be a distribution function. Then, as has been shown by
STENGER (1989), weak additional assumptions are sufficient
for the existence of

lim nprp = p(T, ), say. (6.3)
T—oo
Hence,
ip (GT nr )
nr "Nr
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is an approximation of rr and
1 n
L (6.2
n” ( N
is an approximation of the minimax value of interest

r* =infsup M,(¢).
Ap Q

If Eq. (6.3) is taken for granted, p(G,n/N)/n may be deter-
mined by the simple procedure described in section 6.2.1.
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Chapter 7

Design- and Model-Based
Variance Estimation

In estimating Y by a design-based estimator, a choice among
competing strategies (p,t,) is made on considerations of the
magnitudes of |B,(t,)], V(¢,), and M,(¢,), each required to
be small. Once a choice is made and a sample is drawn and
surveyed, it is customary to report an estimated value v, of
V »(t,) along with the value of ¢,,.

A variance estimator indicates the level of accuracy at-
tained by the estimator actually employed but, more impor-
tantly, it provides a measure of the variability of the esti-
mator over conceptual repeated sampling. Planning of future
surveys is aided by indicating, among other things, a sample
size needed to achieve a desired level of precision by adopt-
ing a similar strategy. Moreover, it helps in making confidence
statements. If v, is an estimator for V ,(¢,), then the following
standardized error (SZE)

tp = Y)//0p

is supposed to have STUDENT’s ¢ distribution with a number
of degrees of freedom (df) determined by the sample size n.

133
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This supposition is valid under many usual situations when
the distribution of the SZE is considered over all possible sam-
ples s with p(s) > 0. For large n and N its distribution is often
found close to that of the standardized normal deviate .
Writing

Prt>t)=a O<a<l,

the interval (¢) — 142 \/Up, tp + Taj2 /Up), or briefly (¢,+
Tq/2,/Up), 1s supposed to be a 100(1 — a)% confidence in-
terval for Y. The interpretation here is that for the fixed
Y =(Y,,...,Y;,...,YyN) the probability to obtain a sample s
with an interval (¢, & 7,/2,/Up) covering Y is 100(1 — a)%.

We have also considered a linear predictive approach
based on least squares that involves treatment of model-based
predictors ¢,, and their biases B,,(t,,) = E,(t,, — Y ), mean
square errors (MSE) M,,(¢,,) = E,.(tn, — Y )?, and variances
Vi = Vit = Y) = E,l(t — Y) — E (b, — V)12, Tt is also
important to consider estimators v,, of V,, for the purposes of
assessing the level of accuracy attained for a predictor ¢, actu-
ally employed for Y, gaining insight into how a future survey
should be planned for predictions and in making confidence
statements.

In this case it is desirable to have

B,.,(vy) = E,,(vy, — V) and
Mm(vm) = Em(vm - Vm)

under control. Here the SZE is taken as

(tm —Y)/NOm

which is supposed to have student’s ¢ distribution and approx-
imately the N (0, 1) distribution for large n, N. But here a
100(1—a)% confidence interval (¢, £ 74 /2./Um) OF (£ L t4/24/Um)
is constructed with the interpretation that if Y is generated as
hypothesized through a postulated model, then for 100(1—«)%
of Y's so generated, the intervals will cover the unknown Y
with the sample actually drawn held fixed.

In this context the main problem is robustness. Both the
actual sample drawn and the estimation procedures are re-
quired to be so chosen that ¢,, may continue to predict Y well,
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U, may estimate V,,(¢, — Y) well, and the SZE above may
continue to yield confidence intervals with coverage probabili-
ties close to the nominal value 1 —« even if the model on which
tm, Um are based may be wrong, that is, some other model may
underlie the process that generates Y . Keeping this in mind,
it is often necessary to examine several alternative but plausi-
ble formulae for v, for a given #,, with respect to their biases,
MSEs, that is, E (v, — V)2, and coverage probabilities of the
confidence intervals they lead to. In this context, also, asymp-
totic analyses are necessary, and discussion of rigorous treat-
ment of asymptotic studies here is again beyond our scope and
aim. But we shall illustrate a few developments in a somewhat
simplistic manner.

Innumerable strategies for estimating Y or Y are avail-
able. RAO and RAO (1971), WOLTER (1985), CHAUDHURI and
Vos (1988), J. N. K. RA0 (1986, 1988), P. S. R. S. RAO (1988),
and ROYALL (1988) give accounts of many such along with
variance estimators. But we shall cover only a few, our own
interest drawing especially on the works mainly of ROYALL
and EBERHARDT (1975), ROYALL and CUMBERLAND (1978a,
1978b, 1981a, 1981b, 1985), CUMBERLAND and ROYALL
(1988), WU (1982), WU and DENG (1983), DENG and WU (1987),
SARNDAL (1982, 1984), and, only in passing, SARNDAL and
HIDIROGLOU (1989), SARNDAL, SWENSSON and WRETMAN
(1992), and KOTT (1990), among others.

7.1 RATIO ESTIMATOR

The ratio estimators for Y, Y, R = 1 = %, respectively, are

Ri[L H

tR:Xg, tr :X‘z and r =
X X

When based on the LMS scheme (cf. section 2.4.5) ¢t is p unbi-
ased for Y, but it is more popularly based on SRSWOR. Then it
is biased, but its design bias is considered negligible for large
n because the coefficient of variation (CV) of N x is small for
large n and

|Bp(tR)/Up(tR) < CV(N 92)
(cf. RAO, 1986).
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7.1.1 Ratio- and Regression-Adjusted Estimators

Although an exact formula for V,({r) based on SRSWOR, along
with one for its unbiased estimator, is given in section 2.4.1, it
is traditional to turn to their respective approximations

L, 1-F 1 X 5
M = —— _S(Y; - RX;

N ;( )
1-f 1

n n-—1

vy = S Y —r Xi)2
)

J. N. K. RAO (1968, 1969) found empirically for n < 12 that
A=M - V,»(Zr) < 0 for many actual populations, but later,
WU and DENG (1983) found both positive and negative values
of A for n = 32, but none appreciably high in magnitude with
more extensive empirical investigations. So it is considered ad-
equate in practice to estimate M rather than V p (Ir) ifnisnot
too small.

Since M'/X? is an approximation for V,(r) an estimator
for it, in case X is unknown, is usually taken as

00/9732.

< - . . —r/
In case X is known, an alternative customary estimator for M
is therefore

Vg = | — Vo.
X

WU (1982) suggests instead a ratio adjustment to v to propose
another alternative estimator for M  as

<X>
vi=|—-]Vo
X

and goes a step further to propose a class of estimators

X g

and recommends choosing a suitable g in the following way:
Let E; = Y; — RX,; with > E; = 0 be the residual in fitting

a straight line through the origin and the point (X,Y) in the

scatter diagram of (X;,Y;),i =1,...,N andlete; =Y; —rX;
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be taken as estimated residuals. Let
N 1N
9 _
Z;=E; —2Ei21:XJ-Ej/X, Z = NZI:ZL-.

Then, WU (1982) recommends (a) the optimal choice of g as

Zopt = the regression coeffizient of Z;/Z on
X;/X, basedon (X;,Y;),i=1,..., N

and (b), because it is unavailable, replacing g,,; by
& = the sample analogue of g,,; based on(X;,Y;,e;),i €s.

To arrive at these recommendations WU (1982) carried out an
asymptotic analysis to evaluate V,(vg) using TAYLOR series
expansion. They found it expedient to omit terms too small for
large n and N and showed the term retained in the expansion
of V,(vg), called the leading term, to be minimum if g is taken
as Zopt -

Another choice of g suggested by WU (1982) is g, which is
the sample analogue of the regression coefficient of £ f/ﬁ Zzlv El2
on X;/X. This is intended only to find a simpler substitute
for 8.

Just as vy is a ratio adjustment on v,, FULLER (1981) pro-
posed a regression adjustment to propose another alternative
estimator for M’ as

1— A =
Ureg = Uo + —f b(X —x).
n

Here b is the regression coefficient of e? on X; evaluated from
(X;,Yi);i€s.

Although vy, is asymptotically optimal, it is not known
how it may fare compared to v,, v1, vg in specific situations
with given N, n and it is more important to examine the per-
formance of v, vz, and vy.g Vis-a-vis v,, v1, U2 using empirical
data at hand. Also, if one restricts g for simplicity to 0, 1, 2,
one should be curious about how in practice to choose among
these three competitors.

Even with the design-based approach it is known that one
will be well off to use Zz based on SRSWOR to estimate Y if
from the sample observations (X;, Y;),? € s one is justified to
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believe that a straight line passing closely through the origin
gives an adequate fit to the scatter of all (x, y) values in the
population to which the values (X;,Y;),i =1,..., N belong.

In fact, the use of r to estimate Y is well known to be
appropriate if a model M1, (cf. section 4.1.2) may be correctly
postulated for the (X;,Y;),i = 1,..., N under investigation,
for which

En(Y) =BXi, Vu(Y)) =0®X], Cn(Y;, Y;) =0, i #j

and more specifically, if y = 1.

By dint of his asymptotic analysis without model postula-
tions/, WU (1982) concludes that among vg, v, vg as estimators
of M

vo is the best if g,p; < 0.5
vy is the best if 0.5 < gopr < 1.5
vg is the best if gop; > 1.5.

But postulating the model My, he concludes that among v,

vo is optimal if y =0
vp isoptimalif y =1
v1, Uy are better thanvy if y > 1

as estimator of M. He further observed that for large n the
squared p bias of vy is inconsequential relative to M " and
so one need not bother about the p bias in employing a v,.
But for sample size actually at hand, correcting for the bias
may be useful, and a large-sample approximation formula for
E,(vg—M ") has been given by WU (1982), who suggests using
an estimator for it to correct for the p bias of v,.

Incidentally, if the model My, is postulated instead (cf.
section 4.1.2), demanding independence of estimating equa-
tions (cf. section 3.3) to the multiparameter cases, GODAMBE
and THOMPSON (1988a, 1988b) lay down estimating equations
for g and 2 in this case as

N N
SV, -BX)=0 and Y {(Y;-BX)?-02X;}=0.
1 1
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From these the solutions are
Y 1Y Y
,3() = Y and 0'02 = Y; (Yl — YXl)
and their estimators based on SRSWOR are
R 2
,3 = ZYi/ZXi =r and 6’2 = Z(Yi —Tr Xi) /ZXL
S S S S

So they propose

|~

2
x N
e Z(Yi —r Xl-)2 as an estimator for Z(Yi — —X,-)
Zs i g 1

and hence
N
n(N —1)

1-f X ' 2
N gzs:(Yl—er)

. —r/ . . . . .
as an estimator for M . This variance estimator is obviously
quite close to vy.

7.1.2 Model-Derived and Jackknife Estimators

For a decisive choice among the estimators of M keeping in
mind their p biases, design MSEs (often called measures of sta-
bility of variance estimators), and efficacy in yielding
design-based confidence intervals one recognized approach is
to examine empirical evidences of their relative performances.
Before briefly narrating some such exercises reported in the
literature, let us mention some more competitive variance esti-
mators that have emerged through the model-based predictive
approach in the context of applicability of ratio predictor.

If the model M1 (cf. section 4.1.2) is true, fg is the BLUP
for Y with

B,(tr)=E,fr—-Y)=0
Vip=Vn(fr —Y) = 1= X%

o2 = g(s)a?, say.
n
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has

En(6?) = o?
under Mj;,

VL, = g(s)c?2

is an m-unbiased estimator for V,,, no matter how a sample s
of size n is drawn.

A sample of size n containing the largest X;’s, a so-called
extreme sample, yields the minimal value of V,, and hence is
the optimal.

Suppose M is incorrect but M/, holds, that is,

E,Y)=a+BX;,a#0
V(Y = 02X,

Then Zr is still m unbiased if based on a balanced sample for
which ¥ = X = %, and vz, is m unbiased for V,,. Since from a
study of the sample « may not be conclusively ignored, a bal-
anced rather than an extreme sample is preferred in practice
in using fz and vy..

But if M4 is true, that is, E,,(Y;) = BX; and

(a) Vau(Y;)=o?X7,

then
v =t (S5L) (2) £ gy
m n
while
_l—fYJ_cr o2 o 1 9
Enm(vp) = — = n—l(m_ﬁgXi

and the relative bias

E.(vr, —Vp) . . (X —x%)?
—— lIs approximately — = _—_——5—.
Vi S X

If we have My, i.e., E,,(Y;) = BX; and
(b)) V(Y =02,
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then the relative bias of vy, is approximately

* Z [i — 1] .

n X i
These biases cannot be neglected in practice whether a sample
is balanced, extreme, or random. The actual coverage proba-
bility for a model-based confidence interval (fg £ 1,/2 \/vr) Will
be less than or greater than the nominal value if B,,(vr) is neg-
ative or positive, respectively. So, variance estimation using v,
is not a robust procedure.

If M7 is true and vy is used as a variance estimator for

IR, then
Bn(vg) =V, (fr = Y) B %2 < B C_s2> 4
Valtr —=Y) X X n
writing

1
C2= Y (Xi—0)/&* = (CV of X, i € s)%,

S
S

Observing this, ROYALL and EBERHARDT (1975) propose the
alternative variance estimator

X x, C?
vH =10 922/ T

and they find its m bias negligible in samples balanced or not
even if the condition

Vin(Yi) o X;

is violated.

Keeping the prerequisite of robustness in mind, ROYALL
and CUMBERLAND (1978a) proposed another variance estima-
tor, namely,

n

Xx,
x

UD

] Ze?/(na‘c - Xi).

Another competitor receiving attention, although not from the
predictive approach, is the jackknife estimator (cf. section 9.2)

1-— —
vy = Tf X* 3" D).

JEs
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Here

D) =r() = 3 ()
JASE)

. nj’ — Y Jj

r(j)= nE—X,

and j is a unitin s.

ROYALL and CUMBERLAND (1978a) presented results
based on asymptotic analyses relating to the comparative per-
formances of vy, vy, vp, and vy with respect to their model-
based biases, MSEs, and the convergence in law of the as-
sociated SZEs in examining the efficacy of the corresponding
confidence intervals. In this context the questions of robust-
ness and efficacy of balanced sampling and the role of large
SRSWORs in achieving balance have also been taken up by
them. Their main findings are that

(a) vz is unsuitable because of its lack of robustness even
if the sample is balanced.

(b) It is difficult to choose from vg,vp, and vy, each of
which seems serviceable.

CUMBERLAND and ROYALL (1988), however, have cast doubt
on the efficacy of large SRSWORSs in achieving rapid conver-
gence to normality of SZEs even if balance is preserved for an
increasing proportion of sample with increasing sizes.

7.1.3 Global Empirical Studies

Fortunately, considerable empirical studies have been reported
by ROYALL and CUMBERLAND (1978b, 1981a, 1981b, 1985)
and also by WU and DENG (1983), in light of which the following
brief comments seem useful concerning comparative perfor-
mances of vy, V1, U2, Ug, Ug, Ureg, VH, UD, UJ, and vyop; leaving
out vz, which is generally disapproved as a viable competitor.

Keeping in mind three key features namely, (1) linear
trend, (2) zero intercept, and (3) increasing squared residu-
als with x in the scatter diagram of (x, y), ROYALL et al. stud-
ied appropriate actual populations including one with N =393
hospitals with x as the number of beds and y as the number of
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patients discharged in a particular month. They took n = 32 for
(1) extreme samples, (2) balanced samples with |x — X| suit-
ably bounded above, (3) SRSWOR samples, (4) best fit samples
with a minimal discrepancy among sample- and population-
based cumulative distribution functions. WU and DENG (1983),
however, considered only SRSWORs with n = 32 from the same
populations and also from a few others, purposely violating one
or the other of the above three characteristics.

Two types of studies have been made. Simulating 1000
SRSWORs of n = 32 from each population the values of 7 and
the above 10 variance estimators v, in general, are calculated.
The MSE of fR is taken as

Y)2.
1000 Z tr-Y)
and the blas of v is taken as

1000Z v

and the root MSE of v is taken as

1 21/2

Each sum X' is over the 1000 simulated samples. Also, for each
of the 1000 simulated samples the SZEs t = (fg — Y)/,/v and
the intervals g + 7,/,2./v are calculated to examine the close-
ness of ¢ to T in terms of mean, standard deviation, skewness,
and kurtosis. The df of ¢ is taken as n — 1 = 31.

With respect to RM,

(a) vgopt is found the best, with vg, vz, v, closely behind.

(b) Among vy, v1, v2 the one closest to vy, is found the
best.

(c) wvp is found to be close to ve and fairly good, but vp is
found to be poor, and v; is found to be the worst.

The biases of vy, v1, vg, vg, Uz, and v,., are negative, but v, is
positively biased, and the biases of vy, vp are erratic; among
vg, U1, and vg, those with small RM are more biased.

The intervals fr £+ 17,/24/v are wider for v; but narrower for
Vo, U1, V2, Ug, Ug, and v, and those for vy, vp are in between.
The actual coverage probabilities are mostly less than the
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nominal (1 — «), and pronouncedly so for vy. In this respect v
is the best, with vp closely behind; vy does not lag far behind.
Among vy, v1, and vg the best is vy and vy is the worst. But vy, vg,
Ug, Uz, and v, are close to each other, and each is behind vy.

7.1.4 Conditional Empirical Studies

From these global studies, where the averages are taken over
all of the 1000 simulated samples, it is apparent that different
variance estimators may suit different purposes. For example,
one with a small MSE may yield a poor coverage probabil-
ity, while one with a coverage probability close to the nominal
value may not be stable, bearing an unacceptably high MSE. To
get over this anomaly, these investigators adopt a conditional
approach, which seems to be promising.

In a variance estimator alternative to vy the term X occurs
as a prominent factor and its closeness to or deviation from X
seems to be a crucial factor in determining its performance
characteristics. This % is an ancillary statistic, that is, the dis-
tribution of % is free of Y, and it seems proper to examine how
each v performs for a given value of X or over several disjoint
intervals of values of X. In other words, for conditional biases,
conditional MSEs, and conditional confidence intervals, given
X may be treated as suitable criteria for judging the relative
performances of these variance estimators.

With this end in view, in their empirical studies ROYALL
and CUMBERLAND (1978b, 1981a, 1981b, 1985) and WU and
DENG (1983) divided the 1000 simulated samples each of size
n = 32 into 20 groups of 50 each in increasing order of X values
for the samples. Thus, the first 50 smallest X values are placed
in the first group, the next 50 larger x values are taken in the
second group, and so on. Then they calculate

(a) the average of x, Az = 5—102’32 for respective groups

(b) the conditional MSE of 7z within respective groups

as M; = %2”(1?13 —-Y)?
(c) averages vy = 5—102/0 of each of the v’s within re-

spective groups where ¥’ denotes summation over
50 samples within respective groups.

Graphs are then plotted for ,/vz/v M: against A; to see how
closely the trajectories for respective v’s track the one for the
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MSEs, that is, for M3 across the groups. For an overall com-
parison WU and DENG (1983) propose the distance measure
1 1/2

dy, = %E’”(«/v? — VMy)?
the sum =" being over the 20 groups. A variance estimator
with a small d, value is regarded to be close to the conditional
MSE.

In terms of this criterion for performance, the variance
estimators rank as follows in decreasing order. Those within
parentheses are tied in rank and v, is excluded:

(vg,vp), (Vg,V2,V5), (Vg, Urey), V1, V0.

With this conditional approach, it is remarkable that they find
that the variance estimators that are good point estimators for
conditional (given x) MSE of ¢z also yield good interval esti-
mates in terms of achieving conditional coverage probabilities
close to the nominal values respectively for each group of x
values.

An important message from these empirical evidences
with both global and conditional approaches is that, in spite of
recommendations in many textbooks, vy does not fare well with
respect to its bias, MSE, and coverage probabilities associated
with the confidence interval based on it.

Behaviors of some of the variance estimators when based
on simulated balanced, best fit, or extreme samples rather
than random samples are also reported in the literature.

Many modifications of the ratio estimator based on
SRSWOR and variance estimators for the latter also occur in
the literature. An interested reader may consult RAO (1986),
CHAUDHURI and VOS (1988), and the references cited therein.

7.1.5 Further Measures of Error
in Ratio Estimation

CHAUDHURI and MITRA (1996) introduced additional estima-
tors for the measures of error of the ratio estimator

tp=X>
X

based on SRSWOR utilizing models and asymptotics.
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They considered the standard model (a) M for which
Y, =8X; +¢

¢;’s independent with
E.(¢)=0
V(e = 02X,

i € U, its modifications (b) M’ with
Vi(e) = o

and a second modification (¢) My for which
Y, =0+8X; +¢

without changes for ¢;’s in M.
For the TAYLOR approximation-based variance of Zg,

namely
1-
1% Y; - RX;)*
T= o N-D 1) > RX;)
they calculated

M7 = E,,(Vy) under M.

They also calculated
M' =lmE,E,(fr —Y)? under M and
M =UmE,E,,(fg — Y)? under M.

In order to work out estimators v and

2
v(a) = Zal (— - —Z ) = Zai(ri —7)?, say,

i€s i€s i€s

with suitable coefficients o; (i € s), they equated

(a) Ep(v)to Mr

(b) limE,E,(v) to M7 and M’ with a suitable initial
function v of (Y;, X;,i €5s),%

(¢) E,v(a)toM

(d) LmE,E,v(a)to M .

The approaches in mean square error (MSE) estimation by
BREWER (1999a) and SUNDBERG (1994) are also worthy of
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attention in this context. Writing

1 _
2_ - Xi_XZ
Si=5 12 )
03:32/72
2 X X2
S = ——7 g( )
2 =s2/x°

some of the MSE estimators for £z introduced by CHAUDHURI
and MITRA (1996) are

1-C%/N x\*
Vo1 = ————=—1g, Vg1 = | — | v
0= C2/n 0, V21 - 01
X1-C3/N
voz = — 41_0;%/’1 Vo,
Yo x\?
Vg3 = =|—1 v
03 1—cin 23 - 03
X
Vo4 = —VUH
X
1-f 9 9 ZX-z
_ = X2 _ Z
1 n(n—Z)g(r r)<1 Nn-1)
1-f oo s XP
_ = X2 _ i
2 n(n —2) %(r ) ( ' aln—-1)
m n(n — 2) ZXL.2 m
3= P 1
N(n —1)Ziein2—mZXi2
my=f——"-21; ZXZ
hraxe”

Drawing samples from artificial populations conforming to the
models M, M’, M, with various choices of N, n, 8, o2 a , 0,

CHAUDHURI and MITRA (1996) studied numerlcal data, g1v1ng
the relative performances of the confidence intervals (CI) for Y
both conditionally, as in section 7.1.4, and unconditionally, as
in section 7.1.3, based on fr and these MSE estimators, along
with the others like vy, vy, ve, vr, vy, Vs, and vp. Many of the
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newly proposed ones, especially m; and ms, were illustrated
to yield better Cls.

7.2 REGRESSION ESTIMATOR

7.2.1 Design-Based Variance Estimation

When (X;,Y;) values are available for SRSWOR of size n
an alternative to the ratio estimator for Y is the regression
estimator

Here b is the sample regression coefficient of y on x. Its variance
V»(¢.) and mean square error M,(¢.) are both approximated
by

1-f 1 X,
[ e B

where
D;=%;-Y)-BX;-X)

N ) N .,
B=Y (V;-7) (Xi-X) /Y (X - X)"

The errors in these approximations are neglected for large n
and N although for n, N, and X at hand it is difficult to guess
the magnitudes of these errors. However, there exists evidence
that ¢, may be more efficient than the ratio estimator 7 in
many situations in terms of mean square error (cf. DENG and

Wu, 1987).
Writing
d; = ; -y — bX; —x),
_1-7 2
Ur = gy 2

is traditionally taken as an estimator for V. DENG and WU
(1987) consider a class of generalized estimators

Xg
Ug = E Ulr
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They work out an asymptotic formula for V ,(v,) using TAYLOR
series expansions and neglecting terms therein supposed to be
small for large n relative to the term they retain, called the
leading term. They find the leading term to be minimal if
one chooses g equal to

1
Sopt = Tegression coefficient of D? / [NZ D} 1
1

onX;/X,i=1,2,...,N.

Since g,,: is unavailable they recommend the variance
estimator vz with & as the sample analogue of g,,; calculated
using (Y;, X;,d;), i €s.

7.2.2 Model-Based Variance Estimation

Besides these ad hoc variance estimators, hardly any others
are known to have been proposed as estimators for V with a
design-based approach. However, some rivals have emerged
from the least squares linear predictive approach.

Suppose Y, X are conformable to the model M/, (cf. sec-
tion 4.1.2) for which the following is tenable:

E.Y)=a+BX;, a#0, Vo(Y;) =02,
Cn(Y;, Y;)=0,i%#j.
Then the BLUP for Y is t, and
Bn(t,) =Ent —Y)=0

oy 1-f (X -x)° 2 _ 2
Vit =Y) = - [1+(1—f)g(s) o“ = ¢(s)o”, say,
writing
1 2
g(s) = ;Z(Xi —%).
Then, for
. 2
- (n—Z)ZS:di
we have

E (6% = o2,
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Consequently,

_aeyg2_ 1= 1 (X — 42
vL=e)6% = s [1+( g(s)]Z

is an m-unbiased estimator for V,,(¢, — Y) under M},. The
term

in vy, vanishes if the sample is balanced, that is, x = X, and
for a balanced sample V (£, —Y') is the minimal under M/,
In general,

v = (1 4+ h(s) vy > vgy

with equality only for a balanced sample. If a balanced sample
is drawn, then the classical design-based estimator v, based
on it becomes m-unbiased for V,,,(¢, — Y).

As usual with the predictive approach, the main problem
is robustness. If the model M/, is not correctly applicable to
the X, Y at hand, for example, if

En(Y;) # o+ B X,

then B,,(#.) may not vanish for a realized sample and if
V(Y;) # o2, then V,,(¢. —Y) does not equal ¢(s)o? and one
does not know the quantity that vy may m-unbiasedly esti-
mate. Consequently, the SZE, which is here

-Y)/JvL

may not have a distribution close to that of a standardized
normal variate as it may be supposed to be for large n, N if M,
is correct. So, in fact one may not know to what extent the true
coverage probability for the confidence interval (¢, +7,/2./V1)
matches the nominal value (1 — «).

For example, if the correct model is M/, (cf. section 4.1.2)
for which V,,(Y;) = 02X, then

— O'2 — =
Valty =¥)=—I2- )X -+ (X - %)%C(s)]
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where
C(s) = (ZX? —2%y X7+ m‘c3> /ng2(s) :
X S

But in this case

n

E,(vr) = o (1+h(s)[x + {x — C(s)g(s)}/(n — 2)]

and
B,.(vr) = E,(vr) — Vi (tr — Y)

may not be negligible in general.

This only illustrates how vy may not legitimately be
treated as a robust estimator for V,,(t, — Y).

If one uses v, to estimate V,,,(¢, — Y) in this case, then
obviously

B (vr) #0
as one may check on noting that
Em(vlr) =E,(vr)
with A(s) = 0 in the latter.
So, even for a balanced sample v;,- is not m-unbiased for
Vu(t, —Y) if Myg is inapplicable, that is, it is not robust.
However, ROYALL and CUMBERLAND (1978a) have pro-
posed the following alternative estimators for V,,(t, — Y ):

1 _2f SdE[1+(X; %) (& —%)/g(s)]?/
n

VH =
1

1--) WK, —n)6*

( nSWK>+(N n)é

where

Wi = [g(s) +(X; — %) (& —X)] /[Z{g(S) + (X — %) (% —x)}]

K =1+(X; —%)%/g(s)

and
Up = Z —
nln—1) 1—{<X —9%/(n— Dg(s)]]
J—(l—f){ :|Z(T T)Z

jes
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In vy, f’j is ¢, calculated from s omitting (Y;, X ;) and T =
% Z Jj€s Tj :
These authors have noted that
(8) En(wg) = En(wp) = En(vy) = Vit — Y) if M| is
true
(b) B, (v)isnegligibleif V,,(Y;) is not a constant for each
i but % is large provided E,,(t, — Y ) = 0 for a sample
at hand
(¢) |Bn(v)| is not negligible even for large n in case
|E,.(t, —Y)| is not close to zero, when v is one of
VH,Up, or vy above.

7.2.3 Empirical Studies

ROoYALL and CUMBERLAND (1981b, 1985) therefore made em-
pirical studies in an effort to make a right choice of an esti-
mator for V,,(¢, —Y ) because a model cannot be correctly pos-
tulated in practice. DENG and WU (1987) also pursued with
an empirical investigation to rightly choose from these several
variance estimators. But they also examined the design biases
and design MSEs of all the above-noted estimators v, each
taken by them as an estimator for V', considering SRSWOR
only. The theoretical study concerning them is design based,
and because of the complicated nature of the estimators their
analysis is asymptotic. From their theoretical results vp seems
to be the most promising variance estimator from the design-
based considerations and vz, and v;- are both poor.

In the empirical studies undertaken by ROYALL and
CUMBERLAND (1981b, 1985) and DENG and WU (1987) 1000
simple random samples of size n = 32 each are simulated from
several populations including one of size N = 393. For each of
these 1000 SRSWORs values of ¢, X, vg, v1, Vg, Vs, VL, UH, UD,
and vy are calculated. The estimator vy, is found too poor to be
admitted as a viable competitor and is discarded by the authors
mentioned. For each sample again for each of these variance
estimators v, as above, the SZEs and confidence intervals are
also calculated

=0 —Y)/Vv and ¢ £142/V

© 2005 by Taylor & Francis Group, LLC



Design- and Model-Based Variance Estimation 153

with 7,2 as the 100a/2 % point in the upper tail of the
STUDENT’s ¢ distribution with d f/ = n — 2 = 30 in this case.

First, from the study of the entire sample the uncondi-
tional behavior is reviewed using the overall averages to de-
note respectively by

_ 1 _
M=—3'( —Y)2? the MSE
1000 (¢ )?, the MS

1 , _ )
= 10002 v — M, the bias,
¥’ denoting the sum over the 1000 simulated samples. Again,
taking x as the ancillary statistic conditional (given %) behav-
ior is examined on dividing the 1000 simulated samples into
10 groups, each consisting of 100 samples with the closest val-
ues of ¥ within each, the groups being separated according to
changes in the values of . For each group

1 sz 1 s

100 = 100~
are separately calculated, ¥’ denoting the sum over the 100
samples in respective groups and the estimated coverage prob-
abilities associated with the confidence intervals. Thus, the
unconditional and the conditional behavior of variance esti-
mators related to #. are investigated, following the same two
approaches as with variance estimation related to the ratio
estimator g discussed in section 7.1. The estimators are com-
pared with respect to MSE, bias, and associated conditional
and unconditional coverage probabilities.

Empirical findings essentially show the following:

With respect to MSE:

(a) vg is the best and vy is the worst

(b) among vy, v1, and vy the one closest to v is the best

(c) between vy, and vp, the former is better but vy is
worse than vy, vy, U2, Ug, Vg and vr.

With respect to bias, vy is positively biased, vp has the least
absolute bias, and vy, has less bias than vy, vy, v2, and v;.
In terms of unconditional coverage probabilities:

(a) each coverage probability is less than the nominal
value, vy giving the lowest but v; the closest to it
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(b) wvg, v1, and vy rank in improving order
(¢) vy is worse than vp.

In terms of conditional coverage probabilities:

(a) vg is the most excellent and its associated coverage
probabilities remain stable over variations of &; those
with vy and vp are also pretty stable but those with
Vo, UL, and v increase with x

(b) among vy, v1, and ve, the one with the most stable
coverage probability across X is vo

(¢) vup is better than vy.

For nearly balanced samples all estimators perform similarly.
One important message is that the traditional estimator vy, is
outperformed by each new competitor and the least squares es-
timator vy, is also inferior to the other alternatives from overall
considerations.

7.3 HT ESTIMATOR

In section 2.4.4 We presented the formula for the variance of
the HTEZ =}, nl based on a fixed sample size design avail-
able due to YATES and GRUNDY (1953) and SEN (1953), along
with an unbiased estimator vy ¢ thereof. For designs without
restriction on sample size the corresponding formulae given by
HORVITZ and THOMPSON (1952) themselves were also noted
as

-Y?

Vp(f)zz +ZYY

i T iz

vp(t)—ZYzl LS S vy BT

iZ)es nlnjnlj

L7TJ

It is well known that v,(Z) has the defect of bearing negative
values for samples with high selection probabilities. The esti-
mator vy ¢ may also turn out negative for designs not subject
to the constraints

T = T for all 1#J
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as may be seen in BIYANT’s (1980) work. To get rid of this prob-
lem of negative variance estimators, JESSEN (1969) proposed
the following variance estimator

2

] Y, Y;

W -t ZJ

=Wy Y | BT
i<jes

where

Wo X
NN -1

with n as the fixed sample size.

This is uniformly non-negative and is free of r;; and very
simple in form.

KUMAR, GUPTA and AGARWAL (1985), following JESSEN
(1969), suggest the following uniformly non-negative variance
estimator for V,(7), namely,

2
Y; Y
wd®=KY Y <_l_ _,) .
— T W
i<jes
Their choice of K is

1 ¥ pl - npy)
Tw-D oyt

from considerations of a fixed sample size n and the model My,
for which

Yi=ppit+e
with0 < p; <1, np; =ni,zllvp,- =1, and

E () =0,V,, =(g) =c> pl?/, Cn(ei, e5) =0fori #j
with y > 0, 0 < 0. Under this model

2 N
B Vy(B) = 2= pl (1= np))
1

to which E,,vy(f) agrees with the above choice of K. Thus,
vo(Z) is an m-unbiased estimator of V,(Z). But since 7 is
predominantly a p-based estimator, they also consider the

© 2005 by Taylor & Francis Group, LLC



156 Chaudhuri and Stenger

magnitude of

_ Ep Uo(f) _
A = 7Vp(f) 1] x 100
and also of
5 — V5 (vo(2)) .
[E ,(vo(D)] 2

They also undertake a comparative study for the performances
of vy and vyg in terms of criteria similar to A and § for the
latter. Their empirical study demonstrates that vo(Z) may be
quite useful in practice. BREWER (1990) recommends it from
additional considerations we omit to save space.

SARNDAL (1996) mentioned two crucial shortcomings in
the unbiased estimators vgr and vyg for V,(tar) = V,(tn),
namely that (1) computation of r;; is very difficult for many
standard schemes of sampling, and for systematic sampling
with a single random start it is often zero, and (2) for large-
scale surveys the variation in

ninj —JTij 7Tij —JTiJTj

and
involved in the numerous cross-product terms of vy g and vy,
respectively, is so glaring that these variance estimators
achieve little stability.

Motivated by this, DEVILLE (1999) and BREWER (1999a,
2000) are inclined to offer the following approximations by
way of getting rid of the cross-product terms in V,(¢g) and in
estimators thereof.

Confirming the sampling schemes for which v(s), the ef-
fective size of a sample s, that is, the number of the distinct
units in it, is kept fixed at an integer n (2 < n < N), BREWER
(2000) gives the formula for V ,(tg) as

Y; Y2
Y, Y\(Y, Y
+ Xy - (- 1) (H- 7).
1#£] i
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He then recommends approximating m;; by

¢ t+c¢j
* . J
T =TT g
choosing ¢; as one of
. n—-1
(a) ¢ = n—m;
® o=
n—2m; - L
— n—1
© =1y

from certain well-accounted-for considerations that we omit.
The resulting approximate variance formula for ¢y is then

Y; Y2
Vi () =Y m(l—cim) (;: - ;)
and BREWER (2000) calls it the natural variance of ¢y free
of m;;’s. He proposes the approximately unbiased formula for

an estimator of V,(¢g) as
1 Y; tm)?
=y () (Y
i€s : T n

For V4(¢tg), DEVILLE’s (1999) recommended estimator is

Z (Yi A )2 say
Us = - T 43 = UDE, ’
1 ZLES 12 1€8 T[Z
on writing
1—m
- L A= -t
“ Zies(l - ni) Zal

i€s
also to get rid of ;;’s

STEHMAN and OVERTON (1994) recommended approxi-
mating m;; by

(1) (n—1)m;m;
(a) T = i Tonan)) and
D
b 7_[(2) — (n=D)m;;
( ) u n—7ri—7rj+,llZfV 7ri2

for the fixed sample size (n) scheme of HARTLEY and RAO
(1962), which is a systematic sampling scheme with unequal
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selection probabilities with a prior random arrangement of the
units in the population.

They empirically demonstrated these choices to be useful
in retaining high efficiency even on getting rid of the cross-
product terms in variance estimators.

HAJEK’s (1964, 1981) Poisson sampling scheme, however,
is very handy to accommodate SARNDAL’s (1996) viewpoint.
To draw a sample s from U/ = (1, 2, ..., N) by this scheme one
has to choose N suitable numbers 7; (0 < 7; < 1, i € U), as-
sociate them with i in ¢/, implement N independent Bernoul-
lian trials with 7; as the probability of success for the ith trial
z=1,2,...,N), and take into s those units for which suc-
cesses were achieved. For this scheme, of course, 0 < v(s) < N,
7; is the inclusion probability of z,

E,(v(s)) = Zﬂ'i
and ;; = m;mwj foreveryi # j (=1,2,...,N).

Consequently,
1—m;
Voitg) =S Y2 "t and
p(t) =>Y; o
1_ .
vy = ZYL'Z 7.[27[1

LES 14
is an unbiased estimator for V ,(¢x).

The most unpleasant feature here is that there is little
control on the magnitude of v(s) and hence it is difficult to
plan a survey within a budget and aimed at efficiency level.

This topic is widely studied in the literature, especially
because of its uses in achieving coordination and control on the
choice of units over a number of time points when, for the sake
of comparability, it is desired to partially rotate some fractions
of the units over certain time intervals.

BREWER, EARLY and JOYCE (1972), BREWER, EARLY and
HANIF (1984), and OHLSSON (1995) are among the researchers
who explored its possibilities, especially by introducing the
concept of permanent random numbers (PRN) to be associ-
ated with the take-some units of a survey population, namely
those units with selection probabilities p; (0 < p; < 1,1 € U)
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contrasted with the take-all units for which selection proba-
bilities are g; (=1 for i € U,.) when U/ is the union of /; and 4.,
which are disjoint, and also with the units that are to be added
on subsequent occasions, omitting the units that may be found
irrelevant later.

These researchers also modified the Poisson scheme, al-
lowing repeated drawing until v(s) turns out positive, and also
studied collocated sampling, which uses the PRNs effectively
to keep the selection confined to desirable ranges of the units
of Us.

The inclusion probabilities of units i and pairs of units
(i, j) of course deviates for the modified Poisson and collocated
Poisson schemes from those of the Poisson scheme, and they
do not retain the requirements of SARNDAL (1996).

BREWER, EARLY and JOYCE (1972) and BREWER, EARLY
and HANTF (1984) considered the ratio version of ¢ based on
the Poisson scheme, that is,

>
v(s)

=0 otherwise.

Z— if v(s) >0

tgr =

Writing
N
Py = Prob(v(s) =0) = H(l — ;)
1
BREWER et al. (1972) approximated V ,(¢tgr) by
N 2
Y, Y
Veps =) m(l-m) (—l - —) + PY?
1 TT; n
writing n = X;, and gave two estimators for it as
Y, tur

2
V1B —Z(l—ﬂl <__T) +P0t12'IR

ies

Z”‘ [2(1 (—i—mTR> + Pothp
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Observing that v(s) = X1 and Xm; = E,(X1;) and hence
DT
v(s) Z
may be treated as a ratio estimator for XY;, the first terms of
v1g and vy are analogous to vy and vy of subsection 7.1.1.
BREWER et al. (1984), on the other hand, approximated
V (tg r) for this Poisson sampling scheme by
Vagn = (1= P Som(L—m) (1 =)+ PoY

i

and proposed for it the estimator

i tHrR\? 2
- PyY “.
UBEH = 1+P0 v(s) Z( < P, ) + Py

T

Incidentally, SARNDAL (1996) also considered ¢ g based on the
Poisson scheme, but, in examining its variance on MSE and in
proposing estimators thereof, did not care to take account of
the possibility of v(s) being zero, and simply considered ¢z g as

tHR = Zmz—

In the next section we shall treat this case.

7.4 GREG PREDICTOR

Let y be the variable of interest and x1,...,x; be & auxil-
iary variables correlated with y. Let Y; and X;; be the val-
ues of y and x; on the ith unit of U = (1,...,i,...,N),i =
S N,j=1,...,k.Let 8 =(B1,...,B:) beak x1vector of
unknown parameters, x; = (X;1,...,X;), Y =(Yq,...,YnN),
=(x1,...,25) andul_x,B,z_l ,N.
Let there be a model for which we may write

Y =i +e&i,

with E,,(¢;) =0, V,(g) = oiz, ¢;’s independent. Let @ be an
N x N diagonal matrix with non-zero diagonal entries @;, i =
1,..., and s a sample of n units of U chosen according to a
design p with positive inclusion probabilities 7;,i =1,..., N.
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Let
B=XQX)'(XQY)
E; =Y, -x;B
-1
Qi Qi
Bo= > mm| | X uY
LES LES

pi=x;Bg, e =Y — .
Then the GREG predictor for Y = >V Y; is

N R e;
1 ies v

With
mij = Yy p(s), Ajj =mm; —mij

s31,j

N
B, = (Z Qi&l&ém)
1

(Z QixiYim)
1
and

E,=Y,—x;B,

an asymptotic formula for the variance of ¢g is given by
SARNDAL (1982) as

Va=) > A

i<j

E; Ejr

Tj

and an approximately design-unbiased estimator for Vs as

S 5o LA

i<jes

Ajj
ij

TT; T

provided m;; > 0 for all i, j.

SARNDAL (1984) and SARNDAL and HIDIROGLOU (1989)
give details about its performances which we omit. The simple
projection (SPRO) estimator for Y given by ¢, = Ezlv gﬁs can
be expressed in the form

Y

lsp = ngi )
s

i
T
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writing @; = 1/C; m;, for C; # 0 and

N
8si = lz &;
1

SARNDAL, SWENSSON and WRETMAN (1989) propose

Vp =)D

i<j

-1
[Z&ixé/cim] (x;/Ci).

Ajj
JIij

8si€i  8sj€j
T T

as an approximately unbiased estimator for V ,(¢;,) and exam-
ine its properties valid for large samples.
KoTT (1990), on the other hand, proposes the estimator

v, (& '
tK=Zn—f+ =Y x/mi| b
s 4 1

i€s

where b = (b1, ..., b)" is a suitable estimator of 8. Writing
Aij e ej ?
Tl_;}; i | T ﬂj]
To=V,tk —Y)
T3 = En(Th)
KoTT (1990) proposes
T, T
VK = T,

as an estimator for V,(¢x).

Letting £ = 2,x; = (1, X;), B’ = (B1, B2) and b the least
squares estimator for 8 and postulating the appropriate model
M, for the use of the regression estimator ¢, = N %, based on
SRSWOR for Y, it is easy to check that £,, and ¢ both coincide
with ¢.. CHAUDHURI (1992) noted that in this particular case
(a) vg closely approximates vp and (b) vg coincides with vy,
considered in section 7.2. Since from DENG and WU (1987) we
know that vp is better than vy, at least in this particular case
we may conclude that vg is better than vk, although in general
it is not easy to compare them.

With a single auxiliary variable x for which the values X;
are positive and known for every i in I/ with a total X, it is of
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interest to pursue with a narration of some aspects of the
GREG predictor #¢ because of the attention it is receiving,
especially since the publication of the celebrated text Model
Assisted Survey Sampling by SARNDAL, SWENSSON and
WRETMAN (SSW, 1992).

In this context it is common to write tg as

Y Y;
tg=) —+|X- Z =) &
ies T[l ies ies T
where
s YiXiQ;
bg = T
Zies Xi Qi

with @;(>0) arbitrarily assignable constants free of ¥ =
(Yq,...,YN) but usually as
1 1 1-m 1 1

-, —, ———, ——, —=, (0 2 tc.
X;’ Xl-z’ X, X, Xlg’( <g<2) etc

and
X;Q;m;
gi=1+1X—
N ( Z ) Yies X7Qi
Letting
YY X, Qim;
Bo="0 5
YXIQm
E;=Y,—X;Bg
e; = Yi — XibQ

SARNDAL (1982), essentially employing first-order TAYLOR se-
ries expansion, gave the following two approximate formulae
for the MSE of ¢ about Y as

1—m 2, Tij — T
M (tg) = E; ———EE;
D Sl RS )
i i#£]
for general designs and

2
E, E;
Matte) = 3 Y iy — ) (— - —%)

T
i<j J
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for a design of fixed size v(s). To these CHAUDHURI and PAL
(2002) add a third as

E?
Ms(tq) = Mao(ta) + > o —-

i

for a general design where

1
ai=1+;271’,‘j —Zn’i.

LA
For M(tg), recommended estimators are, writinga;; = 1, ag; =
8sis

my(te) = Za
. m
i€s
7 — TG
—i—ZZaklakJ i L R eiej; k=1,2

i1#£j€s It

and for Ms(tg) estimators are

2
mop(tg) = ZZ an — (aklel - ak]é) k=1,2

T T
i<jes l J

as given by SARNDAL (1982). For Ms(tg) the estimators as
proposed by CHAUDHURI and PAL (2002) are

mgi(tg) = mop + —(aklel)2 E=1,2.

ics U

In order to avoid instability in m;,(tg);j = 1,2,3;k = 1,2
due to (a) the preponderance of numerous cross-product terms
involving exorbitantly volatile terms

b
JTi7TjJTij nij

in them and (b) the terms 7;;, which are hard to spell out and
compute accurately for many sampling schemes, SARNDAL
(1996) recommends approximating MSE(¢g) by

1-=

i

Ms(te) =)~ E?
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and estimating it by
1—
msp(te) = |

ies

i (apiei)? B =1,2

i

possibly with a slight change in the coefficient of El2 in Mg(tg)
when X E; equals zero at least approximately.

He illustrated the two specific sampling schemes, namely
(1) stratified simple random sampling without replacement,
STSRS in brief, and (2) stratified sampling with sampling from
each stratum by the special case of the Poisson sampling
scheme for which 7; is a constant for every unit within the
respective strata. He showed mgy(tg) for these two schemes
composed with variance estimators for certain unequal prob-
ability sampling schemes illustratively chosen by them as the
RA0, HARTLEY and COCHRAN (RHC) scheme.

Incidentally, choosing (1) @; = 1/m;X; and (2) X; = =; the
estimator ¢; takes the form

> T
te = v(s) Z e

Let this be based on a Poisson scheme and ignore the possibility
of v(s) equalling 0. Then

2
1-— i Zies %
my1(te) = > ;T (Yi o ‘ ﬂi)

ies U
>

2
mio(tg) = (TS;) mi1(tg)

consistently with the formulae for vy and vy of section 7.1.

CHAUDHURI and MAITI (1995) and CHAUDHURI, ROY and
MAITI (1996) considered a generalized regression version of
the RAO, HARTLEY, COCHRAN (RHC) estimator as

" @ ", Qi ", Qi
togr = E Yi—P~ + | X - E Xi_P' br = E Yi_P' hg;
i=1 4 i=1 t i=1 t

where R;(> 0) is a suitably assignable constant like

1 1 1 @ 1-P/Q;
X" X¥ X?7 PX; X;Pi/Q;

R;, = etc. (0 <g<2)
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and
b — 2iz1 YiXiRi
R = n XZR,
i=14;

n .p. B

Q\ XiRig
hi=14+ X - X;=' | ———2-—.
N ( P; ) Si XPR:

i=1
Clearly, here R; corresponds to ;, P;/Q; to m;, and bg to bg

in tq.
Accordingly, writing
Y:X;R; L
Bgr = % that parallels Bg
Z Xi Riji
F,=Y; - X;Bg
fi=Yi—Xbr

and using first-order TAYLOR series expansion we may write
the approximate MSE of g about Y as

2
F;, F;
Ml =X X" #ip (- 1)
12 J

1<i<j=<n
where
YiN?-N
T NN -1

and two reasonable estimators for it as

2
mptgr) =D Y QiQ; <bklfl —M> s k=1,2

P; P,

l<i<j<n

all analogous to M1(tg), Ms(tg), mip(tg), mop(tg); here

b1 =1; by = hy
D= ZYIL]VL'2 - N
= i s e Sy

We emphasize the importance of this ¢gr, especially because
SARNDAL (1996) compared ¢ based on STSRS and STBE with
trHuC, but it would have been fairer if, instead of tgr ¢, tgr Was
brought under a comparison to keep the contestants under a
common footing.
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Finally, remember that DEVILLE and SARNDAL (1992) de-
rived ¢g as a calibration estimator on modifying the sample
weight a;, = 1/7,(> 0) in

HTE = ZakYk

kes

into wy, so as to (a) keep the revised weight w;, close to az, (b)
taking account of the calibration constraint (CE)

N
Zkak = Z X
k=1

kes

by minimizing the distance function

> ap(wy — ax)?/Qr, with @, > 0

kes

subject to the above CE. By the same approach one may derive
tgr as a calibration estimator by modifying ¢gc as well.

7.5 SYSTEMATIC SAMPLING

Next we consider variance estimation in systematic sampling
where we have a special problem of unbiased variance esti-
mation because a necessary and sufficient condition for the
existence of a p-unbiased estimator for a quadratic form with
at least one product term X; X ; is that the corresponding pair
of units (7, j) has a positive inclusion probability 7;;. But sys-
tematic sampling is a cluster sampling where the population
is divided into a number of disjoint clusters, one of which is se-
lected with a given probability. Thus a pair of units belonging to
different clusters has a zero probability of appearing together
in a sample. Hence the problem of p-unbiased estimation of
variance. Let us turn to it.

Let us consider the simplest case of linear systematic
sampling with equal probabilities where in choosing a sample
of size n from the population of N units it is supposed that % is
an integer K. Then, the population is divided into K mutually
exclusive clusters of n units each and one of them is selected at
random, that is, with probability % Ifthe ith cluster is selected
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then one takes y;, the mean of the n units of the ith cluster,

i =1,..., K astheunbiased estimator for the population mean
Y . Then,
1 X _9 82
V) == v, —Y) = —{1 -1
() Kizl (yz ) n { +(n ),O}
writing S2 = % Z{{ i1 (Yij — Y)2, Y;; = the value of y for
the jth member of ith cluster and
1 K _ _
= - Yii- Y)Y, —-Y).
1Y Kn(n—l)S2 zl:zj#;( ij )( ij )

For the reasons mentioned above one cannot have a p-unbiased
estimator for V(j;) for the sampling scheme employed as
above. However, there are several approaches to bypass this
problem.

One procedure is to postulate a model characterizing the
nature of the y;; values when they are arranged in K clus-
ters as narrated above and then work out an estimator based
on the sample, for example, v such that E,,(v) equals E,,V (¥;),
which therefore becomes a DM approach (cf. SARNDAL,
1981).

Second, the N elements are arranged in order, a num-
ber r is found out so that ? is an integer m. Then, Kr = L,
clusters are formed, and an SRSWOR of r clusters is chosen.
Each of these L clusters has m units and so a required sam-
ple of size n = mr is thus realized. This is distinct from the
original systematic sampling. To distinguish between the two
they are respectively called single-start and multiple-start
systematic sampling schemes. For the latter, one may suppose
to have drawn r different systematic samples each of size m
and the sample mean of each provides an unbiased estima-
tor for the population mean. Denoting them by ¥, ys, ..., ¥,
one may use y = %Zﬁ ¥; as an unbiased estimator for Y and
r(r—l_l)ZQ (y — y)? as an unbiased estimator for V ,(¥). Two vari-
ations of this procedure are (a) to choose by SRSWOR method
2 or more clusters out of the K original clusters or (b) to divide
the chosen cluster into a number of subsamples, and in either
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case obtain several unbiased estimators for Y and from them
get an unbiased estimator of the variance of the pooled mean
of these unbiased estimators.

A third approach is to first choose a systematic sample
from the population and supplement it with an additional
SRSWOR or another systematic sample from the remainder
of the population. A variation of this is given by SINGH and
SINGH (1977), who first make a random start out of all the NV
units arranged in a certain order, select a few successive units,
and then follow up by choosing later units at a constant inter-
val in a circular order until a required effective sample size
is realized. They call it new systematic sampling, derive
certain conditions on its applicability, show that ;; > 0 for ev-
ery i, j for this scheme and hence derive a Yates—Grundy-type
variance estimator.

COCHRAN’s (1977) standard text gives several estimators
following the first model-based approach. GAUTSCHI (1957),
TORNQVIST (1963), and KooP (1971) applied the second ap-
proach. HEILBRON (1978) also gives model-based optimal es-
timators of Var (systematic sample mean) as the conditional
expectations of this variance given a systematic sample un-
der various models postulated on the observations arranged
in certain orders.

ZINGER (1980) and WU (1984) follow the third approach,
taking a weighted combination of the unbiased estimators of
Y based on the two samples and choosing the weights, keeping
in mind the twin requirements of resulting efficiency and non-
negativity of the variance estimators. For a review one may
refer to BELLHOUSE (1988) and IACHAN (1982).

Finally, we present below a number of estimators for V (y;)
based on the single-start simple linear systematic sample as
given by WOLTER (1984).

We consider first the following notations: For the ith (i =

1,..., K) systematic sample supposed to have been chosen con-
taining nunits, let Y;; be the sample values, j = 1, ..., n. Then,
1 n
== Yy
n“
j=1
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Let further

aj=Yij =Yij1,J =2,...,n
bij=Y;—-2Y,; 1+Y;; 2
1 1

Cij = §Ylj — Yi,j_l +Yi,j—2 - Yi,j—3 + §Yi,j_4
1 1
dij = §Yij -Yi1+...+ §Yi,j—8
and

1 Z(ylj yz

Then WOLTER (1984) proposed the following estimators for

(n—

V (3i).
2
vi=(1-f)>
1-f &,
v2 2n(N—1)j2::2a‘J
1-f1E,
vs = n n h2j

va = n 6(n—2)jz::bij

U5 =

1-f 1 )
= dz.
ve n 7x5(n—8)jz:% Y

For a multiple-start systematic sample with r starts, let ¥,
denote the sample mean based on the ath replicate and

1 r
5’:_25’&-
ra:l
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Then for V (y) the estimator is taken as
1 - f r — — 2
vy > Ga -2
=1

- rir —1) =
This is also applicable if the ith systematic sample is split up
into » random subsamples (cf. KOoP, 1971). Writing
1

n
pr=—-75> (Vi —3)(Yij1— %)
(n—1s? =

another estimator for V (3;) is

1 n
(Yij = %) Yij_1—3).
—

vs = (n— 1)s2 p

WOLTER (1984) examined relative performances of these es-
timators considering B,,(v) = E,,[E,(v) — V (y)] and B, (v)/
E,.V(y) for v as v;,i = 1,...,8 for several models usually
postulated in the context of systematic sampling. He also ex-
amined how good these are in providing confidence intervals
for Y. His recommendations favor ve, and vs, and, to some ex-
tent, vg.

The general varying probability systematic sampling is
known as circular systematic sampling (CSS) with probabil-
ities proportional to sizes (PPS). From MURTHY (1967) we
may describe it as follows. Suppose positive integers X;(i =
1,...N) with a total X are available as size measures and a
sample of n units is required to be drawn from &/ = (1,..., N).
Then a member K is fixed as the integer nearest to X /n.

A random positive integer R is chosen between 1 and X.
Then, let

a =(R+rK)mod(X),r =0,...,n—1
and
Co=0, Cizzl:Xj,izl,...,N.
j=1
Then, a CSSPPS sample s is formed of the units i for which
Ci_1<a <C; for r=0,1,...,n—-1
and the unit N ifa, = 0.
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If v(s) happens to equal n, the intended sample size (in
practice it often falls short by 1, 2, or even more for arbitrary
values of P; = X;/X), then for this scheme

; equals nP;

provided nP; < 1Vi € U, a condition that also often fails.

If nP; > 1, then calculation of 7; becomes a formidable
task, especially if X is large and n is not too small. For many
pairs (i, j), 1 # j, m;; for CSSPPS scheme turns out to be zero
and is also difficult to compute even if found positive.

Following DAS (1982) and RAY and DAS (1997) one may
modify the scheme CSSPPS and (a) choose K above as a posi-
tive integer at random from 1 to X — 1 instead of (b) keeping it
fixed as earlier. It is easy to check that for this scheme, CSSPPS
(n),

m; >0 Vi#jJ.
However, v(s) need not then equal n nor may n; equal nP;. Nev-
ertheless, the HT estimator may be calculated for this scheme.

Importantly, CHAUDHURI’s (2000a) unbiased estimator for its
variance is available as

2 2

T — Ty Yi YJ' Yi
=32 L% +Z?°“
i<j u t J ies 1

where
1 .
o = 1+;i27'[ij —Z]Ti, 1el.
J#
This is a vindication of the utility of v. in practice.
If one heeds the recommodation of SARNDAL (1996) to

get rid of any situation when one encounters (a) difficulty in
calculating 7;’s and (b) instability in
U7 — T35 T — TGTT5
T j ij or ij /by
TTij TG

involved in numerous cross-product terms in V(HTE), by em-
ploying the generalized regression estimator with its variance
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approximated by

1—m;
Varp = g
14

and taking its estimator as

VR =) L Am (apie;)?,
ics v
then there is no problem with either the CSSPPS or
CSSPPS(n) schemes except that computation of 7; is also not
easy if m; # nP;j(< 1) or if X is large.
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Chapter 8

Multistage, Multiphase, and
Repetitive Sampling

8.1 VARIANCE ESTIMATORS DUE TO RAJ AND
RAO IN MULTISTAGE SAMPLING: MORE
RECENT DEVELOPMENTS

Suppose each unit of the population U =(1,...,i..., N) con-
sists of a number of subunits and hence may be regarded as
a cluster, the ith unit forming cluster of M; subunits with a
total Y; for the variable y of interest; i=1, ..., N. For exam-
ple, we may consider districts as clusters and villages in them
as subunits or cluster elements. Then quantity of interest is
Y = E{V Y; or

v — >V, _ > MY,
Sy M Sy M
where Y;; is the value of the jth element of the ith cluster and

- v, Yy,
Y, = % — W
M JZ:lMi

is the ith cluster mean of y. Now, often it is not feasible to
survey all the M; elements of the ith cluster to ascertain Y;.

175
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176 Chaudhuri and Stenger

Instead, a policy that may be implemented is to first take a
sample s of n clusters out of U according to a suitable design p
and then from each selected cluster, i, take a further sample, of
m; elements out of the M; elements in it following another suit-
able scheme of selection of these elements; the selection proce-
dures in all selected clusters have to be independent from each
other. Then one may derive suitable unbiased estimators, say,
T; of Y; for i € s and derive a final estimator for Y or Y. This
is two-stage sampling, the clusters forming the primary or
first-stage units (psu or fsu) and the elements within the fsus
being called the second stage units (ssu). Further stages may
be added allowing the elements to consist of subelements, the
third-stage units to be subsampled and so on, leading, in gen-
eral, to multistage sampling. We will now discuss estimation
of totals, or means and estimation of variances of estimators
of totals, or means in multistage sampling.

8.1.1 Unbiased Estimation of Y

Let E1, V1 denote expectation variance operators for the sam-
pling design in the first stage and E, V1 those in the later
stages. Let R; be independent variables satisfying

(a) EL(R) =Y,

(b) VL(R;)=V;or

() VL(R) =V
and let there exist (b) random variables v; such that Er(v;) =
V; or (¢) random variables vg; such that Er(vy) = V.

Let E =E E; = EE be the overall expectationand V =
E\Vy+VEr=E;V1+ ViE the overall variance operators.
CHAUDHURI, ADHIKARI and DIHIDAR (2000a, 2000b) have il-

lustrated how these commutativity assumptions may be valid

in the context of survey sampling.
Let

th =Y bylsY;,

Mi(ty) = E1(ty — Y)? = >3 dijyiy;,
dij = Eq1(bsls — 1)(bsjlsj —1),
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dsi; be constants free of Y such that
El(dsiszij) = diJ'Vi’J' inU.
Let w;’s be certain non-zero constants. Then, one gets
Y, Y;
M (ty) = szljwle <_ - _>
i<j wi Wy
y2 N
+ Z'Blj when ﬂi = Zdijwj.
l J:1
Let
Y; Y I Y2
my(ty) = = Y dgjlgww; | — +> = i
by wj T ow;

Then, we have already seen that

Eimq(ty) = M1(tp),

Let
ep =tply—r = XbsiI4R;,
writing
Y=(,....,Y;,....,YN)
and

R=(Ry,...,R;,...,Rn).

Then, it follows that (1) Ez(ep) = tp, (2) E1(ep) = XR; = R in

case we assume that E1(¢,) = Y, which means
Eq(bsils) =1Viin U

So,
E(ep) = E1(ty) =Y = EL(R)

if Eq. (8.1) is assumed.
M;(tp)ly=g = E1(ep — R)*.

Now, writing

M(ep) = E1Er(epy — Y)? = ELE1(ep — Y )2,

© 2005 by Taylor & Francis Group, LLC
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178 Chaudhuri and Stenger

the overall mean square error of e, about Y and mq(ep) =
m1(ty)ly =g We intend to find m(ep) such that

Em(ep) = E1Erm(ep) = ELE1m(ep)

may equal M(ep).
First let us note that

2
) R; R, I,; R?
L J

i<j i Wi
2
R, R; R?
==>_ > dijwiw, <— - —J> +Zp—-
i<j w; wj wj;
= E1(ep — R)* = My(ep)

Eimi(ep) = E;

Now,
M(ep) = ELE1(ep — Y )?
= ELE [(ep — R)+ (R - Y))?
=ELEi(ey — R?>+ EL(R-Y)?
= ErM(ep) + XV
if (b) holds.
So,
m(ep) = my(ep) + Zbsi Liv;

satisfies Em(ep) = M(ep) if in addition to (b), Eq. (8.1) also
holds.

Thus, treating R;’s as estimators of Y; obtained through
later stages of sampling and v;’s as their unbiased variance
estimators, it follows that under the specified conditions we
may state the following result.

RESULT 8.1 m(ep) is an unbiased estimator for M(ep).

REMARK 8.1 This is a generalization of RAJs (1968) result,
which demands that M(tp) be expressed as a quadratic form
in' Y with m1(ty) also expressed as a quadratic form in Y;’s
fori € s.

But we know from the previous chapters that often variances
of estimators for Y in a single stage of sampling and their
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unbiased estimators, for example, those for RHC (1962),
MURTHY (1957) or RAJs (1956) estimators, are not so
expressed. Our Result (8.1) avoids the tedious steps of first
re-expressing the variances of these estimators as quadratic
forms in seeking their estimators. Second, we may observe that

Y, Y, 1,72
Erpmi(ep) = [ szsuwzw] <_ - _> + X ——

i<j Wi wj T Wi
Wy W I; W
> dgijIgjwiw; ( . > pofi
i<j w; w? T ow;
writing W,; commonly for V; or V;, assuming either (b) or (b)
to hold:
Wsi Wy I; W
My(tp) = =) > dgijLsjwiw; <w—;l 5 ) ZBi Sil jl
i<j i J
But

M(ep) = E1E(ep — Y)?
= E1EL [(ep —tp) + (tp — Y)]?
=E{Vi(Zb,1I;R;) + M1(tp)
= E120% 1 Wy + Mi(tp)

So, we have

RESULT 8.2
Wsi Wsj
mo(ep) = malep) + > > dgjIgjwiw; (F + 2 )
i<j i J

+ X <bSZL — ﬁ—;) I wsg;
T

i
writing wg; commonly for vs; and v; is an unbiased estimator for
M(ep) when either (b) and (c) together or (b) and (c) together
hold.

Here the condition (8.1) is not required.

REMARK 8.2 Result 8.2 is somewhat similar to RAO’s (1975a)
result, which is also constrained by the quadratic form expres-
stons for the variances of estimators t for Y .
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It is appropriate to briefly state below RAJ’s (1968) and RAO’s
(1975a) results in this context to appreciate the roles for these
changes. Relevant references are CHAUDHURI (2000) and
CHAUDHURI, ADHIKARI and DIHIDAR (2000a, 2000b).

For tp = Xb,1,;Y; subject to E1(bg;I;) = 1Viin U so that
E(t;) =Y and its variance is

Vilty) = ZCiYiz + Z ZCinin

i£]

where

C;=E(bi1;) -1
and

Cij = E1(bsbsj1;) — 1

if there exist Cy;, Cy;; free of Y such that E1(Cy;1;) = C; and
E(Cyjlgj) = Cjj, it follows that e, = by I; R; satisfies, as-
suming (a), (b), and (c¢) above,

E(ep) =Y,V (ep) = Vilty) + E1 (DL V) =V,
and noting

v1(tp) = ECSiISiYiz + Z chijlsinin

i#j

satisfies E1v1(tp) = V1(#p), it follows on writing

viley) = vi(tp)ly—r = XCsI4R} + > CyjlsijRiR;

i#j
that one has for
v(ep) = vilep) + by I5v;,
Ev(eb) = V(eb) = V

This is due to RAJ (1968). If, instead of (b) and (c) we have (b)
and (c), then RAO (1975a) has the following modifications to
the above.

Viep) = Vilty) + E1 (2021, Vy) =V,

(8.2)

and

v'(ep) = vilep) + = (b2 — Cyi) v
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satisfies Ev'(ep) = V'. Thus, v'(ep) is another unbiased esti-

mator for V (ep) as alternative to v(ep).

In particular, if v(s) is a constant for every s with p(s) > 0,
so that SEN (1953) and YATES and GRUNDY’s (1953) unbiased
estimator vsy is available for the variance of the HTE in a
single-stage sampling, RAJ (1968) has the following results.

Under (a)—(b),
R

Y; i
tH:Z__’ eH:Z;’ Eleg)=Y

iep T ieS

Y, Y,
Vieg) = ZZ(JT,JIJ ;) <;——

i<j 7j
For
TG — T Ri R;
Vien) = 3 ST <; S
i<jes l J
one has

Ev'(eg) =V (en) =

In case, instead, (b) and (c) hold, then the above results change

into less elegant results.
If (a), (b) and (c)’ hold, then

- ) (2 enf )

by T T
and
s - T (23 (.
i<jes i
T — T Usj
Y ()
i<jes TTij T
satisfies
Ev'(eg)=V".

If, in the single-stage sampling, one is satisfied to employ a
biased estimator for Y like the generalized regression (GREG)

© 2005 by Taylor & Francis Group, LLC
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estimator ¢g or a version of it like ¢ggr, and is also satisfied to
employ a not-unbiased estimator like my(¢g) or my(tgr) for the
TAYLOR version of an approximate MSE for ¢z or for tgr as
Mg or Mg, then supposing that Y; is not ascertainable but is
required to be unbiasedly estimated by R;, through sampling
at later stages while X;, an auxiliary positive value with total
X, is available for every i in U, we may be satisfied with the
results of the following types.
Let

eG =tgly—r = )

ies

B

i
8si-
T

Then,

M(eg) = E1EL [eg — Y2
= ELE;[(e¢g — R)+ (R -Y)]?
=EL [MGa)ly=r] +>_Vi

assuming (a)—(c) to hold.
Then,

mp(te)ly=r + stiIsiUi =uvpleg), k=1,2
lES

provides a desirable estimator for M(eg) with a suitable choice
of bs;, which may be subject to E1(bs;I;) = 1 Vi.

If instead of (b) and (c), only (b) and (c)’ are supposed to
hold, elegant results are hard to come by.

An analogous treatment is recommended starting with
tgr. Suppose one needs to estimate instead of Y, the mean

N M, - T Lijk Rij
SYY: 3 Yy e e o S Vi
Nar = N M, = s T ~Lijk FRij
SiMi UYL VS e S T Lk
writing 1;;z;, = 1 if uth 5th-stage unit of /th 4th-stage unit of
kth 3rd-stage unit of jth 2nd-stage unit of ith first stage unit
has a y value, for example, with a 5-stage sampling.
Here both >V Y; and >) M; are unknown and both are

to be estimated, and Y is to be estimated by the ratio of an
estimator Yy for Y = Zzlv Y, to the estimator M, for M =

Zzlw M;. Then, R = % is clearly a ratio estimator for the ratio

Y =
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Y = 1. Then, supposmg a suitable estimator V(Y) for the
Varlance or MSE of Y is employed, then V(R) is to be taken as

2
+ Z bSi wsi
i€s

applying the usual procedure involved for ratio estimation.
ThlS is because wrltmg %; as an unbiased estimator for

Z Zk” > Liji > Riji Yijkiw and wg; as an estimator for
Va" (yz) =V5i(3)

A (8.3)
Yijklu=Yijklu —Rlijkm ’

A A 1 NN
VR = — V()
(M2 [ |

LY
Y stlyl’ M ZbSlMl’ Y ~
lES lES M
E\EL(Y -Y)?~E; |Y 0% VL@»/(W]
i€s
2
+E; Yies bsiy; _ X
Zies bsiM' M
2
ZElE [Zzesb wsz]
(M)?

[ S

1€S

An estimator for this may therefore be taken as Eq. (8.3) above.

It may be in order at this stage to elaborate on the con-
cept of Rao-Blackwellization, relevant in the context of survey
sampling.

Let from a survey population U = (1, . ,N)asam-
plesequences = (i1, ..., ij,...,i;) of nunits ofU be drawn that
are not necessarily distinct and where the order in which the
units are drawn is maintained as the 1st, 2nd, ..., nth.

Lets* = {j1,...,Ji,..., Jz) be the set of distinct elements
(1 < £ < n) in s ignoring the order of their occurrence with
no repetition of the elements in s*. Let ) ,_, .« denote the sum
over the sequences s for each of which s* is the set of distinct
units with no repetitions therein. Let p(s) be the probability
of selecting s and p(s*) = >, .« p(s) that of s*.
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Let ¢t = t(s,Y) be any estimator for a parameter 6 which
is a function of Y = (y1,...,%;,...,yn). Then, let

Zs—)s* t(S’ X)p(s)
Zs—w* p(s)

= t*(s*,Y) for every s to which s* corresponds as the set of all
the distinct units therein with no repetitions.
Then,

Ep(t) =) p(s)t(s,Y)

=> > ps)s,Y)

_ Yoo t(s, Y )p(s) .
B Z [ Zsas* p(S) 1 p(s )

=) t*(s*,Y)p(s")
=E,(t")

t* =1t"(s,Y) =

s*

Also,
Eptt*) =) p(s)t(s, Y)t*(s,Y)

_ K[ ok Zs—>s* t(s,Y)p(s) "
B %‘:t © ’K) [ Zs—)s* p(s) ]p(s )

=3 p(s) [t5(s%, Y))% = Ep(¢%)?

So,

0<E,(t—t2=E,t? — E,t*)?

=V,t) = V(")

Thus,

Vp(t) = V(%) + Ep(t — t*)?

> V(")

equality holding only in case #(s, Y) = t*(s, Y) for every s with
p(s) > 0.

So, the statistic ¢* free of order and/or repetition of units

in a sample is better than ¢ as an estimator for 6, both having
the same expectation but ¢* having a less variance than ¢.
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The operation of deriving ¢* from ¢ may be regarded as one
of Rao-Blackwellization, which consists of deriving an estima-
tor based on a sufficient statistic, rather the minimal sufficient
statistic, from another statistic and showing that the former
has the same expectation as the latter, but with a smaller
variance.

In order to further elaborate on this let us write

d = ((iy, yi1), ooy (T, Q’in))

to denote survey data on choosing a sample s with probabil-
ity p(s) and observing the values of y as y = (¥1, ..., yin) for
the respective sampled units (i1,...,i,) = s. Let Q = {Y| —
oo <a; <y <b; <400} be the parametric space, of which Y
is an element and Q@ = {Y| —00 < a; < y; < b; + oo for
i=1,...,N(#1i1,...,ip)buty;, ..., v, are as observed, be the
subset of Q that is consistent with d . It follows that Qg = Qg+
where

d* ={(j1,yj1),---Ur, ¥jr)}.
Then the probability of observing d is Py(d) = p(s)Iy(d),
where Iy (d) =1if Y € Qg, = 0 otherwise and that of observ-
ing d*is

Py(d™) = p(s)Iy(d™)
where

Iy(d*)=1 if Y €Qq,=0else.

Then, Iy(d) = Iy(d*) and assuming p(-) as a noninformative
design, it follows that the conditional probability of observing
d,givend* is

Py(dNnd*)  Py(d) p(s)

Py(d*) — Py(d*) p(s*)

As the ratio If(gi)) is free of Y, it follows that d * is a sufficient
statistic.

To prove that d* is the minimal sufficient statistic, let
t = t(d) be another sufficient statistic.

Let d1, d2 be two separate survey data points and d7,d
the corresponding sufficient statistics of the form d * as derived

Py(d|d™) =
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from d . We state below that
t(d1) = t(dy) will imply di = d

and hence imply that d * is a minimal sufficient statistic.
Letting p be a noninformative design, we may notice that

Py(d1) = Py(d1Nt(d1))
= Py (¢t(d1))Py(d1]t(d1))
= Py (¢(d1))C1,

where C1 is a constant free of Y because ¢ is a sufficient statis-
tic. Similarly,

Py (d3) = Py(t(d2))C3, say,
= Py (t(d1))Cy

because t(d1) = t(ds) by hypothesis.
So,

C
Py(ds) = Py(dy) =2
Cy
or
p(s2)ly(dg) = p(s))Iy(d1)C,
where C is a constant free of Y or
p(s5)Iy(dsy) o« p(s])Iy(d7)
and this implies d5 = d] as is required to be shown.

8.1.2 PPSWR Sampling of First-Stage Units

First, from DES RAJ (1968) we note the following. Suppose
a PPSWR sample of fsus is chosen in n draws from U using
normed size measures P;(0 < P; < i, X P; = 1). Writing vy, (p;,)
for the Y;(p;) value for the unit chosen on the rth draw, (r =

1,...,n) the HANSEN-HURWITZ estimator
1&
tHH = — ) —
n n=1 pr
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might be used to estimate Y because E,(tgy) =Y if Y; could
be ascertained. But since Y;’s are not ascertainable, suppose
that each time an fsu i appears in one of the n independent
draws by PPSWR method, an independent subsample of ele-
ments is selected in subsequent stages in such a manner that
estimators J, for y,. are available such that E;(j.) = y. and
V1(9») = 02 with uncorrelated y1, ys, . .., y,. Then, DAS RAJ’s
(1968) proposed estimator for Y is

I”A
rlpr

€eH =

for which the variance is

1
Vieg) =V,(tgu) + E, [—226—2
n® — Pr
nz Z<Pi +n21: ‘

= Vpy,say.
It follows that

Y Yr
e = 2n2(n 1)22( p>

r’ r

T‘— 7" =
r #r’
is an unbiased estimator for Vg because
o2 2

E(vy) = D [ + I O g W
2n%(n — 1) S | p? p,/ pi py  DPrDpr

Y2 1 o2

Evy=E,E — = Ti_y2) 4%

va = Ep E(vn) . (Z P, ) + nz 2

1 Y; 2 1 o2
==Y P (5-Y) +-S L =Vien).
3 (Pl_ )+nzp. ()

12

Thus here an estimator for o2 is not required in estimating

V(en).
But it should be noted that

(a) sampling with replacement is not very desirable be-
cause it allows reappearance of the same unit leading
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to estimators that can be improved upon by Rao-
Blackwellization, and

(b) resampling the same sampled cluster may be tedious
and impracticable. So, even if a PPSWR sample
(in n draws) of cluster may be selected, it may be con-
sidered prudent to subsample a chosen cluster only
once irrespective of its frequency of appearance in the
sample.

Thus one may consider the following alternative estimator for
Y, namely,

1Y,
eA—;LlZ?ifsz-

Here f; is the frequency of i in s, Y, is an estimator for Y;
based on sampling at later stages of the cluster i in such a way
that

ELY)=Y; Vi(Y)) =0}

and further, based on sampling of ith cluster at later stages 6i2
is available as an estimator for oiz such that

Then,
1 Y;
Er(es) = . ; Fifsi = t4, say,

and E(es) = E,(ta) =Y because E,(f;) = nP;. Furthermore

Viea) = V(ta) + Ep [Vi(ea)]
1 Y?

‘ 1—o0? n-1
-7 sy e

n n

noting that V,(fs) = nP;(1 — P;), covy(fsi, fsj) = —nP; P;.
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An unbiased estimator for V (e4) may be taken as

1 [1 Y2 o n—1 62
UA—(n_l)[ Zp_?fsz_eA'i' Zﬁfsz

n

n
Er(va) = (nil) [%Zi—;fsiﬂL%Z;—i;fsi—EL(ei)
+n;1§:;—i;fsi]
E(va) = (nil) [Z§+Z§—V(€A)—Y2

+(n— 1>Z%~2] — V (ea)

Thus, this estimator of variance is not free of 5;‘2 and, interest-
ingly, the estimator e4 is less efficient than ey . So, if repeated
subsampling is feasible, then DES RAJ’s (1968) procedure is
better than this alternative. However, if repeated subsampling
is to be eschewed from practical considerations, this alterna-
tive may be tried in case, again from practical considerations,
it is considered desirable to choose a sample of fsus by PPSWR
method.

8.1.3 Subsampling of Second-Stage Units
to Simplify Variance Estimation

CHAUDHURI and ARNAB (1982) have shown that if the fsus
are chosen according to any sampling scheme without replace-
ment, or they are selected with replacement but an estima-
tor is based on the distinct units that are each subsampled
only once, then for any homogeneous linear function of esti-
mated fsu totals used to estimate the population total, among
all homogeneous quadratic functions of estimated fsu totals
there does not exist one that is unbiased for the variance of
the estimated population total. For the existence of an unbi-
ased variance estimator one needs necessarily an unbiased
estimator for the variance of the estimated fsu total for such
strategies as noted above.
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SRINATH and HIDIROGLOU (1980) contrived the following
device to bypass the requirement of estimating V(T;). They
consider choosing the fsus by SRSWOR scheme, choosing from
each sampled fsu i in the sample s again an SRSWOR s;, in
independent manners cluster-wise of size m; from M; ssus in
it, and using

N
e = — Z Miyi

n i€s
as an estimator for Y. Here y; is the mean of the y values of
the ssusin s; for i € s. Then they recommend taking a subsam-
ple slf of size m; out of s; again by SRSWOR method, getting y;
as the mean of y based on the ssus in sg. They show that an
unbiased estimator for V (e) is available exclusively in terms
of y; for i € s although not in terms of y; as, ideally, one would
like to have.

ARNAB (1988) argues that restriction to SRSWOR is nei-
ther necessary nor desirable and discarding the ssus in s; or slf
is neither desirable nor necessary, and gives further general-
izations of this basic idea of SRINATH and HIDIROGLOU (1980).
Following DES RAJ’s (1968) general strategy, he suggests start-
ing with the estimator

ep =) bylyT;
with
Viep) =Y Yioi — D+ Y ViV (0 — D+ > ao?
i#]
Vi(T) = o}

Let s; be a sample of ssus chosen from the ith fsu chosen in
the sample s selected such that ;, based on slf, is an unbiased
estimator of Y;, that is, Er(y;) = Y; with Vi(¥;) = ¢? so
chosen that (o; — 1)(;51-2 = aiaiz. He shows that the variance of

ear = »_ ITi/mi
S

then is unbiasedly estimated by
var = Y _dg TP+ dgj Wi
S

i#j€s
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where

dsi =

o; 1,%' _ i>dsij _ % 1'
TT; TT; Tij

He illustrates various schemes for which this approach is suc-
cessful and also explains how a weighted combination based
on a number of disjoint and exhaustive subsamples slf of s; may
also be derived for the same purpose, thereby avoiding loss of
datgl available from the entire sample by discarding ssus in s;
ors;.

8.1.4 Estimation of Y

We have so far restricted ourselves to only unbiased estimators
of Y. But suppose we want to estimate

N N
?:ZYi/ZMi
1 1

where Zzlv M; may also be unknown like Y = Zjlv Y; and we
may know or ascertain only the values of M; for the clusters
actually selected. In that case, an unbiased estimator is un-
likely to be available for Y. Rather, a biased ratio estimator
tr = 3;Y;/XsM; may be based on an SRSWOR s of selected
clusters if Y;’s are ascertainable. If not, one may employ

_ Zs Ti
Es M; ’

a biased estimator for Y, using 7’s as unbiased estimators for
Y; based on samples taken at later stages of sampling from
the fsu i such that E;(T;) = Y; with V(T;) equal to V or
aiz admitting respectively unbiased estimators V; or 6L.2 such
that E(Vy) = Vg or EL(6?) = 0.

In general, following RAO and VIJAYAN (1977) and RAO
(1979), let us start with

t= ZbSiISiYi
s

€R

not necessarily unbiased for Y such that

M=E,(t-Y)?=> > YY;dj
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with
E (bl — D(bsjIs; — 1) =d

Let us assume that there exist W; £ 0 such that if Z; =
Y;/W; = ¢ (a non-zero constant) for all i, then M equals zero.
In that case, from chapter 2 we know that we may write

M=-3"3"di;WiW; (Z - Z;)°

i<j

Y YA, WW, (3; "; >2.

i<j

Assuming that we may find out d;; such that
E,(dgjlsj) =d;j,
then

2
Y, Y;
m ==X Yl Wi (5 - )

i<j

is unbiased for M, that is, E,(m) = M

Now, supposing Y;’s are unascertainable, we replace Y;
by T; with E;T; =Y; so as to use e = Xb;I; T; to estimate Y .
Then

E,Er(e—Y) =E,E[(e—1t)+(t —Y)]?

2
=EpEL lz boiIi(T; = Y;) + > Yilbgls — 1)]
5y [ a1

2
=S 6’E,p%1y) ZZdUW W; (W — W)

=Yoot - S, (M 21
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An unbiased estimator for E,Er(e — Y )? is then

2
N T. T,
YLt - X Yt (g -

i<j

&2 52
STt ()

i<j

If Gi2 is not applicable, but V; must be used, then
EpEL(e - Y)2 = Ep Zbgivsilsi

Sy A (% - %)2

i<j

and an unbiased estimator for this is

T, T;\
STEVli —> > deiLij WiW; <W W)

i<j

V..
FY Sl (W2 )
J

i<j

Finally, in order to estimate Y = E{V Y,/ E{V M; when Y; is not
ascertainable and M; is unknown for i ¢ s we may proceed as

follows:
Take for an SRSWOR s of fsus

é:ZTi/ZMi

Ve | N21-f1 1 X
E = Y, —
’ hzs M;-)Zl " (S ) =D ;

N 2
Y;

S Yy,
1 M;
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and this may be reasonably estimated by
S VO My)?
1-f) n ( Y T )2
T, — =2 —M;
" (s M) (n = 1) [zs: 2 M;

_ szi _ Zs Vsi Zs éulz + 223 Mivsi‘|
S (ZS Ml) ZS Ml

neglecting the error in replacing Eiv M; throughout by its un-
biased estimator

N
;%:Mi.

For further discussion on multistage sampling, one may
consult RAO (1988) and BELLHOUSE (1985).

8.2 DOUBLE SAMPLING WITH EQUAL
AND VARYING PROBABILITIES:
DESIGN-UNBIASED AND
REGRESSION ESTIMATORS

Assume that positive size measures W; with a total (mean)
W (W) are available for the units of a finite population U =
1,...,i,...,N). Suppose that it is difficult and expensive to
measure the values Y; of the variable y of interest and that it is
less expensive to ascertain the values X; of an auxiliary vari-
able x. Then it seems to be reasonable to take an initial sample
s1, of large size nq, with a probability p;(s1) according to a de-
sign p; that may depend on W = (W, ... , Wy ) and to observe
the values X; fori € s;. Supposing that y is correlated with not
only x but also with w for which the valuesare W;, i =1,... N,
one may now take a subsample s; of size ny (< nj, possibly
ng << ny) with a conditional probability po(ss/s1) from s;. This
conditional probability sampling design po(./.) may utilize the
values W; and also X; for j € s;. The overall sample may be
denoted as § = (s1,s9) = [(Z, j)|i € s;, ] € so] and the overall
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sampling design as p such that
p(8) = pi(s1) palsa/sy).

The ascertained survey data may be denoted as d = [(i, j, X;,
Y ;)i € s1,j € s2]. This procedure is called two-phase or dou-
ble sampling in the literature.

For the time being, we suppose that po does not involve
X=(Xq,...,X;,...,Xn) butmayinvolveonly W = (W, ...,
W;, ..., Wx). In order to estimate Y, RAO and BELLHOUSE
(1978) considered the following class of nonhomogeneous lin-
ear estimators

th=bs+ Y bs;Y;+ > bsX.
J €S2 1€81
They assumed that X ; are ascertainable free of observational
errors, but the Y’s are observable as Y ;’s with unknown ran-
dom errors (Y ; —Y)’s.
In the following, we specialize their model assuming error-
free observation of the y values. Writing

. X N
R; = R=—>R, T,==LT==->NT;
Wy N 2B T w;’ N; 7
they postulated a model:
En(ej) = Em(e;) =0

En(e?) = 81> 0), Enlej€;) = y1, Em(¢;") =m > 0
En(ejer) =82(j #k), Em(ej€y) = yo, Em(e;e,) = n2 (j #k),

where E,, is the operator for expectation with respect to the
joint probability distribution of the vectors R = (R1, ..., Ry)
and T = (T4, ..., Tn). From the above, it is apparent that the
pairs of random variables (R;, T;) have a joint exchangeable
distribution. For example, this exchangeable distribution may
be a permutation distribution that regards a particular real-
ization [(R;,, T},), ..., (Riy, Tiy )] for a permutation (i1, ..., in)
of (1,..., N) as one of the N'! possible vectors [(R;,, T},), ...,
(Rjy, TJ-N)]/ chosen with a common probability 1/N!, there
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being N'! such vectors corresponding to as many permutations
(j1,...,Jn) of the fixed vector (1,..., N). Such an assump-
tion of a permutation model, or, more generally, an exchange-
able model as postulated above, presuppose that the R;’s and
T;’s are unrelated to the W;’s and especially that the labels
1,..., N bear no information on R and 7. For permutation
models, important references are KEMPTHORNE (1969), C. R.
RAO (1971), THOMPSON (1971) and T. J. RAO (1984).

Under this model, they show that among all estimators
of the form #; above, subject to the model-design unbiasedness
restriction E,E (&, —Y) =0,

[n2 % < Z Wi ng sZ >1
where 8 = ﬁ minimizes E,, E,(t, — Y )2.

If the estimator #; is restricted to be design-unbiased for
Y, then they show that the optimal strategy among (p,t)
is (px*, tp*) where px* is a double sampling design for which
T, = n1W,-/W and TT9; = ng/nl, I = 1, ey N . Here by ﬂli(ﬂ'gi)
we mean the inclusion probability of a unit according to first-
phase sampling design p; and second-phase conditional inclu-
sion probability according to second-phase sampling design po
discussed above.

A shortcoming of ¢; is that it contains an unknown pa-
rameter 8 and hence is not practicable as such. In practice one
may employ the double sample regression estimator obtained
by replacing B by B where

B 172

1 — fe
where by 71, 72, 7)1 and 73 we mean sample-based estimators of
the quantltles of the form E ,(u; —E,u j)(v;, — Epvp) whereu;,
v stand for WJ , éf,k, etc., taken in obvious manners. But the
consequence of thls replacement on ¢; in respect of bias and
efficiency is neither known nor studied.

Considering the same class of fixed-sample-size two-phase
sampling designs p, as above, CHAUDHURI and ADHIKARI
(1983, 1985) proposed the estimator for Y based on data d as
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&,;-X;)
ty =2 nf +3 o, 2 , which is an extension of the Horvitz-
Thompson (1952) method to the two-phase sampling. This
estimator is free from unknown parameters, but its scope is
limited because it does not include anything like the regres-
sion coefficient of y on x or on w or of y/w on x/w, etc. But
following GODAMBE and JOSHI (1965), they proved many de-
sirable and optimal properties of £, and also proved optimality
properties of the subclass of strategies (7, ;) with 7 as the
class of two-phase sampling designs for which 71; = nyW;/ W
and wg; = noW;/W,i = 1,...,N. Details may be found in
CHAUDHURI and VOS (1988) and CHAUDHURI (1988), among
others.

MUKERJEE and CHAUDHURI (1990) extended the design p
to allow pq to involve X; fori € s; and proposed the regression
estimator for Y as

=T b S s X n (s -]
S

1 1 s1 1

motivated by consideration of the model for which they postu-
late the following:

En(Y(X;) = prXi + BoWi, Epi(X;) = BsWi,0i = 1,2, ...
Another motivation to hit upon this regression form is the fol-
lowing: if X; were known for every i in U, then one might
employ the regression estimator

’ Y; ~ X; ~ W;
trzz _ﬂl<z _X>—,32<Z ) —W)

S T2 S 172

noting that the unknown X in tr/ is just replaced in ¢. by the
sample-based quantity

Here ,3j, J = 1,2, 3 are suitable estimators for 8;, j = 1,2, 3,
respectively.
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In order to find appropriate p ;’s, choose appropriate
classes of designs, and establish desirable properties for the
resulting strategies involving ¢, as the estimator for Y, they
considered asymptotic design unbiasedness (ADU), asymptotic
design consistency (ADC), and derived lower bounds for plim
E,E,(t, — Y)? following the approach of ROBINSON and
SARNDAL (1983) who made a similar investigation to derive
asymtotically desirable properties of regression estimators in
case of single-phase sampling. The details are too technical
and hence are omitted here, inviting the interested readers to
see the original sources cited above.

8.3 SAMPLING ON SUCCESSIVE OCCASIONS
WITH VARYING PROBALITIES

Suppose a finite population U = (1, ..., N) is required to be
surveyed to estimate the total or mean a number of times over
which its composition remains intact. But a variable of inter-
est should be supposed to undergo changes, though the values
on close intervals apart should be highly correlated, the degree
of correlation decreasing with time. For two occasions called,
respectively, (1) the previous and (2) the current occasions, let
us denote the values as X; and Y; (i = 1,..., N), regarding
them, respectively, as values of a variable x denoting the pre-
vious and a variable y denoting the current values. Suppose
on the first occasion a sample s; is chosen from U adopting a
design p; with a fixed size n; for which the values X;, i € sq,
are ascertained. On the current occasion

(a) a subsample sy of size ng(<nq) is drawn from s; fol-
lowing a design ps, and

(b) a subsample s3 of size ng(<N — ny) is drawn from
U — s; adopting a design ps.

The designs ps and ps3 are both conditional probability sam-
pling designs. In employing p1, p2, p3, the known values W;(i =
1,...,N) of some variable w correlated with x and y may be
utilized, and, in case of pg, the realized values X;, i € s; may
further be utilized. We will refer to the overall design thus
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employed as p for which the total sample size is ny + ng +
ng = n. The main interest here is to estimate ¥ = E{V Y; or
Y = =VY,/N, but the problem is to exploit the information
gathered on X;, i € s; and the association between x and y
that may be assessed through the data on X;,Y; for i € ss.
The overall data at hand may be summarized by the notation
d =1, j,X;,Y;)li €s1,j €sgUss] and the overall sample of
size nby s = (s1, 9, s3). The main difference between the situa-
tion here and in double sampling is that here, in addition to the
subsample sy (of s1), which in this case is called the matched
subsample, there is an additional unmatched subsample
s3 of U —s1. RAO and BELLHOUSE (1978) postulated the same
model connecting X = (X1q,...,Xn),Y =(Y1,...,Yn) and
W = (Wy,...,Wyn) as stated in section 8.2 and considered
estimators of the term

try = b +stij +Zb§ij +Zbéij + Z béj,Xj
S2 S3 S2

S1—52

required to satisfy E,,E,(¢ry) = RW = . They showed that
an optimal estimator in this class is ¢}, for which

EmEp(tRb - M)2 > EmEp(t;%b - M)z
and ¢}, is given by
thy = W [¥t + (1 —y)tq]

where

tl:l NV o _riTYe
n3 \g ’ n—nz’ 81— 8’
2 ’ ny 1_¢
= :1—— =
8 =pp, ¢ o v 1 g2

Requiring the class of estimators tg, above to be design-
unbiased for Y and denoting by p* the subclass of the above
designs for which p1, ps, p3 are restricted to have respective
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inclusion probabilities,

I’L1Wi .
T = 77 125 U7

ng .
T2 = —, 1 €8y,

n

n3W- .

7'[3i=—lW for i EU—Sl,

ZU—Sl 4

CHAUDHURI (1985) showed that
EnE,(try —Y)? > EnEp.(th, — V)2

He also showed how to implement sample selection so as to
realize px by adapting FELLEGI’s (1963) scheme of sampling.

GHOSH and LAHIRI (1987) have mentioned how their em-
pirical Bayes estimators (EBE) can be used in the context of
sampling on successive occasions. Their EBE procedure has
been described by us briefly in section 4.2. But in actual large-
scale surveys, this procedure is not yet known to have been put
into practice, though we feel that projects deserve to be under-
taken toward applications of EBE in this repetitive sampling
context.

Numerous strategies for sampling on successive occasions
are discussed in COCHRAN’s (1977) standard text; CHAUDHURI
and VoS (1988) have reviewed many more. They point out
many amendments to our above designs p. For example, they
differentiate between designs for which s3 is to be subsampled
from U itself, from U — s1, or from U — s, and discuss corre-
sponding advantages and disadvantages. They refer to various
combinations of known sampling schemes to be adopted to re-
alize p1, p2, and p3, present various classes of estimators for
Y or Y, and refer to resulting consequences. An interested
reader may be persuaded to look at the original references
cited in CHAUDHURI and VOS (1988).
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Chapter9

Resampling and Variance
Estimation in Complex Surveys

By a complex survey, we mean one in which any scheme of
sampling other than simple random sampling (SRS) with re-
placement (WR) or without replacement (WOR) is employed;
a common name for these two SRS schemes will be adopted
as epsem, that is, equal probability selection methods.
Estimating population totals or means involves weighting the
sample observations using design parameters. Estimators for
totals and means that are of practical uses are linear in ob-
servations on the values of the variables of interest. For such
linear functions of single variables, variances or mean square
errors (MSE) are quadratic forms, and suitable sample-based
estimators for them are easily found, as we have discussed
and illustrated in the preceding chapters. But the problem no
longer remains so simple if we intend to estimate nonlinear
functions of totals or means of more than one variable. In such
cases, estimators that are linear functions of observations on
more than one variable are not usually available, but nonlin-
ear functions become indispensable. Their variances or MSEs,
however, are difficult to express in simple exact forms, and
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estimators thereof with desirable properties and simple cos-
metic forms are not easy to work out. To get over these situa-
tions, alternative techniques are needed, and the following
sections give a brief account of them.

9.1 LINEARIZATION

Let us suppose that 64, ...,0x are K population parameters
and f = f(64,...,0k) is a parametric function we intend to
estimate. Let #4, ..., tx be respective linear estimators based
on a common sample s of size n, for 61, ..., 0. We assume that
f (t1,...,tg) can be expanded in a TAYLOR series and well-
approximated for large n by the linear function in ¢,
i1=1,2,...,K:

K
f6,...,0K)+ Z)Li(ti —6;)
1

where

A=

|
—~
S
=
-

'7tK)]£:Q7L=177k
£:(t17"'7tK)7Q:(817“',9K)7

and of course we assume that n is large. Since 6;’s and 1;’s are
constants, we approximate the variance of f (¢) by the vari-
ance of

K
Z Aiti
1

that is, we take

K
VIif@®l=V [Zx,-tj].
1

Let 6; for j = 1,..., K denote the finite population total for
a certain real variable §;,j = 1,..., K, that is, ; = Zzlv i,
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J =1,..., K and ¢;’s be of the form
ti =) bs&ji,(j=1,...,K)

lLES
using by as sample-based weights for the values &;;,i =
1,..., N of the &;’s for a finite population U = (1,...,N) of
size N .
So, we may write

K
VIFOI=V [ (Z Kjbsifji) =V sti¢i]
ies \j=1 i€s
where
K
di = > Ljkji.
j=1

This ¢;, which is obtained by aggregating over all the K vari-
ables, may be described as a synthetic variable. Now,

> b

ieS
is a linear function, and so, applying usual methods of finding
variances or approximate variances of linear functions, one
may proceed to work out formulae for exact or approximate
unbiased estimators for

> bsi¢i]

1eS

\%4

and treat them as approximately unbiased estimators of vari-
ances or MSEs of the original estimator f (¢).

The only conditions for applicability of this procedure are
(a) large sample size n and (b) conformability of f to its Taylor
expansion. A detailed exposition of this topic is given by RAO
(1975b).

Let us illustrate an application of this procedure. This
form of the procedure is due to WOODRUFF (1971). Suppose
KZZ,SI =y,01 =Y :lethéZ =X, QZZXZEiVXi,

061 Y
f (01, 00) = G- X =R.
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Let an SRSWOR of size n be taken, yielding

N N
t) = ;ZYL" to = ;ZXZI’
S S

> Y _&

Zin B Xs
= 1/X),h=(-Y/X*=-R/X.

f(t,t2) =

Then,

@)= [F (- §o)

2 1 2

=]Z—2 (?) \% [Z(Yi—RXi)]
_N21-f 1 ¥ 2
- ?Tﬁ;m — RX;)

and this has the usual estimator

N2(1-f) 1

x2 n (n—

L DY.N2
D ZS:(YL RX;)

where R = y/x.

As another example let us consider K = 6,&, = 1, &
y, &3 = x,64 = ¥, & = x% and £ = xy. Let 6; = YV &y
N, =SVY,05 =3X;,0,=YYY2 05 = XV X2, 66
le\/' XiYi and

6106 — 6203
1
(6104 — 63) (6165 — 63)]

which is obviously the finite population correlation coefficient

. N S XY — (Y X)
Nyyz-ove] P [N e x2 - xoe]

Let p be any sampling design with 7; > 0

f01,...,06) = E

tjzz%, for j=1,...,6.

s 1
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Then, f (#1,...,t) takes the form, say,
_ (X, =) (25 - (5. 7) (5, %)

Ps = 12"

(=55 -0 e (=) (=2)]

Here b;; = l_, forevery j =1,...,6 and every s > i.
Aj = gf(tl,...,ta)kzg =y;(0)
J
is not difficult to work out. So, }"; .5 ¢; takes the form

6
Zi
> {Z x/fj(@sﬁ}/m =3 L, say,

ies \j=1 s M

which has the HORVITZ-THOMPSON (1952) estimator form.
This immediately yields a known variance form and well-
known estimators.

To consider another example, let us turn to HAJEK’s (1971)
estimator

ZS l/nl
> 1/mi

of the population mean Y based on an arbitrary design with
7; >0,i=1,...,N.Then,let & =1,> &; =N =01,& =y,
> =Y =0y,

2
01,09) = —
f( 1 2) 01;
=Y 1m, tg=> Yi/m.
S S

Then the variance of

Y. .
ft1,t2) = Ls Vi/Ti
Zs 1/m;
is approximately equal to

V[Z(M)]:%szfﬂ.

s T s T

tg =
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9.2 JACKKNIFE

Let 6 be a parameter required to be estimated from a sample s
of size n and ¢ = #(n) be an estimator for 6 based on s. Let ¢ be
a biased estimator of 8 with a bias B(¢) = B,(0) = E(t(n) —0)
expressible in the form

b1(6 bo (6 bs(6
Buo) = 29 2(2)+ 3(3)+...
n n n
where b;(0),j = 1,2,... are unknown functions of # and

b1(6) # 0. Then, in the following way, we can derive another
estimator for 0 with a bias of order 1/n2, that is, of the form
by(6)  b5(6)
n2 + n3
Let the sample s be split up into g(> 1) disjoint groups, each of a
size m(= g). Let the groups be marked 1, . . ., g and the statistic
¢t be now calculated on the basis of the values in s excluding
those in the ith group. The new statistic may be denoted as
t; = tj(n — m) as it is based on n — m units, omitting from s of
size n the m units in the ith group. Let us now consider a new
statistic

+...

e; =gt(n) — (g — Dt;(n—m)
called the ith pseudo-value. Then we have the expectation as
E(e;) =gEt(n) — (g — DE(;(n—m))

RO Oy
n n
~(g-1 {9+ brl6) b2(0)2+...]
n—-m ((n—m)

:9+bl<9)(’3—g_1)

n n—m

g g—1
+b2(9){;—4(n_m)2}+...
_o— g by(0)
7 g—-1 n?

Repeating this process we may derive g such pseudo-values ¢;,
i =1,...,g, each with a bias of order 1/n%. Now using these
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e;’s we may construct a new statistic, viz.,

1& g-1&
= — e; :gt(n) - ti(n_ m)
g; g =

i=1
=gt(n) — (g — 1)t, say.

Obviously, this new statistic ¢; has also a bias of order 1/n?
as an estimator for 6. Starting with ¢,; and applying this tech-
nique, we may get another estimator with a bias of order 1/n3.

The statistic ¢ is called a jackknife statistic. It was in-
troduced by QUENOUILLE (1949) as a bias reduction technique
(seen above). But later TUKEY (1958) started using the jack-
knife statistics in estimating mean square errors of biased es-
timators for parameters.

In order to estimate the mean square error (MSE) of the
jackknife statistic

1 8
_égei

one may consider the estimator

1&
ba = 1)Z< §Zei>

1

“eg-1 Z(e‘ t)*

g-1& 2
= (& — 1)~
: >

The pivotal
(tg —6)
N A

for large n and moderate g is supposed to have approximately
STUDENT’s ¢ distribution with (g — 1) degrees of freedom (df),
and for very large g its distribution may be approximated by
that of the standardized normal deviate t. Thent.; +t5_1 4/24/Us
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or tg £ 74/24/Vy is used to construct 100(1 — «)% confidence in-
tervals for 0 for large n, writing t;_1 o /2 (74/2) for the 100a/2%
point in the right tail area of the distribution of STUDENT’s
statistic with (g — 1) df (standardized normal deviate 7).

9.3 INTERPENETRATING NETWORK
OF SUBSAMPLING AND REPLICATED
SAMPLING

MAHALANOBIS (1946) introduced the technique of interpen-
etrating network of subsampling (IPNS) (1) to improve the
accuracy of data collection and (2) to throw interim measures
of error in estimation even before the completion of the en-
tire fieldwork in surveys and processing-cum-tabulation. The
method consists in dividing a sample into two or more parts,
entrusting each part to a separate batch of field workers. Since
each part is supposed to provide an estimate of the same
parameter, any awkward divergences among the estimates
emerging from the various parts are likely to create suspicion
about the quality of field work carried out by the various teams.
This realization should induce vigilance on their functions, en-
gendering higher qualities of work. Moreover, with the comple-
tion of each part, a separate estimate is produced, and with two
or more parts of data at hand using the separate comparable
estimates, a measure of error is available as soon as at least
two estimates are obtained. DEMING (1956) applied essentially
the same technique, but mainly with the intention of getting
an easy and simple estimate of the variance of an estimator
of any parameter, no matter how complicated the sampling
scheme. He called this the method of replicated sampling,
which is equivalent to IPNS. Let us see how it works.

Let K independent samples be selected from a given fi-
nite population each following the same scheme of sampling.
Let each sample throw up an estimator that is unbiased for a
parameter 6 of interest relating to the population. Let ¢, .. .,
ti,...,tg be K such independent estimators for 6. Then, E(¢;) =
0 foreveryi =1,..., K. Also each ¢; has the same variance be-
cause each is based on a design that is identical in all respects.
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Thus, V() =V ,foreveryi =1, ..., K. Then, for
1 X
I=—)> ¢
K 21
we have

_ 1 v
E@) =0, V(i) = ﬁZV(tD -

K
It follows that

=——=) ti—1)
K(K -1 4

is an unbiased estimator for V (7).
Incase K =2,V (¥) = % and

1 t1+t2)2 th+t\?] 1 5
U—§[<t1— 2 ) +<t2— 2 ) _Z(tl_tz)

and %ltl —to] is taken as a measure of the standard error of the
estimator £ = %(tl + t9) for 0. For the case K = 2, the IPNS is
called half-sampling.

If the samples are independently chosen, this procedure,
of course, is useful in estimating any finite population param-
eter no matter how complicated, and also it is immaterial how
complicated is the sampling scheme, provided an unbiased es-
timator is available. But in practice, for complicated param-
eters like population multiple correlation coefficient, ratio of
two means based on stratified two-stage sampling, etc., unbi-
ased estimators cannot be found. Moreover MAHALANOBIS’s
IPNS does not ensure independent sampling and hence the es-
timators ¢; for 6 are not independent but correlated. In IPNS a
realized sample s of size n is usually split up at random into two
or more groups usually of a common size. The manner of form-
ing the groups required to turn out mutually exclusive results
cannot but lead to estimates that are correlated. So, it is nec-
essary to examine both the bias of an estimator 7 = % Z{{ t; for
0 when 6 is a complex parameter for which ¢;’s are each biased
estimators and also of

(t; — 1)
K(K-1) T

v
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as an estimator for the variance or the mean square error of
t as an estimator for 6. WOLTER (1985) has made detailed in-
vestigation of IPNS and random group methods in tackling
the advantages and shortcomings of this method of replication.
These may really be called pseudo-replication or sample
re-use techniques because here essentially we have a single
sample from which an estimator ¢ for a parameter might be
obtained, but since it is difficult to estimate its variance, the
sample is artificially split up into components leading to sev-
eral estimators for the same parameter, and from the varia-
tions among these estimators a measure of error for an overall
combined estimator is derived. There is a considerable liter-
ature on this topic, but WOLTER’s (1985) text seems to pro-
vide an adequate coverage. KOOP (1967) demonstrated certain
merits in dividing a sample into unequal rather than equal
groups, ROY and SINGH (1973) showed advantages in form-
ing the groups on taking the units from the chosen sample
by SRS without replacement rather than with replacement.
CHAUDHURI and ADHIKARI (1987) derive further results as
followups to them.

9.4 BALANCED REPEATED REPLICATION

Suppose a finite population of N units is divided into L strata
of N1, Ng, ..., N1, units, respectively. From each stratum let
SRSWORs be independently selected, making n; draws from
thehth,h =1, ..., L. Let L be sufficiently large and n;, be taken
as2foreach h=1,..., L. Let us write (y41, yn2) as the vector
of variable values on the variable of interest y observed for the
sample from the Ath stratum. Then, with W, = N,/N,

1 + _
N ZNh <w> = ZWhyh = Yst> SAY

is taken as the usual unbiased estimator for Y = > W,Y,,
the population mean. Neglecting n;/Nj, = [, that is, ignoring
the finite population correction 1 — f for every h, we have the
variance of y,; as

V3, =Y WiSi/2
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where
Yy =Y )",
Ny -1 n

S? =

writing Y, as the value of ith unit of Ath stratum and Y, for
their mean. This V (¥,,) is unbiasedly estimated by

1

UV = Z Z W}%d}%,
where dj, = (yp1 — yne). Let us now form two half-samples by
taking into the first half-sample one of y,; and y,s for every
h =1,..., Lleaving the other ones, which together, over A =
1, ..., L, form the second half-sample. We denote the first half-
sample by I and the second by II. There are, in all, 2~ possible
ways of forming these half-samples. For the jth(j =1, ..., 25)
such formation, let §,; = 1(0) if y,; appears in I (II). Then,

the =Y W [8njyn1 + (1 — 81))yne]

the =Y Wi [(1 = 85j)yn1 + Snj yne]
form two unbiased estimators of Y based respectively on I and
II. Then, ¢; = %(tjl +tjo) = Wiy, forevery j =1,..., oL,
Also

vj = (tjl — tj2)2/4
may be taken as an estimator for

VED=V (3 Wigs) =V 5.
We may note that

1 , 1 ?
Z(tjl —tj9)" = 1 > Wiynidn |
h

writing ¥ =26y, —1=+1foreveryj =1,..., 2L, Thus,

1 1
vj = W2dZ + 12 2 WiWidndy v vny:
7 et
and
1 2 1 2 79
=1 h
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because }_ ; ¥nj¥w; = 0, the sum beingover j =1,..., 2L But
even for L = 10, 2 = 1024 so that numerous v,’s must be
calculated to produce T that equals the standard or customary
variance estimator v. So, it is desirable to form a small subset
of a moderate number, K, of replicates of I and II so that the
average of v;’s over that small subset may also equal v. In or-
der to do so, we are to form K half-samples I and II such that
Y'Ypivwj = 0, writing ¥’ for the sum over this small subset
of half-sample formations. Using Hadamard matrices with
entries +1, which are square matrices of orders that are mul-
tiples of 4, it is easy to construct such half-sample replicates
and the number of such replicates, namely K, is a multiple of
4 and is within the range (L, L + 3). Thus, for L = 10 strata,
K = 12 replicates are enough to yield X'y ¥ ; = 0 giving

1 /

EE vj =v.

Let us illustrate below the choice of the values of y; (writing
+ for +1 and — for —1) for L=5o0r 6 and K = 8.

Values of 1pj(£)
Stratum number A

Replicate

number j 1 2 3 4 5 6
1 + + - - - +
2 + + - + - -
3 — + + — - -
4 - + + + - +
5 + - + - - +
6 - - + + - -
7 - - - + - +
8 _ _ _ _ _ _

It should be noted that if the parameter of interest is the simple
linear parameter, namely the population mean, and the esti-
mator is the standard linear unbiased estimatory,, = Y W3y,
then a standard unbiased estimator ignoring fpc, namely v =
1> WZd2,is available, and the above exercise of forming repli-
cates of half-samples in a balanced manner ensuring the condi-
tion X ¥ Yj = 0 of orthogonality to achieve v, /K equal

© 2005 by Taylor & Francis Group, LLC



Resampling and Variance Estimation in Complex Surveys 213

to v seems redundant. Actually, this procedure of forming bal-
anced replications is considered useful to apply to alterna-
tive variance estimator formation when, in a more complicated
and nonlinear case, a standard estimator is not available. For
example, in estimating the finite population correlation coeffi-
cient oy between two variables y and x, one may calculate the
sample correlation coefficient based on the first half-sample
values

[8nj yn1 + (1 — 8pj)yn2, Snjxn1 + (1 — 8pj)xng]

forh=1,...,L, callit ry;, and the same based on the second
half-sample values

(1 — 81 )yn1 + SnjYno, (1 — 8pj)xp1 + Spjxno]

over all the strata o = 1,...,L and call it rg;. Then, r =
’(r1 j+raj) may be taken as an overall estimator for px
and 4K Y(ry —ro J) as an estimator for the variance of 7, ¥’
denoting the sum over a balanced set of K replicates for Wthh
Y'Y ¥wj = 0. In this case, a standard variance estimator is
not available, and hence the utility of the procedure.
KEYFITZ (1957) earlier considered estimation of variances
of estimators when only two sample observations are recorded
from each of several strata. But the above repeated orthogonal
replication method (or balanced repeated replication method
or balanced half-sampling method) was introduced and stud-
ied by MCCARTHY (1966, 1969) to consider variance estima-
tion for nonlinear statistics like correlation and regression
estimates, in particular when only two observations on each
variable are available from several strata. To ensure orthogo-
nality, or balancing, and keep the number of replicates down,
HADAMARD matrices are utilized. GURNEY and JEWETT (1975)
extended this to cover the case of exactly p(>2) observations
per stratum, with p as any prime positive integer. GUPTA and
NIGAM (1987) extended it to cover the case of any arbitrary
number of observations per stratum. They showed that bal-
anced subsamples strata-wise may be derived for useful vari-
ance estimation using mixed orthogonal arrays of strength two
or equivalently equal frequency orthogonal main effects plans
for asymmetrical factorials. WU (1991) pointed out that an easy
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way to cover arbitrary number of units per stratum is to di-
vide the units in each stratum separately and independently
into two groups of a common number of units, or closely as
far as practicable, and then apply the balanced half-sampling
method to the two groups.

He also notes that neither this method nor GUPTA and
NIGAM’s (1987) method is efficient enough and recommends
a revised method of balanced repeated replications based on
mixed orthogonal arrays. SITTER (1993) points out the diffi-
culty with the mixed orthogonal arrays to keep the number of
replicates in check while constructing the orthogonal arrays.
As a remedy, he prescribes the use of orthogonal multi-arrays
to produce balanced repeated replications.

In the linear case we have seen that %(tl j +t2j) equals
the standard estimator >, W}y, for every j. But 7 does not
equal the sample correlation coefficient that might be calcu-
lated from the entire sample. If in nonlinear cases, in specific
situations, there is such a match of the half-sample estimates
when averaged over the replicates satisfying the balancing
condition, then we say that we have double balancing.

9.5 BOOTSTRAP

Consider a population U = (1,2, ..., N) and unknown values
Y1,Ys,..., Yy associated with the units 1,2,..., N. Let 60 =
0(Y) be a population parameter, for example, the population
mean Y , or some not necessarily linear function £ (Y) of Y,

or the median of the values Y, ..., Yx, etc. Suppose a sample

s =(i1,...,1,) is drawn by SRSWR, write for j =1,2,...,n
yji =Y

and define

Z:(yld’z,---,yn)/

Let 6 = 6( ¥) be an estimator of 6; in the special case 6 = f (Y),
for example, it suggests itself to choose 6 = f (¥), where ¥y is
the sample mean. To calculate confidence intervals for 6 we
need some information on the distribution of 6 relative to 6.
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Now, choose a sample s* of size n from s by SRSWR, denote the
observed values by

k k *
Y11,Y21, -5 Ym1

and define

* *
Y1 =0011,Y21, .., Yn1)

and § is called abootstrap sample. If, for example, s = (4, 2, 4,

é), then § = (2,2,4,2) would be possible, and in this case

Y1 = (y2, ¥2, ¥4, y2).
Repeat the selection of a bootstrap sample independently

to obtain
k * *
22’23’ --sz

where B = 500, 1000, or even larger, and calculate
1 & .
0o = — Z 0(Yy)
B
b=1
1 S 9
vB = ———= > [0(), — 6ol
-1:3
It may be shown that the empirical distribution of
0, —0(y),b=1,2,...,B
for large n and B approximates closely the distribution of

A(y) — 0(Y)

and that vp approximates the variance of 6(y). For details,
good references are RAO and WU (1985, 1988).

Since B is usually taken as a very large number, it
is useful to construct a histogram based on the values
5(%), b=1,..., B. This bootstrap histogram is a close ap-
proximation to the true distribution of the statistic 6(y). Let
100a/2% of the histogram area be below 6,2, and above
Ou/2,u- Then

[ga/Z,l, é\oz/Z,u]

is taken as a 100(1 — a)% confidence interval for 6. This proce-
dure is called the percentile method of confidence interval
estimation.
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An alternative procedure is the following. The statistic of
the form of STUDENT’s £, namely

[6(y,) — 0 vvp =t

is considered and the bootstrap histogram of the values #;, b =
1,2,..., B is constructed. Then, values #,/2; and #,2, are
found such that the proportions of the areas under this boot-
strap histogram, respectively below and above these two
values, are both «/2, (0 < « < 1). Then the interval

(5(2) —ta/2,V/VB, 5(2) + ta/2,un/VB)

is a 100(1 — o)% confidence interval because this bootstrap his-
togram is supposed to closely approximate the distribution of

0(y) — 6
v(6(y))

and v(6(y)) is approximated by vg.

So far only SRSWR has been considered. Now, samples
are often taken without replacement and selections are from
highly clustered groups of individuals. In addition, numerous
strata are often formed, but the numbers of units selected from
within each stratum are quite small, say, 2, 3, 4. So, within
each stratum, separate application of the bootstrap method
may not be reasonable. However, modifications are now avail-
able in the literature to effectively bypass these problems, and
successful applications of bootstrap in complex sample surveys
are reported. An interested reader may consult RAO and WU
(1988).

It is necessary and important to compare the relative per-
formances of the techniques of (a) linearization, (b) jackknife,
(c) BRR (balanced repeated replication), (d) IPNS, and (e) boot-
strap in yielding variance estimators in respect of bias,
stability, and coverage probabilities for confidence intervals
they lead to. J. N. K. RAO (1988) is an important reference for
this.

A few methods of drawing bootstrap samples in the con-
text of finite survey populations that are available in the cur-
rent literature are briefly recounted below.
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(1) Naive bootstrap
Let Y; = sz Wji» J=1,...,Tand Y =
(Yq,...,Y7), avector of T finite population means
of T variables yi(j =1,...,T)withvalues y;; for the
ithunit,i e U =(1,...,N). Let 6 = g(Y) be a non-
linear function of Y. For example, the generalized
regression estimator for Y, namely

~ X; Zzes YiXi Q;
e N% (X_N% ) DiesX zzQL (> 0)

=t 00

is a nonlinear function of four statistics that are un-
biased estimators of 4 population means, namely Y =
¥y, X = % X%, ¢ Lyx@m = W, and 3
S x2Q;m; = Z.So,0 maybe writtenasd = g(Y, X, W,
Z), which in this case reduces to 6 = Y. Also, ¢, may
be written as an estimator 6 for 6.

Suppose U is split up into H strata of sizes Ny,
withmeans Y, (h=1,...,H). Then,Y = W,Y,,
Wy, = % Let y, be the mean based on an SRSWR
from the hth stratum. Letting y, = Wy, 0 =
Vi ---»V7s) may be taken as an estimator for

= g(?l, ey YT)

Let from the SRSWR (y31, . . ., Yhn,) coming from
the hth stratum, (v}, ..., y;,,) be an SRSWR in ny
draws called a bootstrap sample, ¥}, = 21 Vs Vet =
S Wiys, 6% = g(7;), writing Yy = (ylh, ., ¥7), the
sample mean vector. Let this be repeated a large
number of times B, and for the bth replicate §; be cal-
culated by the above formula (b =1,..., B). Letting
6*() = 03() = % 5B | 6 be the bootstrap estimator
for 6,

1 & .

v = ——— > (BF —05())?

B —
b=1

is taken as the bootstrap variance estimator for the

estimator 6*(.) and also forms 6 = g(., ..., .).
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If we write E,, V. the expectation and variance
operators with respect to the above bootstrap sam-
pling continued indefinitely, then §*(.) is an approx-
imation for E.(6*) and vp is an approximation for
V.(6%).Forthecase T = litfollowsthatf* = > W,
and also writing ¥; the mean for the original sample,

2
— 2mp—=18 2 _ _1 Mhey o = \2
vp = > Wip==2b, sy = =3 221 (¥hi — ¥5)°. But for

2
Vg = > Wiy, we have V (3,) = 3 W}%Z_i;
So, unless ny, is very large

Vi (6) £V (Fg).

So, 9%(.) is not a fair estimator of 0 because vg(¥*) is
not a consistent estimator of V (¥,,).

Ifny=~Fkforeveryh=1,..., H,then, kleV*(@*) =
V(3,,) and there is consistency only in this special
case.

EFRON (1982) calls it a scaling problem for this
naive bootstrap procedure, and his remedy is to take
the bootstrap sample of size (n; — 1) instead of n; and
thus take care of the scaling problem. Obviously, with
this amendment V,(9*) would equal V (7,,).

(2) RAO and WU’s (1988) rescaling bootstrap

This is a modification of the naive bootstrap
method. From the original SRSWR taken from the
hth stratum in n; draws, let an SRSWR bootstrap
sample be drawn in nj(>1) draws and repeated inde-
pendently across h=1,..., H. Let

fh——Nh,
ch=\/ Th _(1- f),
n,—1

Y =3n+ Cnl3h =),
with 3} as the mean of the bootstrap SRSWR of

size nj,

H
V=39 0 =80
h=1
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using a lower bar to denote the 7' — vector of the ob-
vious entities.

Let the bootstrap sampling above be repeated a
large number of times B and let HZ denote the above

6" for the bth bootstrap sample (b =1, ..., B). Then
Op() = % 5B | 6y is taken as the final estimator for
6 and v = e B 6y — 65()? as the variance

estimator for 65(.).

This procedure eliminates the scaling problem of
the naive bootstrap method and ensures consistency
of 53 .

(3) RAO and WU’s (1988) general with replacement boot-
strap

Forthe T'— vector of totals Y;(¢ = 1,..., T) ifone
defines 0 = g(Y),Y = (Yy,...,Y,...Y7) and em-
ploys the homogeneous linear estimator, Y; = >,
bsiysi for Y; such that the mean square error MSE of
Y, is zero if % = constant foreveryi e U =(1,..., N),
with wy; (# O) as known non-zero constants, then from
RAO (1979) it is known that

2
m(Y,) = —;Isijdsijwtiwtj (é;; - %)

with
E(dsijlsij) = dij = Ep(bSiIsi - 1)(bstsj - 1.

Then, in order to estimate 6 = g(Y ) and its variance,
rather MSE estimator, RAO and WU (1988) recom-
mend the following bootstrap procedure.

Let for any sample s the selection probability
p(s) be positive only for every s with n as the num-
ber of units in it all distinct. A bootstrap sample
from s is chosen in the following way. First n(n — 1)
ordered pairs of units i, j(i # j) in s are formed.
From them, m pairs (i*, j*) are chosen with replace-
ment (WR) with probabilities 1;;(= A;;) with their
values as specified below. The sample drawn is de-
noted s*. For simplicity of notation we drop the
subscript ¢ throughout the symbols used above.
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Let us define

o~ ~ 1 ok %
Y=Y+ — Z kﬁj»s«(yl —yJ>

i*,j*es* Wix Wi+

with &;;’s to be specified as below.

Let

~ ?t ~ ~ ~ ~

Ytzﬁyzz(yly Yt, '7YT))
=g

Let the bootstrap sampling as above be indepen-
dently repeated a large number of times B. Let for
the bth bootstrap sample the above statistics be

denoted as Yb,Yb, 0y = g(Yb) In case T = 1 and
=Y, it will follow that E*(Y) = F because

i* j*

Y ki (ﬁ ﬁ) _y

i#jes Wi wj

because kij)hij = kjikji. Also

~ 1 . L\ 2
VY)= —E, {ki*j* (yw 3 L) }

S Iy (22

i#£jes

Then k;;1;; and m are to be so chosen that

Aij 1
k?J # = —Edij(s)wiwj.

In that case V.(Y) would match the estimate m(Y)
of MSE (Y).

RAO and WU (1988) recommend that in the linear
case, that is, when T' = 1 and the initial estimator
ep is linear in y;,1 € s, if its variance or MSE can be
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matched by an estimator based on a bootstrap sample
for which the bootstrap variance equals it, then in the
nonlinear case § = g(Y) should be estimated by the
bootstrap estimator, which is

- 1 B .
0 =—S 0
B Bbz::lb

writing 6y for the statistic defined as 6 = g(i) for the
bth bootstrap sample. Then, the bootstrap variance
estimator for 6p is

== Z(Yb —0p)”

b=1
In case RAO’s (1979) approach is modified (a) elimi-
nating the condition that MSE (Y) equals zero when

2
y; « w; and (b) consequently adding a term }_ % - Bi to

MSE (Y) and a term Z ﬂl Li to m(Y), then certain
modifications in the above bootstrap are necessary
because (a) the sample size may now vary with sam-
ples and (b) non-negativity of an estimator for the
MSE (Y ) consequently can be ensured only under
additional conditions. PAL (2002) has provided some
solutions in this regard in her unpublished Ph.D.
thesis.

(4) SITTER’s (1992) mirror-match bootstrap

Here the original sample is a stratified SRSWOR

with nj, units drawn from Ath stratum with ¥y, as the
sample mean. For the case T = 1, the unbiased tra-
ditional estimator for Y is y,, = > Wpy,, with

f h 52 np

Var(yst)—ZWh Sp» fh:N—h, h:l,..,,H,

For bootstrap samphng the recommended steps are:

(a) Choose an integer n,(1 < nj, < n;) and take
SRSWOR of size nj, from the initial SRSWOR of
size ny from the Ath stratum to get y;,, ..., y;in;l.
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(b) Return this SRSWOR of size nj, to the SRSWOR
of size nj; and repeat step (a) a number of times

equal to kj, = w1 7i) fr= n;’i Then we have a

n,(1=Fr)°
total number of y values in this bootstrap sample
given by
n(1— fr
nyky = ———— =nj, say.
I T

If k5, is not an integer, take it as [k;] with prob-
ability g and as [k;] + 1 with probability 1 — gy
with a suitable choice of ¢;, (0 < g, < 1).

(c) After realizing the sample observations

5*=(y21>---’y;;n;, h=1,...,H)

calculate 6* = A(s*).
(d) Repeat steps a large number of times B.
Denoting by ; the * for the bth bootstrap
sample (b =1,..., B) and writing b3 = % LB
65, take 03 as the bootstrap estimate of 6 and
takevp = B—1 B (6} —03)? as the variance es-
timate of 8% and of 4.
If T = 1, then E (0} — EG;)? equals V (7).
If fr, > n—lh, that is, n,% > N, then the choice
ny, = frny ensures f; = fp, implying that the
bootstrap at the initial step mirrors the origi-
nal sampling. The matching indeed is about the
Var(y,) and the estimate of variance vp.
(5) BWR bootstrap of MCCARTHY and SNOWDEN (1985)
This is a modification of the naive bootstrap
method by taking the sample size my for the boot-
strap sample to be drawn by SRSWR method from the
initial sample, which is drawn either by SRSWR or
SRSWOR independently from each stratum in such
a way that the bootstrap variance estimator
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may match V(7,,) = ¥ W22 for SRSWR or

2
V) =Y W1 - fh)fl—:.

Thus, either my, = (n, — 1) or

_onp—1
1 fh

mp,

BWO boostrap of GROSS (1980)

For this method let the initial sample be an

SRSWOR of size n. Let £ be an integer such that
N = kn. Then the following are the steps.

(a)
(b)

(c)

Independently replicate the initial sample &
times.

Draw an SRSWOR of size n from the pseudo-
population generated in step (a). Let the sample
observations be

Ys-osn
and calculate
0" =g(y") =00y},..., )

Repeat step (b) a large number of times B. Cal-
culate 6;, which is §* for the bth bootstrap sam-
ple above (b =1, ..., B). Writing

* 1 *k
GB = E Z(Qb)
take

1 B
vB=———> (6 —0p)*
B - 1
as the variance estimator for 3 and for 4.
BICKEL and FREEDMAN (1981) extended
this to stratified SRSWOR, which was also dis-
cussed by MCCARTHY and SNOWDEN (1985).

(7) SITTER’s (1992) extended BWO bootstrap method

Bickel-Freedman’s BWO method is extended to

stratified SRSWOR in the following way by SITTER
(1992).
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Ignoring the fractional parts in

n, =n,—(1— fp)
and

kh:ﬂ@—l_f’l)

np np

the following are the bootstrap sampling steps:

(a) Replicate (yp1, ..., yun,), separately and indepen-
dently &, times, h =1, ..., H to create H differ-
ent pseudo-strata.

(b) Draw an SRSWOR of size nj, from the hth
pseudo-stratum, and repeat this independently
foreachh =1, ..., H, thus generating bootstrap
sample observations

s* =AW, - Vi )» h=1,..., H}

and let 6* = 6(s*).

(c) Repeat steps (b) and (a) a large number of times
B, and calculate for the bth bootstrap sample
the statistics

6, b=1,...,B,
and let
. 1 i
p = =) 6
Bb:l
and
B
vBWO = 55— > (0 —05)°
B - b=1

be taken as the variance estimator for 03 as well
as for 6, based on the original sample.

For T =1 and 6 = y,, it may be checked
that

E.(0* —E.0")? =V (7).

Unlike Bickel-Freedman’s extension of BWO to
stratified SRSWOR, where it is necessary that
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Ny, = kyny, with ny, as the re-sample size as well,

in the present case nj, and &, are chosen to satisfy
n/
fi=fn where fj=_""

(kpnyp)

and

1-—
V. = 7”3,21, h=1,...,H,
np,

fractional parts whenever necessary being ig-

nored. SITTER (1992) may be consulted for fur-

ther details.

(8) SITTER’s (1992) bootstrap for RHC initial samples

Suppose from the population U = (1,...,1,...,
N)onwhichY = (y1,...,%,...,ymandp = (py, ...,
pi, ..., py)aredefined as the vectors of real values y;
and normed size measures p;(0 < p; <1, > p; =1)
a sample s of n units is drawn by the RHC scheme. For
this method integers N; are chosen with their sum
over i = 1,...,n, namely X,N; equal to N.
Then n groups are formed taking N; units chosen by
SRSWOR from U into the ith group. Writing @; as
the sum of the p; values for the N; units in the ith
group, one unit from the ith group is chosen with a
probability equal to its p; value divided by @; and this
is repeated independently for the n groups formed.
Then RHC’s unbiased estimator for Y is

tRHC = Enyi&,

13

writing, (y;, p;) as the y; and p; value for the unit
chosen from the ith group. Its variance is

2
Yi 2
i _y
2. ]

and RHC’s unbiased estimator for V (tgrgc) is

N2-N i\ 2
U(tRHC) = (Z%fjg—l—znl\fz> lZnQi (%) - t}%HC]

V(tRHC) = m
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The following are the steps for bootstrap sampling

given by SITTER (1992) in this case.

(a) Choose an integer n* such that 1 < n* < n. Di-
vide the initially chosen RHC sample s of size n
into n* nonoverlapping groups, taking into the
ith group i = 1,...,n*), n; units of s such that
the sum of n;’s over the n* groups, namely X,:n;,
equals n. Treat the @;’s, for which £,Q; = 1,
as the normed size measures of the units in s.
Calculate the sum R} of the @; values for the n;
units in the ith group into which s is split up.
Then from the ith group choose one unit with
a probability proportional to the ratio of its @;
value to R and repeat this independently for
all the n* groups. Thus, a sample s* of size n* is
generated out of the original s.

(b) Repeat step (a) a total of times equal to

_ Ypn?—n| (N2 -3%,N2)

| nn-1 | (£,N?-N)
each time keeping s intact but replacing s* each
time.

(¢c) Let
yfﬁ y**R:;*

QT ’ s Q;kl

denote values respectively for the 1st, ..., n*th

group from which one unit each is selected and
pooling together the corresponding % replicates
the values written as

* * *
le*7"'7yn* *7"~7ykn*Q*
1 n* kn*

Then, calculate 6* based on the kn* samples,
values.

(d) Repeat independently steps (a) to (¢) a large
number of times B. For the bth replicate, let 6;
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be the 6* value and
L
b=1
Then,
vp = N ZB:(Q,;* —03)2
B-1/7

is the variance estimator for 6*.
SITTER (1992b) has shown that, in the
linear case for the RHC estimator based on

2 1 R x R}
Y = i kn*

one has E,(¥') =Y and V,(Y) = v(tgrc).

Finally, let us add one point, that, besides the
percentile method of constructing the confidence
interval discussed earlier, the following double
bootstrap method is also often practicable.

Let # be a point estimator for a parameter
6 with v as an estimator for the variance of 6.

Corresponding to the standardized pivotal
quantity

6—6
\/17 b

let us consider 8 = where 6, is a bootstrap
estimator for 6 base{ on the bth bootstrap sam-
ple when a large number of bootstrap samples
are drawn by one of the bootstrap procedures.
Let another set of B bootstrap samples by the
same method be drawn from this bth bootstrap
sample on which basis v is the variance estima-
tor for 4.

Now, constructing the histogram based on
the values of 8, above, let [ and u be the lower

© 2005 by Taylor & Francis Group, LLC



228 Chaudhuri and Stenger

and upper 100«/2% points respectively of this
histogram. Then, approximately,

1—o= Prob l<0b_9 <u
NG
= Prob[@b—uﬂ<9<éb—lJv—b]

Now replacing 6 by 6 and 6, by  in this one may
write

l—a= Prlbd—uJvp <0 <06 —1/vp]

So (6 — u./ve, 0 +1,/vp) provides the 100(1 — )%
double bootstrap confidence interval for 6.
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Chapter 10

Sampling from Inadequate
Frames

Suppose a finite population of N units is divisible into a num-
ber of groups. If the groups are mutually exclusive and, to-
gether, they exhaust the population, the number of units
belonging to each group is known and it is also possible to
identify at the start of the survey which individual univocally
belongs to which group, then one may undertake standard pro-
cedures of sample selection and estimation of parameters of in-
terest. For example, one may have stratified sampling if from
each group with a known composition a predetermined num-
ber ¢(>1) of units is sampled. If instead, only some, but not all,
the groups are decided to be sampled with preassigned selec-
tion probabilities, we have cluster sampling. The groups are
called strata in case of stratified sampling where each stra-
tum is represented in the sample with probability 1. The same
groups are called clusters in case of cluster sampling when the
groups are given positive selection probabilities less than 1. If
the selected clusters are not fully surveyed, but only samples of
individuals of the selected clusters are surveyed, then we have

229
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two-stage sampling and the clusters are called the first-stage
units or primary sampling units (fsu or psu).

If instead, before sample selection it is not known as to
which group an individual belongs to, but the groups are iden-
tifiable and distinguishable with respect to known character-
istics like, for example, racial, educational, economic, occupa-
tional levels of distinction, etc., so that an individual after
selection and interrogation is assignable unequivocally to one
of the distinct groups, then the groups are called domains.
Neither the compositions nor the sizes of the domains are
known prior to at least the initial part of the survey.

But if, at the start of the survey, the sizes, that is, the num-
ber of units contained in the respective groups, are known, say,
from recent censuses, but their compositions are not known
so that one cannot utilize a frame to select members of the
respective groups with predetermined probabilities, then the
groups are called post-strata, provided that after the selec-
tion and survey the individuals are assignable to respective
groups and data analysis takes account of the assignment to
groups.

In the former case we are interested in inferring the char-
acteristics of population members of one or more domains. In
the second case the population is one of inferring parameters
relating to the entire population, but we intend to make use of
the knowledge of post-strata sizes and, if available, other post-
strata characteristics, even though we fail to choose samples
from the respective groups in adequate proportions.

In some cases we may have two or more overlapping
frames. In that case one may choose the samples separately
using several frames and face and work out associated addi-
tional problems of inference and interpretation. This is the
problem of multiple-frame estimation.

Sometimes the domains of interest may be so numerous,
while the total sample size one can afford is meager, that it is
impossible to have adequate representations of all domains of
interest in a sample. In that case, similar domains are concep-
tually pooled together and samples are amalgamated across
the similar domains to borrow strength from the ensembles
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in order to derive improved estimators for the respective do-
main parameters. This is the problem of small area estimation.

In many of these cases, the sample sizes representing var-
ious domains or post-strata become random variables. Hence
the problem of inferences conditional on certain sample config-
urations, as opposed to unconditional inferences where sample
configurations are averaged over conceptually repeated real-
izations of samples, arises. In what follows, we give short de-
scriptions of these issues.

10.1 DOMAIN ESTIMATION

Let D be a domain of interest within a population U = (1, ...,
I,...,NN).Let Np be the unknown size of D. Let a sample s of
size n be drawn from U with a probability p(s) according to a
design p admitting positive inclusion probabilities ;, m;;. Let
fori =1,2,...,N

Ypi =Yi(0) if ieD(¢D).

Then the unknown domain size, total, and mean are, respec-
tively,

N N o TD
ND :ZIDiaTD :ZYDi and TD = N—

1 1 b
InanalogytoY =(Y4,...,Y;,...,Yn) wewritel , =(Ipq,...,
IDi, ceey IDN)/ and KD = (YDl, ey YDi> .. ",YDN)/' Then, Cor-
responding to any estimator ¢t = #(s,Y) =Y, for Y = E{V Y;
we may immediately choose estimators for Np and T'p, respec-
tively,

Np=t(s,Ip) and Tp=t(sYp).

It may then be a natural step to take the estimator %D for T p
as
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If ¢t is taken as a homogeneous linear unbiased estimator
(HLUE), that is, if it is of the form

t=t(s5,Y) = Z b,;Y; with Z bsip(s) =1for all i,

ies $31

then it has a variance

Vo) =>d;Y2+> > d;;YY;

i i<j

where

di=> b%p(s)—1,d;; = bybspls)—1

§3i §31, ]

and an unbiased estimator for V ,(¢) is

vp() =Y dgl Y+ > dajlsiYY,

i#]

if dg;, di;’s are available subject to

E,(dsly) =di, Ey(dgjl;) =d;j,
writing as earlier

Ii; =1(0) if i es@ ¢s), Iy =10) if i, s, j ¢s).
It follows then that

Vo(Tp) = V@) ly_y, »vp(Tp) =vp(®) Iy oy,

Vo(Np) =V, ly_1,,vp(Np) =vp(t) Iy 1,

where

V(@) ly-y,

means thatY in Vp(¢) is replaced by Y p with a corresponding
interpretation of the other expressions.

Next, if we may assume that the sample sp consisting
of the units of s contained in D, that is, sp = sN D, has a
size np(<n) that is large enough so that we may apply the
linearization technique of section 9.1, then we may have the
Tp

following approximate formulae for the variance of Tp = 7
D
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and for an approximately unbiased estimator for that variance:

V (TD) (stzzDz>

2 Zd ZDL + ZZdUZDlZDJ
Np |5 i#]
1
Up(T) = A [stLISLZ + ZZdSlJISL_]Z Z
i#£]
where
Tp
Zpi =Ypi — N—DIDi
. T '
Zi :YDi_]/v\—l;IDi’ 1= 1,...,N.
10.2 POSTSTRATIFICATION
Suppose a finite population U = (1, . ,N) of N units
consists of L post-strata of known sizes N s h =1,...,L but

unknown compositions with respective post-strata totals Y, =
> Niy,; and means Y, = Y,/Np, h = 1,..., L. Let a simple
random sample s of size n have been drawn from U yielding
the sample configurationn = (nq, ..., na, ..., ny) where ny(> 0)
is the number of units of s coming from the Ath post-stratum,
h=1,...,L, Zh 17 = n. In order to estimate Y = TW,Y,
writing Wh = h ,h=1,..., L we proceed as follows.
Let I}, = 1(0) if ny > O (nh = 0). Then,

E(Ih)=PI'0b(Ih=1)=1—<N ;N’L)/(]Z) h=1,...,L.

For Y a reasonable estimator may be taken as
> Wiynln/E(Ip)
> Whrin/E(Ip)
writing ¥, as the mean of the n, units in the sample consisting

of members of the Ath post-stratum, if n; > 0; if nj, = 0, then
v, is taken as Y. It follows that x = 3" Wy, I,/E(I}) is an

tpSt = tpst(z) =
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unbiased estimator for Y and b = 3. W;I,/E(I;) an unbiased
estimator for 1. Yet, instead of taking just a as an unbiased es-
timator for Y, this biased estimator of the ratio form ¥ is pro-
posed by D0SS, HARTLEY and SOMAYAJULU (1979) because
it has the following linear invariance property not shared
by itself:

Assume Y; = a + fZ;; then y;, = o + pz;, and £,4(Y) =
o + Btpst(Z), with obvious notations. Further properties of £,
have been investigated by DOSS et al. (1979) but are too com-
plicated to merit further discussion here.

10.3 ESTIMATION FROM MULTIPLE FRAMES

Suppose a finite population U of size N is covered exactly by
the union of two overlapping frames A and B of sizes N4 and
Npg. Let E4 denote the set of units of A that are not in B,
E sp denote those that are in both A and B, and Ep denote
the units of B that are not in A; Nga, N ag, Ngp respectively
denote the sizes of these three mutually exclusive sets. Let
two samples of sizes n4, ng be drawn by SRSWOR from the
two lists A and B respectively in independent manners. Let
N, Nab, Npa, Np denote respectively the sampled units of A that
arein E s, E sp and of B that arein E 45, Ep. Let us denote the
corresponding sample means by ¥,, V.5, Ypq> and ¥,. Then for
the population total Y = Ezlv Y; one may employ the following
estimators

Y1 = (Ngay, + Nga¥s) + Nap(pVap + qVsa)
if Nga, Ngp,and N gp are known, or, without this assumption,

~

Yo = ﬂ(% + PYap) + &(% + qVba)-
na np
InY; and Y, p is a suitable number, 0 < p <1 and p +¢q=1.
This procedure has been given by HARTLEY (1962, 1974). Sup-
posing first that the variance of the variable of interest y for the
respective sets E s, E sp, Eg are known quantities aﬁ, af‘B, 0123
and choosing a simple cost function, he gave rules for optimal
choices of na, ng subject to a given value of n = ng + ng and

of p.
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SAXENA, NARAIN and SRIVASTAVA (1984) consider the
following extension of HARTLEY’s (1962, 1974) technique to
the case of two-stage sampling. Suppose that whatever has
been stated above applied to the population of first-stage units
(fsu). For each sampled fsu i, the total value Y; over its second-
stage units (ssu) is unavailable, but is estimated on taking
samples of ssus independently. Then Y, Y, cannot be used
and the following modifications are needed. Suppose for the
ith fsu G = 1,...,N) two frames A;, B; are available that
overlap but together coincide with the set of M; ssus in the
ith fsu. Let EA;, EB;, AB; denote sets of ssus in ith fsu con-
tained exclusively in 4;, B; and both in A; and B;, respectively;
let their sizes and variances be, respectively, Ms,, Mp;, M ag;,
04,08, 04p, Let independent SRSWORs of sizes my;, mp, be
respectively drawn independently from A;, B;. Let mg 4,, mag;,
mpa,, Mg, denote respectively the units out of m4, that are in
EA;, AB; and of mp, thatarein AB; and EB;. Lety,., Yup. Ybq,»
Y5, denote the corresponding sample means. Let r;(0 <r; < 1)
and s; such that r; +s; = 1 be numbers suitably chosen. Then,

~

Y, = Ma5,, + MaB,(rJop, +5Vpa,) + MB, T,

is taken as an unbiased estimator for Y;. Writing, with obvious

notations,
N 1 Ng . 1 o o 1 ab
Yo = _ZYayyb = _ZYbi’ Yab = —Zyabia
o 1 Npa .
Yba = Z Ybai
nba 1

an unbiased estimator for Y is taken as
Y1=NgaYy +Nas(PYap + 4ea) + NEBYS
if Nga, N ag, Ngp are known, or as
— N4y ~ — Np , ~ —
Yo=—"Gu+pY¥ar) + — O + qVpa)-
na np

SAXENA et al. (1984) have worked out optimal choices of r;,
Si, P,q,naA,ng, ma,, mp, considering suitable cost functions
following HARTLEY’s (1962, 1974) procedure of multiple frame
estimation and recommended replacement of unknown
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parameters occurring in the optimal solutions by sample ana-
logues, and have considered various special cases giving sim-
pler solutions.

10.4 SMALL AREA ESTIMATION

10.4.1 Small Domains and Poststratification

Suppose a finite population U of N unitslabeled 1,...,i,..., N
consists of a very large, say several thousand, domains of in-
terest, like the households of people of various racial groups of
different predominant occupational groups of their principal
earning members located in various counties across various
states like those in U.S.A. For certain overall general purposes
a sample s of a size n, which may also be quite large, say a few
thousand, may be supposed to have been chosen according to
a design p admitting r; > 0. Then the total Ty = >y, Y; fora
variable of interest y relating to the members of a particular
domain Uy, of size N4 of interest may be estimated using the
direct estimators

ta = <Z Yi/JTi)

or

t) =Ny (% Yi/ni>/<§ 1/m> .

We write s; for the part of the sample s that coincides with
Uy, and ng for the size of sy, d =1, ..., D, writing D for the
total number of domains such that U,;’s are disjoint, coincident
with U when amalgamated over all the Uz’sd =1, ..., D. We
suppose D is very large and so even for large n = 251)21 ng,
the values of ng for numerous values of d turn out to be quite
small, and even nil for many of them. Thus the sample base
of ¢y or t; happens in practice to be so small that they may
not serve any useful purpose, having inordinately large mag-
nitudes and unstable estimators for their variances, leading
to inconsequential confidence intervals, which in most cases
fail to cover the true domain totals. Similar and more acute
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happens to be the problem of estimating the domain means
Ty = Ty/Ng4, writing domain size as N4, which often is un-
known. Hence the problem of small domain statistics, and
a special method of estimation is needed for the parameters
relating to small domains, which are often geographical areas
and hence are called small areas or local areas. In this section,
we will briefly discuss a few issues involved in small area or
local area estimation.

Often a population containing numerous domains of in-
terest is also divisible into a small number of disjoint groups
U1,...,Ug, say G in practice not exceeding 20 so that U
may be supposed to be cross-classified into DG cells Uyg, d =
1,...,Dand g = 1,...,G, of sizes Ngg such that >°, Ng; =
Na,> g Nig=Ng anngZd Nga =>4 Zgng =>qNa=
> ¢Ng = N.Of course the union of Ugg over d is U, and
that over g is Uy. If the sample is chosen from U disregard-
ing Ug’s the latter are just the post-strata in case N g’s are
known, as will be supposed to be the case; often Ng,’s them-
selves are reliably known from a recent past census or from
administration or registration data sources in problems of lo-
cal area estimation. These post-strata may stand for age, sex,
or racial classifications in usual practices. If the population is
divided again into strata for sampling purposes, then we have
classifications leading to the entities for which we have the
following obvious notations. The Ath stratum is U j, of size
N, the size of cell Uggpn is Nggn, N = >4 dg>n Nagn =

Ye2>nNgh = 2a>n Nan = >q > g Nag, ete. Correspond-
ingly, N, nqgh, ngh, nd .n, ndg Will denote sizes of the samples
S, Sdgh, S.ghs Sd .h» Sdg, €tc. Further, we shall write Hy to denote

the set of design strata having a non-empty intersection with
the domain U,. The problem is now to estimate the domain
total

To =X, Zvu,, Yk
and the expansion or direct estimators for it are
td = XHy Zsd hY r/Tk

or

t; =Na (2, Zead 1Y r/7k)/ (ZH, Zsa n1/7)
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based on a stratified sample. These estimators make a mini-
mal use of data that may be available and for most domains,
being based on too-scanty survey data, are too inefficient to
be useful. So ways and means are to be explored to effect im-
provements upon them by broadening their databases and bor-
rowing strengths from data available on similar domains and
secondary external sources.

One procedure is to use poststratified estimators if auxil-
iary data, for example, values X; on a correlated variable, are
available for every unit for each cell Uyg,. Then the following
estimators of T; may be employed based on poststratification:

tpie =) [(ZUngk) (ZsdgYr/7r) (stng/ﬂk)]
g

tpdase = D KEHd > Xi (SH, ZsaghYr/m) [ (Zm, Esdgth/ﬂk))]

g Uggn
2:Ud th
t = pX by Y, /7 — .
pdxss zg: Hd( sdgh k/ k) Esdgth/ﬂk

These are ratio-type poststratified estimators, the latter two
being, respectively, combined-ratio and separate-ratio types
based on stratified sampling. In case X}’s are not available
but the sizes N 4, and, in case of stratified sampling, the sizes
N 441, are known, then we have the simpler count-type post-
stratified estimators based on SRSWORs from U or U ,’s:

pdc Zngydg,

Ndgh
tpdcsc = Z 2:Hd]\/vdgh <EHdN hT——— ydgh>/<EHdN .h 7 >
h

n.n

tpdcss = Z 2Hd nghydgh-
g
10.4.2 Synthetic Estimators

Since ngg and nqgp’s are very small, if we may believe that the
g groups have been so effectively formed that in respect of the
characteristics of interest y there is homogeneity within each
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separate group across the domains, then the following broad-
based estimators for T;; may be useful

lesd = Zng (Es.ng/nk)/(Es.gl/nk)
8

tesed = Y (0, Nagh) (S, Zsgn¥r/mr)/ (ZHy Ssghl/mr)
g

tc/ssd = Z 2Hd ngh (ZS.ghYk/nk)/(Es.ghl/”k)
g

called the count-synthetic estimators for unstratified,
stratified-combined, and stratified-separate sampling, re-
spectively. The corresponding ratio-synthetic estimators for
unstratified and stratified sampling are:

trsa = Y Xag (ZsgYr/mr)/ (ZsgXn/mh)
P,

tRsed = Y (ZH, X
Rscd ; ( Hq dgh) (EHd Zs.gth/nk)
tRua = D SH, Xdgh (ZsgnYr/mk)/(ZsgnXn/7r) -

g

For SRSWOR from U and independent SRSWORs from U ..A,
we have the six simpler synthetic estimators

1= Zngy.g
g
Y.
to=> Xqg=*%,
g Xg

N.h N.h
t3 = Z Y, Nagn (EHd ——Ngny. h)/(sz —n‘gh>
i n.h g n..h
ts=Y_ TH,Nagh¥ gn
g

ts=> Su,Xdgn EZHd ]Z.—.jiln'ghygh)
g

N.h =
XH, T NghX .gh)

Y gh
te=>_ EHdnghf—g~
g gh
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Since the sample sizes n g, compared to ngg, and n, compared
to nq, are large, the synthetic estimators are based on much
broader sample survey databases than the poststratified esti-
mators, and hence have much smaller variances. But if the con-
struction of the post-strata is not effective so that the charac-
teristics across the domains within respective post-strata are
not homogeneous, the synthetic estimators are likely to involve
considerable biases. As a result, reduction of variances need
not in practice be enough to offset the magnitudes of squared
biases to yield values of mean square errors within reasonable
limits. Also estimating their biases and MSEs is not an easy
task. Incidentally, a sunple count-synthetic estimator based on

SRSWOR, for Ty = Nd is

_ Ngg_ _
Lesd = Z N—gyg ZPdgy,g,
g 'd g

such that 0 < Pgg < 1,3, Pig = 1. An alternative count-
synthetic estimator for T 4, namely,

. Ngg_
Lesd :Z Ng Zdeyg
g £
with 0 < Wy, <1,>°; Wg,=1 has also been studied in the lit-
erature and shows different properties.

10.4.3 Model-Based Estimation

An alternative procedure of small area estimation involving
a technique of borrowing strength is the following. Suppose
Tg,d =1,..., D are the true values for large number, D, of do-
mains of interest and, employing suitable sampling schemes,
estimates ¢4 for d € sy are obtained, where sg is a subset of m
domains. Now, suppose auxiliary characters x;,j = 1,..., K
are available with known values X ;4,d =1, ..., D. Then, pos-
tulating a linear multiple regression

Teo =Bo+P1X1g+...+BkXkag +e€q;d=1,....m
one may write for d € sy

tg = Bo+ P1X1qg + ...+ BxXKgq +eq +¢€g
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writing eq = ty — T4, the error in estimating Ty by #;. Now
applying the principle of least squares utilizing the sampled
values, one may get estimates g; for j = 0,1, ..., K based on
(tq,X;q) for desp and j = 1,..., K, assuming m > K + 1.
Then, we may take Zé{ B i X4 = T, as estimates for 7 not
only for d €sy but also for the remaining domains d ¢ s.

This method has been found by ERICKSEN (1974) to work
well in many situations of estimating current population fig-
ures in large numbers of U.S. counties and in correcting census
undercounts. An obvious step forward is to combine the esti-
mators tg with Ty ford = 1,...,m to derive estimators that
should outperform both ¢; and Ty,d = 1, ..., m. Postulating
that e;’s and ¢4’s are mutually independent and separately
iid random variates respectively distributed as N (0, ¢2) and
N (0, t2), following GHOSH and MEEDEN (1986) one may derive
weighted estimators

2 o2
. tq +02+12Td,d =1,...,m

t; =
17 4

provided o and t are known. If they are unknown, they are
to be replaced by suitable estimators. Thus, here we may use
JAMES—STEIN or empirical Bayes estimators of the form

Ty =Wtg +(1—W)Ty

with 0 < W < 1, such that according as ¢4 (T,) is more accurate
for Ty, the weight W goes closer to 1(0). These procedures we
have explained and illustrated in section 4.2. PRASAD (1988)
is an important reference.

A compelling text on small area estimation is J. N. K.
RAO (2002); MUKHOPADHYAY (1998) is an immediately ear-
lier text. In the context of small area estimation some of the
concepts need to be mentioned as below. A direct estimator
for a domain parameter is one that uses the values of the
variable of interest relating only to the units in the sample
that belong to this particular domain. An indirect estimator
for a domain parameter of interest is one that uses values of
the variables of interest in the sample of units even outside
this specific domain. As illustrations, let us consider the gen-
eralized regression (GREG) estimator for a dth domain total
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Y, of a variable of interest (d =1, ..., D), viz.
Yi X
ted = Z —Ig4, + (Xd — Z —Idi) bqd
— TT; — T
LES LES
writing
I;, =1 if ieUy
=0, else,

Xq = lev x;14;, x a variable well associated with y, @;(> 0) a
preassigned real number and

_ Yies Yi%i Qilai

Sies 67 Qilai
This ;¢ may be treated as a model-motivated, rather than
model-assisted, as per SARNDAL, SWENSSON and WRETMAN’s

(SSW, 1992) terminology, estimator or predictor for Y; sug-
gested by the underlying model for which we may write

Myi:y;=Bqx;+¢€,ie€Uy,d=1,...,D.

de

The regression coefficient 84 in this model is estimated by bgq
and used in #gq. The tzq is a direct estimator and it does not
borrow any strength from outside the domain. If M is replaced
by the model:

My : yi=8Bx;+¢€;,ie€U,

then ¢;¢ may more reasonably be replaced by

. ”
tsgd = Y %Idi + (Xd -> #Idi) bq

ies ies 7t
taking
_ Dies Yi%i Qi
Zies xl2 Qi
This t;5q borrows strength from outside the domain Uy be-
cause in bg values of y; are used for ¢ in s that are outside
s¢ = s N Uy and hence it is an indirect estimator. So, we call

it a synthetic GREG estimator in contrast to the nonsynthetic
GREG estimator ¢4, which is a direct estimator.

bq
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Let us Write

gd - Z ngL7

i€s

X; x; Qi
1+ Xd - Id - 9~ 5 Id',
( %s: l) Zlesxl Qi sclz] l

8sdi =

Yi
sgd = Z : Gsdu

ies U

x; x; Q;7;
Iyi+ | Xqg—)> —14
l ( Z l l) Zles l2Ql]

ie€s

Gsdi =

edi = (i — bQaxi), esqi = (3 — bgx;)

Then, following SARNDAL (1982), two estimators for each of
the mean square errors (MSE) of ¢;¢ and of ¢, about Y; are
available as

2
T — Tij apiedi Qpjed;
Mpa =D ) -,
Tij T j

i<jes

k=1,2; a1, = 14,09 = 8sdi

2
mﬂJ 7ij \ [ briesai  brjesd;
Mekd =) ) - :
T T

i<jes

k=1,2; by; =1q;,b0 = Ggqist €5

In order to borrow further strength in estimation, let us
illustrate a way by a straightforward utilization of the above
models M; and M, further limited respectively as follows:

M} : Model M; with & "N (0, A)
M}, : Model M with < "N (0, A)

with A as an unspecified non-negative real constant. Let us
further postulate:

ind
L teq/Ya~ N(BaXa,va)
Y™ N(BaXa, A
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and _
L twa/Ya ~N(BXa,va),Ya" S N(Xq, A)

with vg as either mpq in case I and as mg,4 in case I1.
Considering case II it follows that

()~ ((x)- (P2 2):
Y. 2 BXq)’ A A ’
Consequently,

Ygltsga ~ N <,3Xd +
So,

N A U4
Vpa= (-2 be
Bd (A+vd>tsgd+<A+v )'B d

is the Bayes estimator (BE) for Y. This is true for any ¢ if
the model is valid for ¢; and not just for ¢,y . But as A and B

are unknown, Y 54 is not usable.
Let

j= S0 teaXa/(A+vg)
Y2 1 X3 /(A+vq)

A
ot — BX ), ”d>

A+ A+

(10.1)

and

D
> (tsga — BXa)?/(A+vq) be equated to (D —1).  (10.2)
d=1
Solving Eq. (10.1) and Eq. (10.2) by iteration starting with
A =0in Eq. (10.1), let us find A as an estimator for A and

2(12):1 2fsgci}(al /(A +vq)
SO X2 /A+vg)

Taking ,3,A as estimators of 3, A by the method of moments it
is usual to take
) BX4
d

5 A va
Y = ——|tsgd + | =
era= (A Y 2

as the empirical Bayes estimator for Y;. FAY and HERRIOT
(1979) is the relevant reference. PRASAD and RAO (1990) have
given the following estimator for Y gpq as

B =

mgq = miq +mag + 2msq,
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where
Avg A
mig = - =7rquq, SaY,rq = =
! A+ vy y A+vg
(1-rq)2X3
m =
2d D 2\’
d=1\ Atvy
9 D
Ud 2 ~ 2
d = —% — ) (A+vvg)
T Atug)? Ddgl

GHOSH (1986) and GHOSH and LAHIRI (1987) have discussed
asymptotical optimality properties of empirical Bayes estima-
tors (EBE) valid when D is large.

In an unrealistic special case when vy = v for every d =
1,2,...,D,we have

o = () oo+ (550) 4%
Bd =\ A+v sgd A+v d

D D
B'={ tsgaXa /Zxﬁ.

d=1 d=1
Also

D
Y (tega — BXa)?/(A+0)
d=1

E

D-1

Writing

D
S = (tega — FXa)?
d=1

we have
1
A+v

_E (%) /(D —3),

So, % is an unbiased estimator for A%rv. Consequently, one
may employ for Y; the JAMES—STEIN (1961) estimator

o (D —-3) (D = 3)v\ ~
Y jsa = <1— Tv) lsgd + (Tv> BXq.
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This has the property that

D
Z (tsgd -Yy )2
d=1

D A
Y (Yysa —Ya)?
d=1

E <FE

Obviously Y gBq is more realistic than ¥ JSd, and hence the
latter is discarded in practice. We have illustrated how small
domain statistics are derived by way of borrowing strength
from the geographically neighboring domains. An approach of
borrowing from past data on the same domain for which a pa-
rameter needs to be estimated and also on the neighboring do-
mains is possible. An effective way to do this is by Kalman filter
technique as succinctly described by MEINHOLD and SINGPUR-
WALLA (1983) and CHAUDHURI and MAITI (1994, 1997), two
relevant references.

10.5 CONDITIONAL INFERENCE

In the design-based approach, usually the inferential basis
for survey data analysis is provided by conceptually repeated
selection of samples. Performance characteristics of sampling
strategies are assessed on averaging out certain functions of
samples and parameters over all possible samples bearing pos-
itive selection probabilities. In the predictive approach and
Bayesian inference, the assessment is conditional on the real-
ized sample without speculation of any kind as to what would
have happened if, instead of the sample at hand, some other
samples might have been drawn, distorting the current sam-
ple configurations. But recently some information is available
in survey sampling literature on possible conditional inference
even within the ambit of classical design-based repeated sam-
pling approach. We intend to refer to some of them here in
brief as the issue is relevant in the contexts of poststratified
sampling and small area estimation.

Suppose for a sample s of size n taken at random from
a population U = (1,...,i,...,N) of N units with H post-
strata of known sizes N an observed sample configuration
isn=ml,...,ny,...,ng), np (>0, Z{J ny = n) denoting the
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numbers of units of s coming from the Ath post-stratum, A =
1,..., H. Then, in evaluating the performances of

t1=> Wiy,
h

where ¥, is the mean of the n; sample observations if n;, > 1,
and O otherwise,

to=> WiynIn/E(Iy)
h

or of
ts=> Wiy In/E(In)/ > Wiln/Ep)

in estimating 17, where Wj, = %, y;, as before if n;, > 1 and

otherwise y,;, = ?h, the Ath post-stratum mean, and I, = 1(0)
ifny > 1(=0) and

E(I;) = Prob(Ih:I)zl—(N_Nh>/(N),
n h

the questions are the following. Is it right to evaluate ¢;, j =
1,2,3 in terms of overall expectations E = E(¢;) and MSEs
M = E(tj — Y)? or the conditional expectations E.(¢j|n) = E.
and conditional MSEs

M.(tjln) = Ee |(¢; = ¥)?In| = M,

given the realized n for the sample s at hand? A consensus is
not easy to reach, but it seems that currently the balance has
tilted in favor of the opinions that (a) for future planning of
similar surveys, for example, in allocating a sample size con-
sistently with a given constrained budget, the parameters E
and M are more relevant than E, and M, while (b) in ana-
lyzing the current data through point estimation along with a
measure of its error and in interval estimation, the relevant
parameters are E. and M.. Admitting (b), one should construct
conditional rather than unconditional confidence intervals uti-
lizing sample-based estimators M, for M, rather than M for M.
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For example, noting that

werwiss(2)- ).

np
1 M _ N,
Si=—=> Y —Yn? Wp=—-"
A Nh_11 hk h h N

and
1 1
M, = W282<———>,
c Z h"°h n Nh
writing
1
n,—1

ny,
3}21 = Z(Ynk _yh)z
1

ifn; > 1 and 0, otherwise, it seems more plausible to construct
a confidence interval ¢; & 74/21/ M, where

— 1 1
- (- )
Z 1Sh n N
rather than ¢; & 7,9/ M. where
— 1 1
M = W”E(—)——]
2 Wis np Ny,

Similarly, in comparing the performances as point estimators

of t; with a comparable overall sample mean y, = @, it

is more meaningful to compare M, instead of M with M, =

E.[(¥,—Y)?|n] instead of with M’ = E[(y,—Y )?]. In small area
estimation throughout conditional MSEs, domain estimators
are usually considered relevant and confidence statements are
to be based on suitable estimators of these conditional MSEs.
In each case the crux of the matter is that one must find a
suitable ancillary statistic a = a(d) given the survey data
d = (i,Y;]ies), such that the probability distribution of a(d)
is independent of Y and then one should condition on a(d ) for
given d in proceeding with a conditional inferential approach
in survey sampling. For further illuminations one should con-
sult HOLT and SMITH (1979) and J. N. K. RAO’s (1985) works
on this topic.
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Chapter 11

Analytic Studies of Survey Data

Suppose y, x1, . .., x;, are real variables with values Y;, X ; J i> j=
1,...,k;i=1,. N ,assumed on the units of U =(1, . .
N),labeledi = 1, ..., N.Ifthesurveydatad =(s,Y;, XJL |L€S‘),
provided by a design p, are employed in inference about cer-
tain known functions of Y;, X;;, fori =1,...,k;i=1,...,N
then we have what is called a descrlptlve study For exam-
ple we may intend to estimate the totals ¥ = Z Y, X, =
21 ji»J = 1,...,k or corresponding means or ratios along
with their Variance or mean square error estimators and set up
confidence intervals concerning these estimand parameters.
Or we may be interested to examine the values of correlation
coefficients between pairs of variables or multiple correlation
coefficients of one variable on a set of variables, or may like to
estimate the regression coefficient of y on x1, ..., xz, and so on.
Then the parameters involved are also defined on the values
Y,,X;, fori =1,..., N, and our analysis is descriptive.
Often, however, the parameters of concern relate to ag-
gregates beyond those defined exclusively on the population
U =(1,...,N)athand with values Y;, X j; currently assumed
by y,x;’s on the members of U. More specifically, consider a
superpopulation setup so that (Y;, Yy, ..., Xp;) is regarded as

249
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a particular realization of a random vector with 2 + 1 real-
valued coordinates. Then the survey data may be employed to
infer about the parameters of the superpopulation model, in
which case we say that we have analytic studies.

In this chapter we briefly discuss theoretical develop-
ments available from the literature about how to utilize sur-
vey data in examining correlation and regression coefficients
of random variables under postulated models. It is important
to decide whether a purely design-based (p-based) or a purely
model-based (m-based) approach or a combination of both (pm-
based) is appropriate to be able to end up with the right formu-
lation of inference problems, choose correct criteria for choice
of strategies, appropriate point and interval estimators, along
with suitable measures of error and coverage probabilities.
These issues are briefly narrated in section 11.2.

In section 11.1 we take up another, more elementary, prob-
lem of handling surveys. Suppose, in terms of certain charac-
teristics, theindividualsinU =(1,...,i,..., N)are assignable
to a number of disjoint categories, and on the basis of ascertain-
ments from a sample s of individuals chosen with probability
p(s) we obtain a sample frequency distribution of individuals
falling into these categories. Then we may be interested to use
this observed sample frequency distribution to test hypotheses
concerning the corresponding superpopulation probabilities.
Our hypotheses to be tested may concern agreement with a
postulated set of category probabilities or independence among
two-way cross-classified distributions. For these problems of
tests for goodness of fit, homogeneity, and independence, clas-
sical theories of statistics are well-known. These classical theo-
ries are developed under the assumption that the observations
are independent and identically distributed (iid, in brief). But
when samples are chosen from finite populations, they are se-
lected in various alternative ways like SRSWOR, with non-
negligible sampling fractions, stratified sampling with equal
or unequal probabilities of selection, cluster sampling, mul-
tistage sampling, and various varying probability sampling
schemes. Any sampling different from SRSWR from an un-
stratified population will be referred to as complex sampling.
So, it is important to examine whether the classical analytical
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procedures available for iid observations continue to remain
valid under violation of this basic assumption and, if not, to
study the nature of the effect of complex sampling and, in
case the effects are drastic, what kind of modifications may
be needed to restore their validity.

11.1  DESIGN EFFECTS ON CATEGORICAL
DATA ANLYSIS

11.1.1  Goodness of Fit, Conservative
Design-Based Tests

Suppose a character may reveal itself in £ + 1 distinct forms
1,...,i,...,k + 1 with respective probabilities p1,..., p;,...,
Pk, Prs1, (0 < p; < 1, Z}{H p; = 1), which are unknown.
Let a sample s of size n be drawn with probability p(s) from
U =(1,...,N) such that each population member bears one
of these disjoint forms of this character. Let p; with0 < p; <1
denote suitable consistent estimators for p;,i = 1,...,k + 1
based on such a sample s. Suppose p;o,i = 1,...,k + 1 are
certain preassigned values of p;,i = 1,...,k + 1. We may be
interested to test the goodness of fit null hypothesis

Hy:pi=pio,1=1,...,k+1

against the alternative H : p; # p;o for at least onei =1, ...,
k + 1. Let us write

B:(p].?“'?pk)/,

p=P1,...,pr),

o = (P10, -+, Pro).
We shall assume that n is large and, under Hj, the vector
V(p — ) has an asymptotically normal distribution with

a k- d1mens10na1 null mean vector o = 0, and an unknown
variance—covariance matrix V = V;.;, that is, symbolically,

JA(p = py) ~ Nilo, V).

Writing V. = (V; J/)\, let E s ba§§d on s, be consistent for V;;
and assume that V = (V;;) = V;,; is nonsingular. Then, the
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well-known Wald statistic,

Xw=n(p—-py)V p - po
is useful to test the above-mentioned Hy : p = p, 0 Under the
assumptions stated, this Xw is distributed asymptotically as
a chi-square variable X,f with £ degrees of freedom (df) if Hy
is true.

LetZ;,i =1, ...,k bekindependent variables distributed
as N (0, 1). Then Ziz,i = 1,..., k are independent chi-square
variables with 1 df each so that 3% Z? is a variable distributed
as a chi-square with & df. Hence, for large n, we write,

k
~Zz§.

In using Xw we need to have V and V1. But i in large scale
surveys, at most, V” s are published, and even if Vl i’sfori # j
are available, V 1 s often found to have considerable insta-
bility when the number of categories is large, the number of
clusters is small, and the sample size per category is small. So,
alternatives to Xw are desirable to test for goodness of fit.

A well-known alternative statistic to test Hj is the Pear-
sonian chi-square statistic

k+1
X =X,=n) (pi— pio)’/Pio
1

or a modified version of it, namely,

k+1
Xy =n) (pi— pio)*/Di
1

which, for large n, is asymptotically equivalent to X . Let us
write

P =Diag(p) — pp’ and Po = Diag(p,) — p,, py
Then it follows that

X =n(p ~ poV Py (B~ py).
Of course, P = Py if Hy is true.
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If one takes an SRSWR in n drawn and denotes by n; the
sample frequencies of individuals bearing the form i, then the
vector n = (ng,...,n;) has a multinomial distribution with
expectation p and dispersion matrix P ; therefore, in this con-
text SRSWR is referred to as multinomial sampling. If H is
true, then X has asymptotically the distribution Xf. Thus,
under H,, for a general scheme of sampling, we may write
Xw ~ X;? = ZI{ ZL.2 and for multinomial sampling

k
X=X,~Xu~xi=> 27
1

But, for sampling schemes other than the multinomial, one
cannot take X under Hj as a X;? variable. These cases require
a separate treatment as briefly discussed below.

Let D = PO_lV and A1 > Ago... > Ap be the eigenvalues
of D. Each of the 4;’s may be seen to be non-negative. RAO
and SCOTT (1981) have shown that under Hj, the Pearsonian
statistic X is distributed asymptotically as X ; Zi2 and we write

k
X ~> nZ:
1

In case of multinomial sampling it may be checked that D =
I = I, the identity matrix of order 2 and A; = 1 for each
i=1,...,k.

The ratio of the variance of an estimator based on a given
complex sampling design to the variance of a comparable esti-
mator based on SRSWR, with the same sample sizes for both,
has been denoted by KisH (1965) as the design effect (deff)
of the complex sampling design. Now, RAO and SCOTT (1981)

noted that
S . cVe o n Ve c'Ve
=su =i ,
1= P cPec ¢ ¢Pe
for an arbitrary & vector ¢ = (cq, ..., cp)’ of real coordinates so
that

cvemvor(Sen
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for a complex sampling design p and

k
¢'Pc= Var (chﬁi)
1

for SRSWR. So, following KiSH’s definition, RAO and SCOTT
(1981) give the name generalized design effects (general-
ized deff) to the A;’s above such that A;(A;) is the maximal
(minimal) generalized deff.

If one may correctly guess the value of A1, then X /A1 pro-
vides a conservative test for H treating X;? under H, that is,
the procedure of rejecting Hy when X /), exceeds X;? «» achieves
a significance level (SL) less than the nominal level of . Thus
the price paid in replacing the available level —« test based on
Xw by one based on the simpler statistic X is that we achieve
a lower SL. By contrast, if we reject Hy on observing X > Xl?,a

then in many cases the achieved SL will far exceed «.
If SRSWOR in n draws is used, then

n n
V=(1-—|Py, D=(1—— | 1.
( N) 0 ( N) k

Thus, here A; = (1— §) for everyi = 1, ..., k. In this case RAO
and SCOTT’s (1981) modification of Xp is Xrs = X/(1 — §),
which under Hj has the asymptotic distribution of x ,3. The test
of Hy consists of rejecting it if Xpg > X}?,a achieves asymptot-
ically the SL « as desired and RAO and SCOTT (1981) have
shown that in case (1 — ) is not negligible relative to unity,
this test acquires substantially higher power than the Pear-
son test procedure, keeping the SL for both fixed at a desired
level «.

Ifthe complex design corresponds to the stratified random
sampling with proportional allocations, then it is not difficult
tocheck that A1 < 1, implying that X < Z’{ Ziz. So, the Pearson
test with no modifications remains a conservative test in this
situation. FELLEGI’s (1978) observation that the limiting value
of E(X) is less than % in this case was a pointer to this test
being a conservative one as demonstrated by RAO and SCOTT
(1981).

If the number of strata is only two, then the asymptotic
distribution of X is that of x2 ; +(1—a)x?, where x? ; and x?
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are independent and

k+1
a=Wi(1-Wp) > (pi1 — pi2)®/pio < 1
i=1

is the trace of the matrix
Wi(1— WP Yp, — p,)p, —p,)

Here W is the first stratum proportion, p;j is the probability
of category i for stratum A, and p, = (pip, ..., prn)'s h =1, 2.
If £ is large, there is little error in approximating X by X;?
because X,f_l + X12 = X;?-

Let a two-stage sampling scheme be adopted, choosing
primary sampling units (psu) out of R available psus with
replacement with selection probabilities proportional to the
numbers My, M,, ..., Mg of secondary sampling units (ssu)
contained in them. Assume r draws are made, and every time
a psu is chosen an SRSWR of ssus is taken from it in m draws,
giving a total sample sizen =mr. Let p;;(i =1,...,k + 1;¢t =
1,..., R) be the probabilities of category i in psu ¢ and define

R
W, =M,/ > M,
1

R
pi:Zthita l=177k+1,
1

B = (pI’ .. '7pk)/7 Bt = (pltz .. '7pkt)/
Then, one may check that

V=Py+(m—-1Y Wip, —p)p, —p,) =Po+(m—1A,

Let B = Po_lA and p;(i = 1,...,k) be the eigenvalues of B.
Then the eigenvalues A; of V satisfy A; = 1+ (m — 1)p;. These
pi’s are interpreted as generalized measures of homogeneity.
Supposing p; > ... > pg, if a value of p; can be guessed a
conservative test for Hy : p = p, may be based on the statistic
X/[1 + (m — 1)p;] because this, under Hy, is asymptotically
less than Z]f Ziz. Since p; < 1, a test based on X/m is always
conservative.
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11.1.2 Goodness of Fit, Approximative
Design-Based Tests

Whatever the eigenvalue A; of D = Po_lV , let

k

k k

- 1 -

A=Y Nk ==Y =0k b= ——.
N (024 1+a?

It follows that under Hy and under large sample approxima-
tion,

k
EX/\)=k=E)_ Z?
1

k
VX/W)=2k1+a®) >2k=V (Zz?) .
1

Also,
_ tr(P;'V tr(D) kil
A= ( ]2 ) Z Vu/pz,
where V;; are the diagonal elements of V' = (V;;).
Let
d; = Vi Vii/n Vv (pl)

pi(l _pi) pL(l pz)/n srs(pl)

be the deff for p;, writing V,, Vs as variances for a given
design p and for SRSWR, respectively. Then,

1 k+1

A= Zd(l Di).

Now, if suitably consistent estimators V” of V;; and d; ofd; are
available, then one may get an estimate A of » and Xz = X/
is a suitable modlAﬁcatlon of Pearson’s statistic X . If one rejects
Hj on finding X /A > x }?,05’ then one’s achieved SL value for large
samples should be close to the nominal level «, provided the 1;’s
do not have wide variations among themselves. Xz is known
as RAO and SCcOTT’s first-order correction of X.
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Using the estimators A; for A; and X = % Sk for % one
may get estimators

a? Gi—M2/k  for a
()») Z

~ k
T (1+a%
and then use the second-order correction
Xs =Xr/(14+a?

and reject Hy at level of significance o if X g > XA , Where X/bga

for b

is such that for a chi-square variable XA with b df
Prob{xg > X/I;a} =a.

This approximation given by RAO and SCOTT (1981) is based
on the result of SATTERTHWAITE (1946) that the distribution
of X /) may be approximated by that of (1+a?) 2. But one may
check that Y% 22 = y-4+1 Zkﬂ Vij/pip; and so one needs VLJ
to calculate a.

Even if V;; are available such that the procedure is ap-
plicable, it may not be stable enough. The effect of instability
is failure to achieve the desired value of SL. FAY (1985) and
THOMAS and RAO (1987) have reported that if V;;’s are not
stable, then, in spite of its asymptotic validity, a test based
on Xw also often fails to achieve the intended SL values. But
the test based on X is often found good unless A;’s vary con-
siderably, as RAO and SCOTT (1981) have illustrated that SLs
achieved by X r remain within the range 0.05—0.056, whereas
those based on uncorrected X vary over 0.14-0.77, while the
desired level is 0.05.

FELLEGI (1980) recommended another correction for X
given by X /d, where
1 k+1

=k+1;di

Some further corrections of the above test procedures proposed
in the literature enjoin consulting Fisher’s F table rather than
chi-square tables. THOMAS and RAO (1987) and RAO and

SH
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THOMAS (1988) are good references for these studies. The tests
of goodness of fit may also be based on the well-known likeli-
hood ratio statistic
k+1
G =2nY_ p;log(pi/pio)-
1

In addition, FAY (1985) has given test procedures based on
Jackknifed chi-square statistics, which fare better than X in
case of wide fluctuations among 2;’s.

11.1.3 Goodness-of-Fit Tests, Based
on Superpopulation Models

ALTHAM (1976) made a model-based approach in this two-
stage setup. An extended version of that due to RAO and SCOTT
(1981) consists of defining indicator variables Z;;; that equal
1(0) if jth ssu of ith psu bears category i (else) and choosing
r psus out of R psus of sizes M; and m; ssus out of M; ssus in

tth psu is sampled. Let n = (ny, ..., nz,1) where
r my
n; :ZZthi’ i=1,...,k+1.
t=1j=1
Let

E(Z;ji) = pi, covim(Zyji, Zijii) = qi5 say, for every j' # j.
These conditions lead to
Ep(ny) =npi, Vin(n) = npi(1 = py) +(Y_mi — ) qu,
covp(n;, n;) = —np;p; + (Z m; — n) Qijs LF#J-
Let @ = (¢;;),G = P71Q, p1 > p2 > ... > pk the eigenvalues
of G,my = ng/n, Ai=1+(mog—1)p;. Then p; < land X/A; =
X /mg provides a basis for a conservative test. If p; = p for every
i =1,...,k, then in case p may be correctly guessed, a test for
the goodness of fit is based on X/[1 + (mg — L)pl. If My = M
and m; = m for every ¢ then X /m provides a conservative test.
BRIER (1980) postulates a slightly altered model for the

above two-stage setting. Suppose m;; is the number of sampled
ssus bearing the form i of the character m; = (my1, ..., m; 1)/
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andletp (P15 -+ Pt k+1)s 21 Pn—10<Pn<1 I =
R —|— 1. Let p, have the Dirichlet’s distribution with a

dens1ty

Fw) k41 yp—1
f(pers s Prpy1) = oy T p",
T C'(vp;)

wherev > 0,0 < p; <1, p, = 1andI'(x) = f e“u " du.
Also, given a realization p, from the density, it is postulated
that m, has a multinomial distribution.

In the special case for which m; =m for every ¢, the result-
ing compound Dirichlet multinomial distribution of m, yields
a test based on the modification X = )((,7(11:‘))) of X as an asymp-
totically good test for the goodness of fit. It is based on a
constant deff model and it achieves the nominal SL for large
samples. Another alternative to it, namely X* = nitr” X where
mo = Y. m?2/n, when m;’s may be unequal is also asymptoti-
cally valid. To apply these tests one needs to estimate v, and
procedures are given by RAO and SCOTT (1981).

From the above discussion, it is apparent that it is not
easy in practice to find A;’s in order to be able to work out a
test that rejects Hy if X > X,f,a for a preassigned «. Using
methods given by SOLOMON and STEPHENS (1977) it is possi-
ble to work these out for trial values of A;’s just to see how the
attained values of SL compare with a nominal value of « fixed
at 0.05. RAO and ScoTT (1979, 1981), HOLT, SCOTT and
EWINGS (1980), HIDIROGLOU and RaO (1987), RAO (1987),
and others have shown that, for stratified or clustered sam-
pling schemes, the Pearson chi-square statistic X p frequently
leads to SLs in the range of 20—40%, and not infrequently about
70%, as opposed to the nominal level of 5%. Hence, the effect
of designs on blindly applied classical test procedures may be
disastrous.

11.1.4 Tests of Independence

In the context of categorical data analysis, one problem is of
testing for independence in two-way contingency tables with
cell probabilities P;;,i = 1,...,r +1;j = 1,...,¢c + 1 with
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Di;’s as their consistent estimators based on a suitably taken
sample of size n chosen according to a certain design p. Let

c+1
Py = pij,
j=1
r+1
Po;j =) pij,
i=1

hij = pij — DioPij,
I = (p117 D125 -5 Ple+15 P21s -« -5 P2c+15 -+ pr—o—lc)/
h=(hi1, b2, ..., hic, hot, ooy hoey o, Bye)

/

E:(ﬁl()’"'apro))_r_Dzag(p)_ Er
Y :(ﬁ017"'7p06)5 —DZ(Ig(p )_ p/

=—Cc=C

and define analogously

P10, Poj> P> B,, B, P, Prh
Note that p and p have (r + 1)(c 4+ 1) — 1 components, while 2
and h have rc components.

Writing V' /n(V /n) for the covariance (estimated) matrix
of p, the covariance (estimated) matrix of 2 will be %H 'VH

(resp. ,—1}1\ ~V H) where
H =0h/op

is the matrix of partial derivatives of A wrt p and H is defined
by replacing p;; in H by p;;. -

To test for independence of the two characters in terms of
which the individuals have been classified into (r + 1)(c + 1)
categories is to test the null hypothesis

Hy : p;j = piopoj foreveryi=1,...,rand j =1,...,c

against an alternative that ;; = p;j — pi,po; is non-zero for
at least one pair (i, j).

The Wald statistic for this null hypothesis of indepen-
dence is

Xw =nk(HVH) 1k
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and the Pearson statistic is

X = nZL/(E,_l ® El)ZL
Here, ® denotes the Kronecker product of two matrices. Under
Hy, Xw is asymptotically szc distributed, while X7 is asymp-
totically distributed as the variable Zip SiZ? where T = rec,
the §;’s are the eigenvalues of (Br_l ® Bc_l)(H’V H) such that
81 > ...> 87 and the Z?’s are independent X12 variables.

Here the §;’s may be interpreted as the deffs corresponding
to estimators of p;;’s as functions of 4;;’s. As in the case of
goodness of fit problems, X;/5; provides a conservative test
for independence if §; can be guessed or reliably estimated. If
a complex design corresponds to stratified random sampling
with proportional allocations, then §; < 1 and X; provides
a conservative test. Unfortunately, simple alternative useful
tests modifying X7 in this case are not yet available, as in the
case of goodness of fit problems. But, as a saving grace, the
deviations of SL values achieved by the Pearsonian statistic
X7 from the nominal value @ = 0.05, while rejecting Hy in
case X7 > X%‘,w are not so alarming as in the case of goodness
of fit problems.

11.1.5 Tests of Homogeneity

Next we consider the problem of testing homogeneity of two
populations both classified according to the same criterion into
k + 1 disjoint categories on surveying both the populations on
obtaining two independent samples of sizes n; and ny from the
two populations following any complex designs.

Letpjii=1,...,k+1;,j=1,200<p; <1, p;; =
1,7 = 1, 2) be the unknown proportions of individuals of the
Jjth(j =1, 2) population bearing the formi (i =1,...,k+1) of
the classificatory character. Let p;= (pjt,-->pPjr),J =12
Let pj; be suitably consistent eéstimators of p;; based on
the respective samples from the two populations. Let V; /n;,
(j = 1,2) denote the variance—covariance matrices (of order
Ig\ x k) corresponding to p j;’s admitting consistent estimators
Vi/nj,(j =1,2). We will write

nj={Pj1,...,pjr), J =12
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The problem is to test the null hypothesis

H0:£1:£2=£, say,

writing p = (p1,..., px) corresponding to the supposition
that, under Hj, the common values of p;; for j = 1,2 are
pi,i=1,...,k + 1. Let

P = Diag(p) — pp/,Dj = PV,
1

D= (Dr/m+Dafno) (1 ma +1/mo), m= 10—

Doi = (n1P1; +n2pe;)/(ny + ng),

Py =(Pot, .., Pox), Po= Diag(po) — oDy
Then the Wald statistic for the test of the above H( concerning
homogeneity of two populations is

= = -1
-~ (V1 V PO
Xw =(p; —Py) (n_ll + _2> (By = DPy)-

Under Hy, Xw has an asymptotic X,f distribution. The Pearson
statistic for the test of this Hy on homogeneity of two popula-
tions is

Xp =np, - 22)750_1(21 — Dy)-

Writing A; as the eigenvalues of D, the generalized deff ma-
trix, SCOTT and RAO (1981) and RAO and SCOTT (1981) note
that under Hy, for large n;(j = 1,2), Xy is asymptotically,
distributed as Z}f A Zi2. They have noted that, for clustered de-
signs, the SLs achieved on rejecting Hy in case X7 > X;? , devi-
ate drastically from the nominal value o. For example, against
a desired o = 0.05, SL values for several clustered two-stage
sampling designs actually achieved vary over the range 0.17
to 0.51, as may be checked with SCOTT and RAO (1981).
Extensions tothe caseof j > 2, thatis, more than two pop-
ulations, have also been covered by RAO and SCOTT (1981). In
dealing with multi-way classifications, RAO and SCOTT (1984)
have studied the goodness of fit problem postulating log-linear
models. In this context, also, they have observed that a rele-
vant Pearson statistic motivated by multinomial sampling is
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inappropriate when the sample is actually based on a complex
design. They demonstrated that the large sample distribution
of Pearson’s statistic in this case, under the null hypothesis of a
log-linear model, is that of a linear combination of independent
x? variables, with the compounding coefficients amenable to
interpretations in terms of deffs. They have also demonstrated
that conclusions derived from the wrong supposition that the
Pearsonian statistic has a chi-square distribution yield SL val-
ues widely discrepant from the desired nominal ones. In this
case, they also further presented simple corrective measures
presuming the availability of suitable estimates of deffs of in-
dividual cell estimates or of certain marginal totals.

In fitting logistic and logit models while analyzing vari-
ation in estimated proportions associated with a binary re-
sponse, variable similar problems are also encountered when
one takes recourse to complex designs involving cluster sam-
pling in particular, and devices available with a similar ap-
proach are reported in the literature. The details are avail-
able from RAO and ScoOTT (1987), RAO and THOMAS (1988),
ROBERTS, RAO and KUMAR (1987), and the references cited
therein. We also omit developments originated from likelihood
ratio statistics and FAY’s (1985) works on jackknifed versions
of Pearsonian chi-squared tests, which are generally improve-
ments over RAO and SCOTT’s (1981) first-order corrections in
case estimated eigenvalues of deff matrices fluctuate too much.

11.2 REGRESSION ANALYSIS FROM COMPLEX
SURVEY DATA

On regression analysis of data available through complex de-
signing, the first problem is to fix the target parameters to
infer about, the second to settle for an inferential approach.
Further, there are problems of choosing the correct regressor
variables and deciding on the question of whether to include
design variables among the regressors or to keep them sep-
arate. We briefly report on these issues in what follows, of
course, as usual drawing upon a vast literature already grown
around them.
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11.2.1 Design-Based Regression Analysis

SupposeY = (Yq,...,Yn) isthe N x 1 vector of values for the
N units of a finite population U = (1,..., N) on a dependent
variable y and X5 an N x r matrix of values for these N
units on r regressor variables x1, ..., x.. With a strictly finite
population setup one may take

B=XyXy) ' XNY
as the parameter of interest. Let s be a sample of size n drawn

from U following any scheme of sampling corresponding to a
design p admitting inclusion probabilities

= Zp(s) >0
$31

JTiJ' = Z p(s) > 0.
$31,j

Let X, be an n x r submatrix of X containing the values of
xj(j = 1,...,r) on only the n sampled units of U occurring
in s and Xs the n x 1 subvector of Y 5y including the y values
for the units only in s. Let W be an N x N diagonal matrix
with diagonal entries as W;’s and W, an n x n submatrix of
it involving W;’s for ies as its diagonal entries. Similarly, let
wy, 7 stand for them, respectively, when W; equals =;, for
i=1,...,N.Then, replacmg every term of the form ;.. u; W;
or, in partlcular by 21 u; occurring in the r x 1 vector B of
unknown regression parameters of y on x1, ..., x- by a term of
the form }°; %, one approach is to estimate B by

By = (X,W.X,) (X,W.Y,)

or, in particular, by the Horv1tz—Thompson type estimator
B, = (Xin'X,) " (Xim L),

We will assume the existence of the inverse matrices whenever

employed. In the above, the rationale behind the use of B is
that this choice minimizes the quantity

enen
where ey is defined by
Yy=XyB"+ey
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Thus B above provides the least squares solution for B*. If]
however, the dispersion of ep is of an enormous magnitude,
then B, in spite of providing a least squares fit, may not be
very useful in explaining the relationship of y on x1, ..., x.
A practice of treating B as the target parameters is adopted
by KisH and FRANKEL (1974), JONRUP and RENNERMALM
(1976), SHAH, HOLT and FoLsoM (1977), and others. Admit-
ting this B as a parameter of interest, estimators of variances
of B w and B -1 may be worked out, applying the techniques
of (a) linearization based on Taylor expansion of nonlinear
functions, (b) balanced repeated replication (BRR), (c¢) jack-
knifing, and (d) bootstrap. Details are available from KISH and
FRANKEL (1974). In case the population is clustered, with high
positive intracluster correlations and cluster sample designs
employed, then they have shown that the variances of B, 1
or By are inflated compared to what might have happened
if they were based on SRSWR. Consequently, confidence inter-
vals based on such strategies have poor coverage probabilities.

11.2.2 Model- and Design-Based
Regression Analysis

Let us consider the usual model-based superpopulation ap-
proach. Then X is an N x r matrix of fixed real values as-
sumed on the variables x1, ..., x.. But Y y is regarded as a re-
alization of an N x 1 random vector of variables also denoted
by Y4,..., YN, which have a joint probability distribution. E,,
and V,, are used as operators for model-based expectation and
variance—covariance:

EnYn|Xy)=XNB
V¥ § 1 Xy) =02V y,

where 8 is an r x 1 vector of unknown parameters and o(> 0)
is an unknown constant. In particular V 5y may equal I, the
N x N identity matrix. Let

Yy=XyNyB+en
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with €5 as the N x 1 vector of errors, for which

Enlen 1 Xn) =0
VM(EN |XN) = G2KN-

In order to apply the principle of least squares to estimate
from a sample chosen from U, it is necessary that, for the sub-
vectors and submatrices Y, X, €, corresponding to Y, X,
€n, respectively, we must have E,,(¢,| X,) = 0. One way to
ensure this for every s with p(s) > 0 is to suppose that all
the variables in terms of which selection probabilities p(s) are
determined are covered within x1, ..., x, and p(s) is not influ-
enced by the values of the dependent variable y. Later on, we
will consider certain exceptional situations.

Under the above formulation, if all the values of Y j;, X
are available and V p; is completely known, then

P = (XyVHXy) (XNVRYy)

is the generalized least squares (GLS) estimator (GLSE) for
the target parameter 8. In case V y = I, Bg is identical with
the ordinary least squares estimator (OLSE)

Bo = XNXn) HXNY N).

But these estimators are available only if a census, rather than
a sample survey, is undertaken in order to fit a regression
line as modeled above. So, the problem is to use the sample
survey data Y ., X, to obtain a suitable estimator for Ba or Bo,
whichever is appropriate. For simplicity, let us assume that
V n is known and write V ; for the submatrix of V 5, consist-
ing of the elements corresponding to units in s.
Let us consider the estimators

Br=(X.X) " UXLY)),
&ﬂ&%&ﬂm’ig
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First we note that

En(Be) = Em(Bo) = B
En(B1) = En(B2) = En(B3) = En(Bs) = B

thatis, each of the estimators ;; i = 1, 2, 3, 4is model-unbiased
for B.
Further,

Vi(Bi) < Vin(B1) for i=1,2,3

The estimator Bs is asymptotically unbiased and consistent. If
V is diagonal and 7;00V;, then B3 = Ba.

Among model-unbiased estimators ,Bs of B or equivalently
among model-unbiased predictors B; of By or B¢ according as
V ny = In(# IN), consider those that are asymptotically design-
unbiased or design-consistent for fy (or ) such that the mag-
nitudes of E,,E ,(B; — Bo)? or E,, E ,(Bs — B)? are suitably con-
trolled. Since the population sizes in case of large-scale sur-
veys are usually very large, the quantities En(Bo — B)? and

E.(B — B)? may disregard the differences between the target
parameters g and /80 (or B and ,BG) and a predictor B, with
small E,,E (,BS Bo)? or ELE (ﬂs Bc)? may be supposed
to achieve a small E,,E p(,Bs /3) After such a predictor B,
is found, it is an important issue as to whether to use suit-
able estimators for E,,(Bs — Bo)? and E,(Bs — Bg)? for deriving
what HARTLEY and SIELKEN (1975) call tolerance intervals
of By and Bg. While setting up confidence intervals for 8, the
question is whether to use an estimator of E,(8s — B)? or of
E.E,(Bs — B)2. Clear-cut solutions are not available. But let
us discuss some of the developments reported in the literature.

We shall write

6= (¥, ~ XY~ X,B)
(n—r)
where B, stands for the least squares estimator for  under
an appropriate model, that is, s is either B; or B4. Then,
an estimator for Em(B4 - ,B)2 is 02(X/ 1&) 1 and that for
En(B1 — p)%is oA X X!
Note that Em(,Bg — ,3)2 equals

2 XWX ) U X W VW X)X W X)L =02Z,,
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and hence an estimator for it should be taken as 52Z,. But
since standard computer packages like SPSS, BMDP, etc., re-
port values of (X.V ;1X,)~! as an estimate for E,,(8; — )2,
often 62(X.W,X,) ! is derived as an estimate for E,,(82 — 8)2,
substituting W; for V ! in the former. But this practice is un-
warranted by theory. In the absence of the correction, the confi-
dence interval based on such an erroneous variance estimator
often turns out to yield poor coverage probabilities.

HARTLEY and SIELKEN (1975) observe that E,.(81—fo) =
0, Vin(B1 — Bo) = 02 (X, X )1 — (XyXy) Hincase Vy = Iy
and, assuming normality, treat

¢(By— /5 (XX~ Xy Xt}

as a STUDENT’s ¢ variable with (n— 1) degrees of freedom, lead-
ing to confidence intervals for ¢’By, which they call tolerance
intervals because ¢By is a random variable for a chosen r x 1
vector c.

The literature mainly gives accounts of asymptotic design-
based properties of consistency and extents of biases of the four
estimators Bj, J = 1,...,4 and coverage properties of confi-
dence intervals based on estimated design mean square errors
or model mean square errors of these estimators taken either
as estimators of 8 or as predictors of By or Bg. For details, one
may consult FULLER (1975), SMITH (1981), PFEFFERMANN and
SMITH (1985), NATHAN (1988), and references cited therein.
BREWER and MELLOR (1973), HOLT and ScoTT (1981), and
HoLT and SMITH (1976) are interesting further references in
this context.

11.2.3 Model-Based Regression Analysis

In the above, we really considered a two-step randomization:
the finite population is supposedly a realization from an in-
finite hypothetical superpopulation with reference to which
a regression relationship is postulated connecting a depen-
dent variable and a set of independent regressor variables.
Then, from the given or realized finite population a sample
is randomly drawn because the population is too large to be
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completely investigated. The sample is then utilized to make
inference with reference to the two-step randomization. But
now let us consider a purely model-based approach that takes
account of the structure of the finite population at hand by
postulating an appropriate model.

Suppose for a sample of ¢ clusters from a given finite pop-
ulation, observations are taken on a dependent variable y and
a set of independent regressor variables x1, . . ., x, for indepen-
dently drawn samples of second stage units (SSUs) of sizes
m; from the respective sampled clusters labeled i = 1,...,c
so that Y} { m; = n, the total sample size. Let Y, be ann x 1
vector of observations on y, successive rows in it giving val-
ues on the m; observations in the order i = 1, ..., ¢ and the
observations X;’s, j = 1,...,r be also similarly arranged in
succession. Now it is only to be surmised that the observations
within the same cluster should be substantially well and pos-
itively correlated compared to those across the clusters. So,
after postulating a regression relation of Y, on X,,, which is
an n x r matrix, the successive rows in it arranging the val-
ues for the clusters taken in order i = 1, ..., ¢, which states
that

EnY, =X,8

where 8 is an r x 1 vector of unknown regression parameters,
one should carefully postulate about the distribution of the
error vector

€p = Xn - ang

One obvious postulation is that E,(¢,|X,,) = 0 and the
variance—covariance matrix of ¢, is such that V,,(Y,) = o2V,
where V is a block diagonal matrix with the ith block V; =
I.; + pJmi, where I,,; is the m; x m; identity matrix, /,,; the
m; x m; matrix with each entry as unity and p the intraclass
correlation for each cluster.

If p is known and we may identify the cluster from which
each observation comes, then the best linear unbiased estima-
tor (BLUE) for 8 is the GLSE, which is

Bopt = (X;LV _lxn) - (X;LV _lzn> .
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But in practice it is simpler to employ the ordinary least square
estimator (OLSE), namely
Bois = (X, X)) HX,Y ).
Both are model-unbiased estimators for 8 but
Em(Bopt - ,8)2 < Em(Bols - ﬂ)2
The least squares unbiased estimator for o2 is
g2 L
(n—r)

Y (I, - PpY,

where Py = X, (X' ’&X ») X! and the appropriate least squares
estimator for E,,(B,s — B)? is

FAX, -X,) X VX)X . X)) =62X.X,)1C,

In evaluating an estimator for E,,(Bys — 8)2 while using the
standard computer program packages like SAS, SPSS, and
BMDP, one often disregards the correction term C, which re-
flects the effect of clustering and plays the role analogously
to that of KiSH’s deffs in case of the design-based regression
studies. SCOTT and HOLT (1982) first pointed out the impor-
tance of the role of this correction term C, which should not be
disregarded.

11.2.4 Design Variables

Next we consider an important situation where, besides the
regressor variables, there exist another set of variables that
are utilized in determining the selection probabilities, called
the design variables. For example, one may plan to examine
how expenses on certain items of consumption, the dependent
variable y, vary with the annual income, the single regressor
variable x. Then, if accounts of the taxes paid by the relevant
individuals in the last financial year, values of a variable z, are
available, this information can be utilized in stratifying the
population accordingly. Then z is a design variable obviously
well-correlated with x and y.

Following the works of NATHAN and HOLT (1980), HOLT,
SMITH and WINTER (1980), and PFEFFERMANN and HOLMES

© 2005 by Taylor & Francis Group, LLC



Analytic Studies of Survey Data 271

(1985) let us consider the simple case of a single dependent
(endogeneous) variable y, a single regressor (exogeneous, in-
dependent) variable x, and a single design variable z. Assume
the regression model

y=a+ px+e

with E,(e |x) = 0, V,,(e |x) = 02(0 >0). Suppose a random
sample s of size n is taken following a design p using the values
Z1,Zs, ..., Zy of zand define

1 X 5 ) - 5
vz=ﬁ¥Zi’ o} =ﬁ¥(Zi—vz) .

Also, let 7, %, Z denote sample means of y, x, z, s2, s2, s? the sam-

2 Oys x> Oz
ple variances and sy, sy, sy, the sample covariances. The prob-
lem is to infer about 8, the regression coefficient of y on x under
the model-based approach.

Consider the ordinary least squares estimator (OLSE),
b =5y, /sf.

Its performance depends essentially on the relation between
the design variable z and the variables x,y in the regres-
sion model. In the simplest case x, y, z might follow a trivari-
ate normal distribution. DEMETS and HALPERIN (1977) have
shown that, under this assumption, b is biased. Following
ANDERSON’s (1957) missing value approach, they derive an
alternative estimator, which is the maximum likelihood esti-
mator (MLE) for 8, namely,

2 2 2

~ SyzSxz [ O 9 Sy [Of
,8:[8 + =2 <—Z—1)]/[s +—<——1>].

sz \ 82 v s\ 82

NATHAN and HOLT (1980) have relaxed the normality ass-
umption and postulated only a suitable linear regression
connecting y, x, z. They have found that, even then, 8 is asymp-
totically unbiased in the sense that for large n we have
approximately

E,E.B=8.
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But E,, 8 = 8 holds asymptotically only if s2 equals 0.2. Writing

oty Y LgX o 1%
y_Ngni’x_N;ni’z_N;ﬂi,

1 Y: X, y*x*
x 14\ * * 1 .
Sy = 7 E - s Syz» Sy likewise,
N s i Zs Nr;

1 X7 (3)?
3;‘2 =~ Z —L - 57 532, 512 likewise,
S

T Zs Nlni T
an alternative design-weighted estimator is also proposed for
B, namely,

* % 2 *2 2
=[S ()] /e ()
| Tyx 2 2 x 2 2
$;° \S 877 \82

and it may be seen that
EnE (")

is asymptotically equal to B, that is, 8* is asymptotically unbi-
ased.
For any estimator e for 8, considering the criterion

EnEy(e— B)? =EnE, [(e — Eyle) + (E,(e) — p)]*
- EmVp(e) + Em(Ep(e) - ,3)2

and supposing that for large samples £, (e) should be close to g
for many appropriate choices of e, one may neglect the second
term here. Then, if an estimator for V,(e), namely v,(e) with
E,(v,(e)), close to V,(e) at least for large samples be avail-
able, it may be a good idea to employ v,(e) as an estimator for
the overall MSE E,,E ,(e — f)? and use v,(e) in constructing
confidence intervals. In terms of this approach, a comparison
among b, B and B* is available in the literature, showing that
B is the most promising, followed by A*. It must be noted, how-
ever, that B(B*) coincides with (or approximates) b if s2(s:?)
matches (or approximately matches) o2. Thus, the design vari-
able is important in yielding alternative estimators even with
a model-based approach, and the values of the design variable
may be suitably used in achieving required properties for the

simple statistic, namely b, for example, by bringing s? or s;2
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close to 02, the latter being known. Then it is not necessarily
the design but the values of the design variable that may affect
the performance of model-based regression analysis.

11.2.5 Varying Regression Coefficients
for Clusters

So far we have considered fitting a single regression equation
applicable to the entire aggregate, whether it is a finite pop-
ulation or a hypothetical modeled population that is infinite.
Now we consider a population divisible into strata or clusters
for which we postulate a regression relationship to connect a
dependent variable y and a regressor variable x such that re-
gression curves may be supposed to vary over the clusters or
the strata.

First we consider the case where there are N clusters with
ith cluster I =1, ..., N) having M; units so that ZZIV M, =M
is the total number of individuals in a finite population for
which Y;; is the value of a dependent variable y on the jth
member of ith cluster (j =1,...,M;,i =1,..., N). Following
PFEFFERMANN and NATHAN (1981), we adopt a model-based
approach postulating the model

Y, = BiXij +eij,

with Em(eij |xij) =0 and Em(élzJ |xl~j) = O'iz and Em(éijekl |x,-j,
xp;) = 0 if either i # j or & # [ or both. Let a sample con-
sist of n clusters out of N clusters and from ith cluster, if se-
lected, m; units be taken. KONJIN (1962) and PORTER (1973)
considered estimating, respectively, % ZIIV M;B; and % ZJIV Bi
for which solutions are rather easy utilizing the approach as
in multistage sampling, especially if one employs design-based
estimators, which approach these authors followed. But follow-
ing SCOTT and SMITH (1969), the under-noted model-based
approach is worth consideration that treats the following ran-
dom effects model. Following them, PFEFFERMANN and
NATHAN (1981) postulate the following model for the 5;’s

Bi=B+v,i=1,...,N
E,() =0, V,(v;) =8% and Cplv;,v;) =0, i # j.
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Writing s for a sample of n clusters and s; for a sample of m;
units from ith cluster for i in s, and first supposing that o;
and § are known, PFEFFERMANN and NATHAN (1981) give the

following estimator g for g;,i = 1,..., N, namely
,3;=)»i/§i+(1—)ui),§, 1= 1,...,N
where
Ai :82/ 82+ai2/2xi2j fori es;
Jes
=0 fori¢s,
,Ei = Zyijxij/inzj for 7es
J€si J€si
=0 fori¢s
B= Z/\igi/zki-
ies ies
Then
9 1

2= ——— 5 (y;; — Bixij)?
i (mi ) ZL: Yij Bi ij
is taken as an estimator for ol?, 1 €s. Let
~ 52
Ai = 5 S\
then §2 is estimated by 32 which is the largest solution of

1 - ~ ~
=1 > (ﬂi - Zkiﬂi) /Z )% =682

ies ies i€s

Then, writing
~ 52
a (82 + 62/ > xlzj) ’
F=S ki [ S0,
s s
the final estimator for g; is
B:=npi+(1—pB, i=1,...,N.
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Chapter 12

Randomized Response

Suppose a survey is required to deal with sensitive issues like
the extent to which habits of drunken driving, tax evasion,
gambling, etc., are prevalent in a certain community in a given
time period. The entire survey need not be exclusively con-
cerned with such stigmatizing items of query, but some of the
structured questions in an elaborate survey questionnaire may
cover a few specimens like these. It is likely that an investi-
gator will hesitate to raise such delicate questions, and people
when so addressed may refuse to reply or supply evasive or
false answers. As a possible way out one may try to replace a
direct response (DR) query by a randomized response (RR) sur-
vey. We discuss briefly how it can be planned and implemented
and indicate some possible consequences.

12.1 SRSWR FOR QUALITATIVE
AND QUANTITATIVE DATA

12.1.1 Warner Model

First let us consider the pioneering work in this area by
WARNER (1965), who dealt with a qualitative character like al-
coholism, which appears only in two mutually exclusive forms.

275
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Suppose A denotes a stigmatizing character and A its comple-
ment. Let in a given community of people the unknown pro-
portion of persons bearing the form A of the character be 74
and 1 — 74 be the proportion of persons bearing A. Our prob-
lem is to estimate 74 and obtain an estimate of the variance
of the estimate on taking a simple random sample (SRS) with
replacement (WR) in n draws. If a DR survey is undertaken
and every sampled person responds and each response is as-
sumed to be truthful, then the proportion of Yes response to
the question

Do you bear A?

py = ny/n, where ny = (Yes) responses in the sample would
give an unbiased estimator of w4 with a variance

wA(l —ma)

Vipy) = — = Vb
admitting an unbiased variance estimator
py(1— py)
vp=———=.
n—1

But if we believe that there may be a substantial nonresponse
as well as incorrect response, then this estimate cannot do, as
it is grossly biased and unreliable.

Instead, let us ask a sampled person

Do you bear A?
with a probability P and the negation of it, that is,
Do you bear A?

with the complementary probability @ = 1 — P, choosing a
suitable positive proper fraction P. The answer Yes or No is
then requested of the respondent in a truthful manner, assur-
ing him or her that the interrogator does not know to which of
the two complementary questions the given answer relates.

A possible device is to offer to the respondent a pack of
identical-looking cards, a proportion P of which is marked as
A and the rest as A with the instruction that the respondent,
after thoroughly shuffing the pack, would choose one, unno-
ticed by the investigator, and record in the questionnaire the
truthful Yes or No response that corresponds to the type of
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card. Thus a Yes response may refer to his/her bearing A or A
with the variation of the type of card he/she happens to choose.

Ifthis RR procedure is adopted, on the basis of the SRSWR
of size n, the proportion of Yes response will unbiasedly esti-
mate m, = the probability of Yes response, which equals

my=Praga+(1—-P)1—-ma)=(1—-P)+ (2P — Drma.

So, using the sample proportion p,, of Yes responses, we get

an unbiased estimator 74 of w4 as
~ Pyr(1—P) ded 1
= P £ .

2P —1) , provide #2

Then,
my(1 —my)

n2p — 12 = R S

o 1 B
V(7TA) = mv(pyr) =

which simplifies to
mA(l —my) . P(1-P)
n n(2P —1)2

aa(l—my) 1 1 1
n TnlieP-1/22 4]

Clearly, comparing Vg with V p, one notes the loss in efficiency
in resorting to RR and how the loss in efficiency decreases as
P approaches either 0 or 1. But the values of P close to 0 or 1
should not be acceptable to an intelligent respondent who, for
the sake of protected privacy, would prefer a value of P close
to 1/2, which leads to increasing loss in efficiency. An unbiased
estimator for Vg is obviously

Vi =

Up — pyr(l_pyr)
E=m—DeP —1)2
1 [ ~ 1 1
T (-1 {”“‘(1 —T { 16(P —1/2% ZH '

12.1.2 Unrelated Question Model

The attributes A and A may both be sensitive, for example,
affiliation to two rival political blocks. An alternative RR device
for estimating 74 in this dichotomous case is described below.
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Suppose B is another innocuous character unrelated to
the sensitive attribute A, for example, B may mean preference
for fish over chicken and B its complement. Assume further
that the proportion of persons bearing B is a known number
. Then, for an SRSWR in n draws a sampled respondent is
requested to report Yes or No truthfully about bearing A with
a probability P and about bearing B with the complementary
probability @ = 1 — P. The sample proportion p,, of Yes re-
sponses is an unbiased estimator for

my=Pras+(1—P)np.

Since 7 is supposed known and P is preassigned, an unbiased
estimator for 4 is

ﬁA:[pyr _(1_P)7TB/P,

provided P # 0.

One way to have g known is to adopt the following mod-
ified device where a respondent is asked to (1) report Yes or
No truthfully about bearing A with probability P;, (2) report
Yes with a probability Py and (3) report No with a probability
P3, choosing numbers P, Py, P3 suchthat0 < P, Py, P3 <1
and Py + Py + P3 = 1, using a pack of cards of three types
mixed in proportions Pl Py : Ps. Then,

7Ty—P17TA+P2 P17TA+( (1-Pq)

Py
Py + Pj )
and the known quantity ijps may be supposed to play the
role of 7g.

However, a better way to deal with the case when np is
unknown is to draw two independent SRSWRs of sizes n; and
no and for the two samples use separate probabilities Py, Ps
with which a response is to relate to A. Then, the sample pro-
portions p,, for the two samples, pi, po of Yes responses are
respectively unbiased estimators (independent) of

Tyl = P17TA+(1 —Pl)TL’B and TTy2 = P27TA+(1_P2)7TB.
Then
7a=[1—-Po)p1 — (1 — Py)pal/(P1 — Ps)
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is an unbiased estimator of 74 provided P; # Ps. Then,
V(#a) = [(1 — Pp)?my1(1 — 7y1)/m
+(1 = P)?myo(1 — mya/ng] /(P1 — Py)?

and an unbiased estimator for it is

i =(1- PP =R o pypP2 B2 fipy 2

ny — 1 ng — 1
With this scheme, problems are to choose P; # Py to achieve
high efficiency but both close to 1/2 to induce a sense of pro-
tected privacy in a respondent and thus enhance prospects for
trustworthy cooperation. Also, the ratio ny/n, must be rightly
chosen subject to a preassigned value for ny + ng = n con-
sistently with a given budget. The literature contains results
with varied and detailed discussions, and one may refer to
CHAUDHURI and MUKERJEE (1988) and the appropriate refer-
ences cited therein.

Another slight variation of the above procedure intro-
duces a third innocuous character C unrelated to the sensitive
attribute A, and two independent SRSWRs of sizes nq, ng are
taken as above. But in the first sample, RR queries are made
about A and B as above, but also a DR query is made about
bearing C. The second sample is used to make an RR query con-
cerning A and C but a DR query about B. Writing ¢ as the un-
known proportion bearing C and probability (sample propor-
tion) for the two samples for Yes responses based on RR, DR as

TRyi(PRyi)s TDyi(PDyi), 1 = 1,2,
we have the probabilities and unbiased estimators as follows

mry1 = Pima+ (1 — Py, npy1 = nc
TRy2 = Poma + (1 — Po)nc, mpy2 = 7B
TC = PDyl, TB = PDy2,
Far = Pry1 —(1— Pl)fB, g = PRy2 — (1 — P2)TAFC.
P1 P2
A combined weighted estimator 7} = W1 + (1 — W)7 40 may
then be determined with W chosen to minimize V (x}) and

then replacing the unknown parameters in the optimal W by
their sample-based estimates.
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12.1.3 Polychotomous Populations

Many alternative devices are available for the purpose we are
discussing. We will mention selectively a few more. Suppose
a population may be classified into several mutually exclusive
and exhaustive categories according to a sensitive character-
istic. For example, women may be classified according to the
number of self-induced abortions so far implemented. Suppose,
ingeneral m;,i =1,...,k, Zi 7m; = 1, denote the unknown pro-
portions of individuals belonging to % disjoint and exhaustive
categories according to a stigmatizing character. In order to
estimate 7; on taking an SRSWR of a given size n, let us apply
the following device. Suppose small marbles or beads of £ dis-
tinct colors numbering m;,i = 1,2, ..., k, Z,lz m; = m are put
into a flask with a long neck marked 1, ..., m spaced apart to
accommodate one bead each when turned upside down with
the mouth tightly closed. Each color represents a category and
a sampled person is requested to shake the flask thoroughly,
unobserved by the investigator, and to record on the question-
naire the number on the flask-neck accomodating the bottom-
most bead of the color of his/her category when turned upside
down. Writing A; as the probability of reporting the value j, P;;
as the probability of reporting j when the true category is i,
and p; as the sample proportion of RR as j, we have p; as an
estimator for A ; given by

k
Aj =Y Pijm,j=1,...,J, where J =m — min m; + 1.
i=1

1<i<k
Here P;; is easy to calculate for the given m;’s,i = 1,...,k.
For example,
my
Py =—,
m
ma
Py = —,
m
m —mj ni
Py = : ,
m m-—1
m-—-mg m—mg—1 my
Po3 = : :
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and so on. The values of m; should be kept small and distinct for
simplicity. Yet J > k. One good choiceism; =i;i =1,...,k,
in which case J =m=~k(k + 1)/2. So, 7; is to be estimated as
7; on solving

p
pj=Y Py
1

but a unique solution is not possible. One procedure recom-
mended in the literature is to apply the theory of linear mod-
els. The solution requires evaluation of generalized inverses
and is complicated and unlikely in practice to yield 7; within
the permitted range [0, 1].

12.1.4 Quantitative Characters

If x denotes the amount spent last month on alcohol, amount
earned in clandestine manners, etc., so that we may antici-
pate its range and form equidistant intervals, then, applying
the above technique, it is easy to estimate the relative fre-
quencies 7; together with the moments of the corresponding
distribution. A simpler alternative is described below.

Consider the mean y = Z’{ Jm; of a variable x with val-
ues j = 1,...,k and let a disc be divided into £ equal cross-
sections marked 1, 2, ..., k in the clockwise direction. Also sup-
pose there is a pointer revolving along the clockwise direction
indicating one of the cross-sections where it stops after a few
revolutions. Then for an SRSWR in n draws we may request
a sample person to revolve the pointer, unobserved by the in-
vestigator, and report Yes (No) if the pointer, after revolution,
stops in a section marked i such thati < j, where j is his true
value.

Then, writing P, as the probability of a Yes response and
Py as the sample proportion of Yes responses, we have

k

and so kp, provides an estimator for u. The vzariance of this
estimator it = kpy is then V (1) = k2V (p,) = £ (£)(1—4) and

P, =

| =
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an unbiased estimator for this variance is

k2 Ia ﬁ k2
R (k) <1 k) N n—lpy(l Py)-

A more straightforward RR method of estimating the mean u,
of a sensitive variable x is obtained by an extension of a method
we discussed in what precedes in estimating an attribute pa-
rameter. Let y be an innocuous variable unrelated to x with
an unknown expected value j,. Then, we may take two inde-
pendent SRSWRs of sizes n;,i = 1,2, n1 + ngo = n and request
every sampled person j for the ith (i = 1, 2) sample to report a
value of x, say X ; with a probability P; and his/her true value
of y, Y; with the complementary probability @; = 1 — P; with-
out divulging to the interviewer the variable on which he/she
is reporting. Writing the value reported, that is, the RR as Z;
on z;, a random variable thus generated for the ith sample, we
may use the sample mean z; of the RRs to estimate the mean
Wz of z; which is given by

Mz = Pipy + (1 — Py, 1 =1,2, Py # Ps.
Then,

px = [(1 = Po)pzn — (1 — Pr)pgel/(Pr — Pg)
and hence

fix = [(1 = Pg)z1 — (1 - Pg)Z— 2] /(P1 — Py)
is an unbiased estimator for u,. Writing

1 "
2 _ A Y
% = 1) J.Zzl(zﬂ )

an unbiased estimator for V ({i,) is given by
v= (1= Py)*s%/m +(1— P)?%/ns| | (Py — Py)?.

In the next section, we consider a strictly finite population
setup allowing sample selection with unequal probabilities.
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12.2 A GENERAL APPROACH

12.2.1 Linear Unbiased Estimators

Let a sensitive variable y be defined on a finite population
U=(@,...,N)with values Y;,i = 1,..., N, which are sup-
posed to be unavailable through a DR survey. Suppose a sample
s of size n is chosen according to a design p with a selection
probability p(s). In order to estimate Y = Ezlv Y, let an RR as
a value Z; be available on request from each sampled person
labeled i included in a sample. Before describing how a Z; may
be generated, let us note the properties required of it. We will
denote by Er(V g, Cr) the operator for expectation (variance,
covariance) with respect to the randomized procedure of gener-
ating RR. The basic RRs Z; should allow derivation by a simple
transformation reduced RRs as R;’s satisfying the conditions

(a) Egr(R;) =Y;

(b) Vg(R;) = O!iYiz + BiY; + 6; with o;(> 0), B;,6;’s as
known constants

(¢) Cr(R;,R;)=0fori+#j

(d) estimatorsv; = a; Rl-2 +b; R; +C; exist, a;, b;, c; known
constants, such that Ez(v;) = Vr(R;) = V;, say, for
all .

We will illustrate only two possible ways of obtaining Z;’s from
a sampled individual i on request. First, let two vectors A =
(A1,...,Ar) and B = (B, ..., B1) of suitable real numbers
be chosen with means A # 0, B and variances 03, 0%. A sample
person i is requested to independently choose at random a; out
of A and b; out of B, and report the value Z; = ¢;Y; + b;. Then,
it follows that Eg(Z;) = AY; + B, giving

R, =(Z;—B)/A
such that

Er(R) =Y,
Vr(R) = (Y?oi+03) /(&) =V,
Cr(R;,R;)=0, i #j
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and

v; = (031Ri2 + 012;)/(031 + 22)
has

Er(v) =V;.

As a second example, let a large number of real numbers X ;,
Jj =1,...,m, not necessarily distinct, be chosen and a sample
person i be requested to report the value Z; where Z; equals
Y, with a preassigned probability C, and equals X; with a
probability q;, which is also preassigned, j = 1,...,m such
that

C+ qu =1
j=1

Then,

Er(Z,)=CY; + ZQij =CY; +(1-C)u, say,

1

writing p = > 7'q;X;/>1qj. Then, R; = [Z; — (1 - C)ul/C
has Er(R;) =Y;. Also,

Vr(R;) = VR(Z)/C? =V,

=[ca -0y -200 -0y, + (3 q;X?)

_ (1 . C)2M2 /CZ

which admits an obvious unbiased estimator v;.

Thus we may assume the existence of avector R =(Rq, ...,
Ry ) derivable from RRs Z; corresponding to the vector Y =
(Yq,...,Yn).Lett =¢(s,Y) => by 1;Y; be a p-based estima-
tor for Y, assuming that Y; for i € s is ascertainable admitting
the MSE

M,=M,t)=E,(t -Y)?*=> > d;Y;Y;
iJ

where
dij = Ep(bsiIsi - 1)(bstsj - 1.

Assume further that there exist non-zero constants W;’s such
that Y;/W; = C foreveryi = 1,...,N and C # 0 implies
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M, = 0. Then M, reduces to

2
Y, Y;
M,=-YYd;W,W; (W‘#)

i<j

as was discussed in chapter 2. Now, since Y;’s are supposedly
not realizable, we cannot use ¢ in estimating Y, nor can we

use
2
Y, Y;
=5 St (- )
to unbiasedly estimate M. So, let us replace Y; in ¢ by R; to
get

e=e(s,R)=t(s,Y)|ly=r = stilsiRi~

Then, Er(e) =t and hence, in case ¢ is p unbiased for Y, that
is, Ep(t) = >, p(s)t(s,Y) =Y, then

E(e) = E,Ep(e) =E,(t) =Y

writing E,(V ) from now on again as operator for design ex-
pectation (variance) and

E=E,r=E,ERg
as an overall operator for expectation with respect to random-
ized response and design. Similarly, we will write

V =V,r=E,[VR]I+ V,I[ER]

as the operator for overall variance, first over RR followed by
design. In case E,Eg(e) =Y, we call e an unbiased estimator
for Y. With the assumptions made above, now we may work
out the overall MSE of e about Y, namely,

M=E(e-Y)?=E,Eglle—t)+(t-Y)?
2
= My(t) + EpER [ buli(R; - Y-)]

=-> Y d;W,W; (%—%) +E,> b1V,

z;;zduww (3; —%) +ZVE (b3 1)
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It then follows that
2 2
Ri R; U; U;
m:—ZstijlsijWin (W_W_J]> — <W2+WJ2> ]
i<j t i J

i
may be taken as an unbiased estimator for M because it is not
difficult to check that
E(m)=E,Er(m)=M if E,(dgjlsy;)=d;j.

12.2.2 A Few Specific Strategies

Let us illustrate a few familiar specific cases. Corresponding to
the HTE? =#(s,Y) =Y ; %I si, we have the derived estimator
e=(s,R)=>; f—;ISi for which

Vi
M = _ZZ(mn’j — i)Y /m; — Yj/nj)z + Z T

i<j
and
2
m:ZZ Linj_ﬂij &_& + &I
~ = TTij TT; g TT; 5
i<j

To LAHIRI’s (1951) ratio estimator ¢, = Y;/ >, P; based on
LAHIRI-MIDZUNO-SEN (LMS, 1951, 1952, 1953) scheme corre-
sponds the estimator

e=>Y Ri/> P

(0 < P; <1,=V P, = 1) for which

1 I;
M=3 > a;(1- 5> 55|+ 2 ViEpL/P)),
i<j Cl § PS
where
Cr:(N_r),r:0,1,2,...,P322Pi’aij
n—r s

= P,P,(Y;/P;, —Y,/P;)?
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N-1 1
m = E E PinIsiIsij <—n_]_ ——PS>/

2
Ri RJ' U; Uj 9
— | - | =+ = 1 /P
(a- pj> <p3 +pr )| FaulalF
is unbiased for M. If 7, and er, above are based on SRSWOR in
n draws, then, M equals

Ly Ly Iy
6 | STy (- -

i<j

padens]

P

and
’_ N(N ~ sij Isi Isj
m = — n(n—l)C ZL<JZ SLJZ<p82_FS—E+1>
- T ./ p2
St (S rarz)
writing

2
. R; RJ‘ vj vj)
P - L - L 4 L P.P..
aLJ {(Pz PJ> Pi2+Pj2 t+ g

But the coefficients of @;; in M’ and of @;; in m’ are so compli-
cated that m’ is hardly usable. Instead, we shall approximate

2
M =E,Epg <2Ri/ZPi —Y)
2
:EpER [Z(RL _Yl)/ZPl +<ZYL/ZP1 —Y)]
by

N N
M = 7(1— )Y (Yi-YP)?/(N -1
1

+E, (zs:Vi/ (;Pi>2
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writing f = 5 asusual. An approximately unbiased estimator
of M’ is

, N N 1-f 1 (Zs Ui) (Zs I i2)
= _(1- - - 7 ;
m (11— fHuls) D [Eg v 7 + SROE

f f (N

prarge](gn) /(£7)

where

Assume a PPSWR sample is drawn using normed size mea-
sures P;,(0 < P; < 1,¥P; = 1), and each time a person ap-
pears in the sample, an independent RR r;, is obtained. Write
Yr,Tr, and p; for the corresponding Y;, R;, and P; value for
the individual i if chosen on the £th draw, then, corresponding
totgy =157 1 2, the HANSEN—HURWITZ (1953) estimator
for Y, the derived estimator is egg = = Zk 1 hav1ng the
variance

u=(SH-r)

1

and an unbiased variance estimator is

n(n—l)z<___21:;]je>

Presuming that a person, on every reappearance in the sam-
ple, may understandably refuse to reapply the RR device and
may be requested only to report one RR, then a less efficient
estimator is
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[ = frequency of i in s, with a variance

/_1 Yl‘2 2 1 Vi n—1 .

n

and an unbiased estimator for it is
_ 1 KR, N 1N
m_n(n—l);(z_eHH> fSl+;l;EfSl~

Corresponding to other standard sampling strategies due to
DES RAJ (1956), RAO-HARTLEY-COCHRAN (1962), MURTHY
(1957), and others, also similar RR-based estimators along
with formulae for variance and estimators of variance are
rather easy to derive.

12.2.3 Use of Superpopulations

In the case of DR surveys, models for Y are usually postulated
to derive optimal strategies (p, ¢) with¢ = ¢(s, Y ) to control the
magnitudes of E,,, E , (¢ — Y )? writing E,,,(V,, C,,) for expecta-
tion (variance, covariance) operators with respect to the model.
In the RR context, it is also possible to derive, under the same
models, optimal sampling strategies (p, e), with e = e(s, R) to
control the magnitude of

En,E(e—Y)>=E,E,Er(e —Y)%
Here it is necessary to assume that (1) E,,, £, and Eg com-
mute and (2) that E,(e) = Ep(s)e(s, R) = ZJIV R; = R. Since
e(s,R) =t(s,Y)|ly-r = R,

the assumption (2) is rather trivial because in DR optimal
p-based model optimal estimators ¢ are subject to E,(¢) =Y.

We follow GODAMBE and JOSHI (1965), GODAMBE and
THOMPSON (1977), and HO (1980) and postulate the model for
which

En(Y)) = i, Va(Yy) = o}
and the Y;’s are independent. Write
R;

e= Z ;Isi;

e=e(s,R)=e+h,
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with A = h(s, R) subject to E,h = 0. Define, in addition
R —
eo=eo(s,R) = ( l Ml) I+,

. TT;
i 12

h0=e0_é=_z%lsi+ﬂ,

l

where © = 211\1 i, and check that
M =E.E(~Y)?=E,E,Vg@) + E,E,Vg(h)
+E,Vu(Ege)E,V,(Egh)
+E,(EpEge — )2 =V, (Y)
M=E.E@e-Y)?=ELE,Vg@ + E,V,(Ege)
+E,(EnEge — p)*Vu(Y)

and

Vi 1
Mo = EpE(eq—Y)? = E, (Z ?) P <; _ 1)
1 l
on observing, in particular, that

So, as an analogous result of HO (1980) for the DR case, we
derive that an optimal strategy involves ey based on any de-
sign p. But since, in practice, u; may not be fully known, this
optimal strategy is not practicable in general. Assuming that
u; = BX; with X;(> 0) known but (> 0) unknown, restrict-
ing within fixed (a) sample size designs p, and in particular
adopting a design p,, for which 7; = nX;/X, X = Ellv X;, one
gets eg =2 and

E,E, Egre—Y)?>E,E, Er@E—-Y)?

that is, the class (pyy, €) is optimal among (p,,, e). If in addit-
ion o; = 0X;(c > 0), then, writing p,., as a p, design with

R I’LXi __ hoj
=% _Zdi,wehave

1

V: (ZU')z
EnEp Ere—Y)? > Epn Y n— + T Y o?
—En,E, Egr(e—Y)>2

Thus, (pnxs,e) is optimal among (p,, e).

Pnxo
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We may observe at the end that in the developments of
RR strategies, we have followed closely the procedure of mul-
tistage sampling. An important distinction is that, in multi-
stage sampling estimating the variance of an estimator Y; for
fsu total Y; is an important problem, while in the RR context
the problem of estimating unbiasedly the variance of R; as
an estimator of Y; does not exist, at least if one employs the
techniques we have illustrated.

12.2.4 Application of Warner’s (1965) and
Other Classical Techniques When
a Sample Is Chosen with Unequal
Probabilities with or without
Replacement

Let, for a person labeled i in U =(1,...,N), y; = 1if i bears
a sensitive characteristic A, = 0 if i bears the complementary
characteristic A°. Then, Y = Xy; denotes, for a given com-
munity, the total number of people bearing A needed to be
estimated.

Let every person sampled participate in WARNER’s RR
programme in an independent way. Let

I, = 1ifi answers Yes on applying Warner’s device
= 0 if i answers No

Then,
Probll; = 1] = Er(I;) = py; + (1 — p)(1 —y;)
yielding
I —(1-p)
ri=—pj—7>7 "
2p —1

provided p # %, as an unbiased estimator for y; because
Egr(r;) =y; for every i in U. Also,
_ p(1-p)

VR(ri) = = m

WVR(L) = Vi

since

Vr(l;)) = Er(I1;)(1 — Eg(1;)) = p(1— p)
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on noting that yi2 = ¥;. So, if

N
t=t(s,Y) =) yibsi =Y yibsils

ies i=1

subject to

E,(bg 1) = 1¥i,
then,

e=e(s,R) = Xribsl
writing

Y =01, Y--s¥N), R=(r1,...,ri,...,TN),
satisfies

E(e) =E,Eg(e) = E,Xyibsl; =Y
and also,

E(e) = ErEp(e) = ERr(Zr) =Y
Again,

V(e)=E,Vg(e)+ V,Eg(e)

= E,(ZV:b214) + V,(t) (12.1)
and also,
Ve)=EgrVy(e) + VRE(e)
=EgrV,(e)+ Vr(Zr;) (12.2)

=ErV,y(e) + =V,

following CHAUDHURI, ADHIKARI and DIHIDAR (2000a). Con-
sulting CHAUDHURI and PAL (2002), we may write

. 1\ 2 2
Vp(t) = —Z Zwiwj (ﬁ — y—J> + Zy—l.ai

i< w; w;

<J

with w;(# 0) arbitrarily assignable,
d;j = Ep(bgls — 1)(bgjIs; — 1)
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and
N
o =Y di,
j=1
and
Vole) = Vo)l S Y dywaw; (T T 4wl
= —R = — jwiw; | — — — —q;
p p\LJIY=R o J J w,  w; w;

Let it be possible to find d;;’s free of Y, R, such that
E,(dgjlsj) =d;j, Ij =141, I =1 if ies, m; > 0Vi
Then,
v v\ 9 L
vp(t) = —ZL;<Jz:dsiszijwiwj <E - E) + Ew—‘iai?i
and
vple) =vp(dly=r
satisfy respectively
Epv,(t) =V,(t)
and
Epv,(e) =Vip(e).
Then,
v1 =vple) + ZV;by I
satisfies E(v1) = V (e), vide Eq. (12.2). Since
Egvple) =vp(t) = > Y dgjlgjww; <% + %) + Z%ai%

i<j i J

it follows from Eq. (12.1) above that

v, V
ve =vpe) + Y > dajlijww; (w_; + —£>
i J

i<j

i

S

is an unbiased estimator of V (e) because
E(vg) = EpER(ve) =V (e).
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REMARK 12.1 For WARNER’s RR scheme, V; is known. But in
other schemes, V; may have to be estimated from the sample
by some statistic V;, which has to be substituted for V; in the
above formulae for v1 and vs.

If, as in RAJ (1968) and RAO (1975),
Vo) = @y + Y > aijyiy;
i L#]

and

v,(¢) = SylasIs + S viviasij L

i#]

such that E,(as 1) = a; and

E,(asj Egj) = ajj,
then if Vi be an unbiased estimator for V; = Vg(r;), then two
alternative unbiased estimators for V (e) turn out as

vy = vl (e) + BViby I
and
vy = v, (e) + 2V, (02 — agi) I
writing
vy(e) =v,()ly=r
This is because it is easy to check that
Ev] =V (e) of Eq. (12.2)
and
Evy =V (e) of Eq. (12.1) above.

For the well-known unrelated question RR model of HORVITZ
et al. (1967), for any sampled person i, four independent RRs
are needed according to the following devices.

Let I;,1; be distributed independently and identically
such as I; = 1 if i draws at random a card from a box with
a proportion p; of cards marked A and the remaining ones as
marked B, and the card type drawn matches his/her actual
trait A or B, = 0, else.
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Similarly, let JJ; and JJ; be independently and identically
distributed random variables generated in the same manner
as I;, I/, with the exception that p; is replaced by ps (0 < p1 <

1,0 < p2 <1, p1 # p2).
Letting

y; = 1 if i bears the sensitive trait A
=0, else
and
x; = 1if i bears an unrrelated innocuous trait B
=0, else
we may check that
Er(I}) = p1y;i + (1 — pyx; = Er(I)
ER(J;) = poy; + (1 — pa)x; = Er(J))
leading to
;A —pa)l; -1 - p1d;
' (p1— p2)

-3 -ERr(r)) =y

and

= (1—-p)I] —(1—p)d/
(p1— p2)
sothatr; = 1(r/+r/) satisfies Ep(r;) = y; and V; = 1(r/ —r/)?
satisfies Er(V;) = Vg(r;) = V;. So, for e = Tr;bsI,; one may
easily work out vy, vg, v], V5.

-3 -Er(r]) =y;
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Chapter 13

Incomplete Data

13.1  NONSAMPLING ERRORS

The chapters that precede this develop theories and methods
of survey sampling under the suppositions that we have a tar-
get population of individuals that can be identified and, us-
ing labels for identification of the units, we choose a sample
of units of a desired size and derive from them values of one
or more variables of interest. However, to execute a real-life
sample survey, one usually faces additional problems. Corre-
sponding to a target population one has to demarcate a frame
population, or frame for short, which is a list of sampling
units to choose from, or a map in case of geographical cover-
age problems. The target and the frame often do not exactly
coincide. For example, the map or list may be outdated, may
involve duplications, may overlap, and may together under or
over cover the target. Corresponding to a frame population
one has the concept of a survey population, which consists
of the units that one could select in case of a 100 percent sam-
pling. These two also need not coincide because during the
field enquiry one may discover that some of the frame units

297
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may not qualify as the members of the target population and
hence have to be discarded to keep close to the target. The
field investigation values may be unascertainable for certain
sections of the survey populations, or, even if ascertained, may
have to be dropped because of inherent inconsistencies or pal-
pable inaccuracies at the processing stage. Consequently, the
sample data actually processed may logically yield conclusions
concerning an inference population, which may differ from
the survey population. MURTHY (1983) elegantly enlightens
on these aspects.

The units from which one may gather variate values of
interest, irrespective of accuracies, are called the responding
units, the corresponding values being the responses; those
that fail to yield responses constitute the nonrespondents.
Some of the nonrespondents may, as a matter of fact, refuse to
respond, giving rise to what are called refusals, while some,
although identified and exactly located, may not be available
for response during the field investigation, giving rise to the
phenomenon of not-at-homes.

The discrepancies between the recorded responses and
the corresponding true values are called response errors,
or measurement errors. These errors are often correlated
and arise because of faulty reporting by the respondents or be-
cause of mistaken recording by the agents of the investigator,
namely the interviewers, coders, and processors. Interpene-
trating network of subsampling is one of several procedures
to provide estimators for correlated response variances aris-
ing because of interviewer (and/or coder-to-coder) variations.
Further sophisticated model-based approaches making use of
the techniques of variance components analysis and Minque
(Minimum normed quadratic unbiased estimator) procedures
are reported in the recent literature.

As a consequence of measurement inaccuracies, estima-
tors based on processed survey data will deviate from the es-
timand parameters even if they are based on the whole pop-
ulation. The deviations due to sampling are called sampling
errors, and the residual deviations are clubbed together under
the title nonsampling errors.
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If an estimator for a finite population mean (or total) is
subject to an appreciable nonsampling error, then its mean
square error about the true mean (or total) will involve not
only a sampling error but also a component of nonsampling
error. Consequently, estimators of sampling mean square er-
rors discussed in the previous chapters will underestimate the
overall mean square errors. Hence, the estimators in practice
will not be as accurate as claimed or expected solely in terms of
sampling error measures, and the confidence intervals based
on them may often fail to cover the estimand parameters with
the nominal confidence proclaimed. So, it is necessary to antic-
ipate possible effects of nonsampling errors while undertaking
alarge-scale sample survey and consider taking precautionary
measures to mitigate their adverse effects on the inferences
drawn.

Another point to attend to in this context is that exclu-
sively design-based inference is not possible in the presence of
nonsampling errors. In the design-based approach, irrespec-
tive of the nature of variate values, inferences are drawn solely
in terms of the selection probabilities, which are completely un-
der the investigator’s control. But nonresponse due to refusal
unavailability, or ascertainment errors cannot be under the
investigator’s complete command. In order to draw inferences
in spite of the presence of nonsampling errors, it is essential
to speculate about their nature and magnitude and possible
alternative and cumulative sources. Therefore, one needs to
postulate models characterizing these errors and use the mod-
els to draw inferences.

In the next few sections we give a brief account of various
aspects of nonsampling errors, especially of errors due to in-
adequate coverage of an intended sample due to nonresponse
leading to the incidence of what we shall call incomplete data.

13.2 NONRESPONSE
To cite a simple example, suppose that unit i, provided it is

included in a sample s, responds with probability ¢;, ¢; not de-
pendingonsorY = (Y;,...,Yxn). Suppose n units are drawn
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by SRSWOR and define

M — 1 ifunit: is sampled and responds
710 otherwise

Consider the arithmetic mean
XYMy,
> M;
of all observations as an estimator of Y. Then
EM; = g
and E7¥ is asymptotically equal to

2.qiY;
2. q;
The bias

(g w)"

is negligible only if approximately

1
q = qui'

Even if the last equality holds fori = 1,2, ..., N the variance
of y is inflated by the reduced size of the sample of respondents.
So it behooves us to pay attention to the problem of nonre-
sponse in sample surveys. The nonresponse rate depends on
various factors, namely the nature of the enquiry, goodwill of
the investigating organization, range of the items of enquiry,
educational, socioeconomic, racial, and occupational character-
istics of the respondents, their habitations and sexes, etc. In
case of surveys demanding sophisticated physical and instru-
mental measurements, as in agricultural and forest surveys
covering inaccessible areas, various other factors like, sincer-
ity and diligence of the investigator’s agents and their pre-
paredness and competence in doing the job with due care and
competence, are essential. With the progress of time, unfor-
tunately, rates of nonresponse are advancing, and rates of re-
fusals among the nonresponses are gradually increasing faster
and faster in most of the countries where sample surveys and
censuses are undertaken.

© 2005 by Taylor & Francis Group, LLC



Incomplete Data 301

In order to cope with this problem in advanced countries
enquiries are mostly being done through telephone calls rather
than through mailing questionnaires or direct face-to-face in-
terviews. One practice to realize a desired sample size is to
resort to quota sampling after deep stratification of the popu-
lation. In quota sampling from each stratum, a required sam-
ple size is realized by contacting the sampling units in each
stratum in succession following a preassigned pattern, and
sampling in each stratum is terminated as soon as the pre-
determined quota of sample size is fulfilled and nonresponses
and refusals in course of filling up the quota are just ignored.
This is a nonprobability sampling and hence is not favored by
many survey sampling experts.

Randomized response technique is also a device purported
to improve on the availability of trustworthy response relating
to sensitive and ticklish issues on which data are difficult to
come by, as we have described in detail in chapter 12.

Another measure to reduce nonresponse is to callback
either all or a suitable subsample of nonrespondents at suc-
cessive repeat calls. We postpone to section 13.3 more details
about the technique.

Sometimes during the field investigation itself, each non-
response or refusal case after a reasonable number of call-
backs and persuasive efforts fails to elicit response is replaced
by a sampling unit found cooperative but outside the selected
sample of units, although of course within the frame. Such
a replacement unit is called a substitute. Anticipating pos-
sibilities of nonresponse, in practice, a preplanned procedure
of choosing the substitutes as standbys or backups is usually
followed in practice. In substitution it is, of course, tacitly as-
sumed that the values for the substituting units closely re-
semble those for the ones correspondingly substituted. Success
of this procedure depends strongly on the validity of this
supposition.

As is evident from the text thus far developed, an esti-
mator for a finite population total or mean is a weighted sum
of the sampled values, the weights being determined in terms
of the features of the sampling design and/or characteristics of
the models if postulated to facilitate inference making. In case
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there is nonresponse, and hence a reduced effective size of the
data-yielding sample, an obvious step to compensate for miss-
ing data is to revise the original sample weights. The sample
weights are devised to render an estimator reasonably close
to the estimand parameter. Since some of the sample values
are missing due to nonresponse, the weights to be attached to
the available respondent sample units need to be stepped up
to bring the estimator reasonably close to the parameter. So,
weighting adjustment is a popular device to compensate for
missing data in sample surveys. In effect, in employing this
technique, the nonresponses are treated as alike as the re-
sponses such that this technique also is tacitly based upon the
assumption that the respondents and nonrespondents have
similar characteristics and the nonrespondents are missing
just at random.

In large-scale surveys the assumption of missingness at
random is untenable. To overcome this difficulty, utilizing
available background information provided by data on aux-
iliary correlated variables with values available on both the
respondents and the nonrespondents, the population is divided
into strata or into post-strata, in this case called adjustment
classes or weighting classes, so that within a class the re-
spondents and the nonrespondents may be presumed to have
similar values on the variables of interest. Thus, missingness
at random assumption is not required to be valid for the entire
population, but only separately within the weighting classes.
The nonresponse rates will vary appreciably across these
classes. Then, weighting adjustment technique to compensate
for nonresponse is applied using differential weight adjust-
ments across the classes, the weights within each class being
stepped up in proportion to the inverse of the rate of response.

HARTLEY (1946), followed by POLITZ and SIMMONS (1949,
1950), proposed to gather from each available respondent the
number out of the five previous consecutive days he/she was
available for a response. If someone was available on A(h =
0,1,2,3,4,5) days % was used as an estimated probability
of his/her response and % was used as a weight for every
respondent of the type h(h = 0,1,...,5). Here 1 is added be-
cause on the day of his/her actual interview he/she is available
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toreport. This device, however, only takes care of not-at-homes,
not the refusals. Also, no information is gathered on the actual
not-at-homes on the day of the enquiry.

Weighting adjustment techniques, described in sections
13.4 and 13.5, are usually applied to tackle the problem of
unit nonresponse, that is, when no data are available worth
utilization on an entire unit sampled. But if, for a sampled
unit, data are available on many of the items of enquiry but are
missing on other items, then an alternative technique called
imputation is usually employed. Imputation means filling in
a missing record by a plausible value, which takes the place
of the one actually missed by virtue of presumed closeness
between the two. Various imputation procedures are currently
being employed in practice, to be discussed in brief in
section 13.7.

Another device to improve upon the availability of re-
quired data or cutting down the possibility of incomplete data
is the technique of network sampling. A group of units that
are eligible to report the values of a specific unit is called a
network. A group of units about which a specific unit is able
to provide data is called a cluster. In traditional surveys, the
network and cluster relative to a given unit are both identical
with the given unit itself. But in network sampling various
rules are prescribed following which various members of net-
works and clusters are utilized in gathering information on
sampled units. More details are discussed in section 13.6.

13.3 CALLBACKS

HANSEN and HURWITZ (1946) gave an elegant procedure for
callbacks to tackle nonresponse problems later modified
by SRINATH (1971) and J. N. K. RA0O (1973), briefly described
below. The populatiog is concgptuallAy dichotomized with
Wl(W2 =1- Wl) and Yl(Y2 = [Y — WlYl]/Wg) as the propor-
tion of respondents (nonrespondents) and mean of respondents
(nonrespondents) and an SRSWOR of size n yields proportions
wiy =ny/nand we =1 —w; =1 —ny/n = nyg/n of respondents
and nonrespondents, respectively. Choosing a suitable number
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K > 1 an SRSWOR of size mg = ny/K, assumed to be an inte-
ger, is then drawn from the initial ny, sample nonrespondents.
Supposing that more expensive and persuasive procedures are
followed in this second phase so that each of the ms units called
back now responds, let ¥; and y,5 denote the first-phase and
second-phase sample means based respectively on n; and my
respondents. Then, Y may be estimated by y; = w1y; +w2¥ss,
and the variance

$* w,E =D

V(yd)—(l—f)— b
by
1 2
v == ) (M
(N - D - 1) — (n —D(my —1) s,
N(n—1) Y2y
N —n _ _ _
N( " [wl(h —¥a)? + wa(Fog — yd)ﬂ :
Here f = %;S? is the variance of the population of N units

using d1v1sor (N — 1), S 5, the variance of the population of
nonrespondents, using divisor (No—1), writing N; = N W;(i =
1,2), s%, 332 the variances of the sampled respondents in the
first and second phases, using divisors (ny — 1) and (mg — 1),
respectively.

Choosing a cost function C = Cyn + Ciny + Coamgy where
Cy, C1,Cy are per unit costs of drawing and processing the
initial, first-phase, and second-phase samples respectively of
sizes n, ni, and mg optimal choices of K and n that minimize
the expected costs

E(C)=Con+ C1nW1 + ConWy/K
for a preassigned value V of V (y,) are, respectively,
1/2
Koy = [Ca(S® — W2S3)/83(Co + C1W1)|

and
NS?2
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The same K,,: but
n/0pt = CKopi/ [Kopi(Co + C1W1) + Co Wy

minimize V (y;) for a preassigned value C of E(C). These
results are inapplicable without knowledge about the magni-
tudes of S2, S%, Ws.

BARTHOLOMEW (1961) suggested an alternative of calling
back. EL-BADRY (1956), SRINATH (1971), and P. S. R. S. RAO
(1983) consider further extensions of the HANSEN-HURWITZ
(1946) procedure of repeating callbacks, supposing that succes-
sive callbacks capture improved fractions of responses, leaving
hardcore nonrespondents in succession in spite of more and
more stringent efforts.

Another callback procedure is to keep records on the num-
bers of callbacks required in eliciting responses from each sam-
pled unit and study the behavior pattern of the estimator, for
example, the sample mean based on the successive numbers of
callsi =1, 2,3, ..., etc., on which they were respectively based.
If the sample mean y; based on responses procured up to the
ithcallfori =1,2,3,...uptot shows atrend asi moves ahead,
then, fitting a trend curve, one may read off from the curve the
estimates that would result if further callbacks are needed to
get 100 percent response, and, using the corresponding extrap-
olated estimates y; for j > ¢, one may get an average of the y;’s
fori =1,2,...,¢,t+1,... using weights as the actual and esti-
mated response rates to get a final weighted average estimator
for the population mean. This extrapolation procedure, how-
ever, is not very sound because not-at-home nonresponses and
refusal nonresponses are mixed up in this procedure, although
their characteristics may be quite dissimilar on an average.

13.4 WEIGHT ADJUSTMENTS

In POLITZ-SIMMONS divided into disjoint and exhaustive
weighting classes, weights are taken as reciprocals of the esti-
mated response probabilities. The response probabilities here
are estimated from the data on frequency of at-homes deter-
mined from the respondents met on a single call. THOMSEN and
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SIRING (1983) extend this, allowing repeated calls. Utilizing,
background knowledge and data on auxiliary variables, the
sample is poststratified into weighting or adjustment classes.
On encountering nonrespondents, several callbacks are made.

They consider three alternative courses, namely (1) get-
ting responses on the first call, (2) getting nonrespondents and
a decision to revisit, and (3) getting nonrespondents and aban-
doning them. In case (2) in successive visits, also, one of these
three alternative courses is feasible. For the sake of simplic-
ity let us illustrate a simple situation where there are only
two post-strata and up to three callbacks are permitted. Let
for the Ath post-stratum or weighting class (h = 1,2) Py, Q1
and Aj, denote the probabilities of (a) getting a response on the
first call, (b) getting a response from one who earlier nonre-
sponded, and (c) of getting a nonresponse and not calling back,
abandoning the nonrespondents. Here @, is permitted to ex-
ceed Pj, because after the first failure, a special appointment
may be made to enhance chances of success in repeated calls.
Let Aj for simplicity be taken as a constant A over h = 1, 2.
Then, letting ny, as the observed sample size from the Ath post-
stratum and f; as the frequency of observed responses from
the hth post-stratum on the jth call (j = 1, 2, 3), postulating
a trinomial distribution for fj1, fne, frs for each A = 1,2 one
may apply the method of moments to estimate Pp, @, A by
solving the equations (for h =1, 2)

fn1=nnPp
fre=np(1—Pyp—AQy
fre=n(1—=Pp—A1—-Qy—AQh.
Alternatively, one may also use the least squares method by
postulating, for example,
frj =an+Brj +¢€;

with ap, B, as unknown parameters, h = 1,2, j = 1,2,3,
E(e;) = 0, V(e;) = 0%(> 0), so that E(fr) = ap + Br,j =
1, 2, 3. After obtaining estimates of probabilities of responses
available on the first, second, and third calls from sampling
units of respective post-strata, weight-adjusted estimates of
population means and totals are obtained using weights as
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reciprocals of estimated response probabilities. Further gener-
alizations necessitating quite complicated formulae are avail-
able in the literature. OH and SCHEUREN (1983) is an impor-
tant reference.

We will now consider samples drawn with equal proba-
bilities, that is, by epsem (equal probability selection meth-
ods). Suppose the population is divisible into H weighting
classes, rather post-strata with known sizes Nj or weights
W, = Njp/N for the respective post-strata with known sizes
Np, or weights W;, = N, /N for the respective post-strata de-
noted by h = 1,..., H. Let N, = Ry + My, Ry(M}), denot-
ing the unknown numbers of units who would always respond
(nonrespond) to the data collection procedure employed. Let
Y 4, Y mh, Ry, M}, denote the means of the respondents, non-
respondents, and corresponding proportions of the hth class,
h=1,...,H. Let ¥, be the overall mean of the sampled re-
spondents and ¥, the mean of the sampled respondents from
the hth class (h =1, ..., H). Then, the bias of ¥, as an estima-
tor for the population mean Y is

B(yr) = ZWh (?rh _Yr) (Fh _F) /P

+ > Wiy (Yrn— Y mn)
= A+ B, say,

writing Y, as the overall population mean of all the R respon-
dents, R = %, R = > N,R),. An alternative estimator for Y
isy, = > Wpy,, called the population weighting adjusted
estimator, available in case W}’s are known. Its bias is

B, =Y WiMy(Y 1 —Y mn) = B.

A condition for unbiasedness of y, is Y, =Y ,,,, writing Y ,,, for
the mean of overall nonrespondents in the population, while
thatfory,isY,, =Y mnforeachh =1,..., L. THOMSEN (1973,
1978) and KALTON (1983b) examined in detail relative merits
and demerits of these two in terms of their biases, variances,
mean square errors, and availability of variance estimators.
Preference of one over the other here is not conclusive.

In case Wy’s are unknown, using their estimators, namely
wy, = ny/n, the proportion of the sample falling in the respective
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weighting classes, an alternative sample weighted estimator
forY isy, = 3", wiy, 5. Its biasis B(y,) = B = B(y,). One may
consult KALTON (1983b) and KiSH (1965) for further details
about the formulae for variances of ¥, and comparison of y,,
¥, and y; with respect to their biases and mean square errors
and variance estimators.

Raking ratio estimation, or raking, is another use-
ful weighting adjustment procedure to compensate for nonre-
sponse when a population is cross-classified according to two
or more characteristics. For simplicity, we shall illustrate a
cross-tabulation with respect to only two characteristics, which
respectively appear in H and L distinct forms. Suppose Wy
is the proportion of the population of size N falling in the
(h,0)th cell, which corresponds to the Ath form of the first
character I, and the [th form of the second character, say,
mh=1,...,Hand 1 =1,...,L Let W, = £, Wy and
W; = >°;, Wiy denoting, respectively, the two marginal distri-
butions, be known, A = 1,...,H and ! = 1, ..., L. Let, for a
sample of size n from the population, the sample proportion
in the (A, )th cell be Py; = ny;/n, ny, denoting the number of
sample observations falling in the (A, [)th cell. We shall assume
an epsem sample. The sample marginal distributions are then
specified by pp. = Yy pmw and p; = > ,puwforh=1,..., H
and [ = 1,..., L, respectively. In the above, the population
joint distribution (Wj;) is supposed to be unknown. The prob-
lem of raking is one of finding right weights so that when
the sample cell relative frequencies are weighted up, then the
two resulting marginal distributions of the weighted sample
cell proportions respectively agree simultaneously with the
known population marginal distributions. In order to choose
such appropriate weighting factors one needs to employ an
algorithm involving iteration, called the method of iterated
proportional fitting (IPF). To illustrate this algorithm, sup-
pose the initial choice of weights is W}/ py. Then, the weighted
sample proportions, namely ¢;; = % P, lead to a marginal
distribution

{Z L Wh-}

. Dh-
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which agrees with one of the population marginal distribu-
tions, namely, with {Wj.} but not with the other, namely {W,}.
So, at the second iteration, if we use the new set of weights
W;/t; where t; = >"; tn, then the new set of weighted sample
cell proportions, namely, ey; = ‘Qf—fthl, will yield a marginal dis-
tribution {3>°;, ey} = {W}, which coincides with the other popu-
lation marginal distribution but differs from the first marginal
distribution. So, further iteration should be continued in turn
to achieve conformity with the two marginal distributions with
a high degree of accuracy. If the convergence is rapid the
method is successful; if not, usually as specified, 4 or 6 iter-
ation cycles are employed and the process is stopped. Sup-
pose the terminating weighted sample proportions for the cells
conforming closely with respect to their marginal distribu-
tions to the given population marginal distributions are given
by {Wpy}. Then ¢ = >, > Wy, with ¥, as the sample
mean based on the respondents out of the sampled units falling
in the (A, [)th cell, is taken as the estimator for Y. For fur-
ther discussion on raking ratio method of estimation, one
may consult KALTON (1983b) and BRACKSTONE and RAO
(1979).

13.5 USE OF SUPERPOPULATION MODELS

Suppose x1, X9, ..., Xz are k auxiliary variables correlated with
the variable of interest with values X;;,i = 1,...,1,..., N,
J =1,...,k. Let X be the N x k matrix with ith row x] =
(%135 ---5xri), 2 = 1,..., N, X, an n x k submatrix of X con-
sisting of n rows with entries for i in a sample s chosen with
probability p(s) with inclusion probabilities 7; > 0, and X, an
ny x k submatrix of X consisting of ni(< n) rows correspond-
ing to n; units of s which respond. Let 8 = (B1,...,8:) be a
k x 1 vector of unknown parameters and let

En(Y)=XB, Va(Y) =0’V

where o(> 0) is unknown but V is a known N x N diagonal
matrix and Y = (Yy,...,Y,) (cf section 4.1.1). Then, an
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estimator based on s assuming full response is

N
ls :Zﬁi

=1

where
i =x'B,
B, = (X7 'V X ) (X 'V 1Y)
7, = diagonal matrix with n; for i in s in the diagonals

V . = diagonal submatrix of V' with entries fori € s
Y. =n x 1 subvector of Y containing entries fori € s

and all the inverses are assumed to exist throughout.
This ¢; may be expressed in the form

tS - Z USLYL7

l€s

with Uy as the ith element of the 1 x n vector
U, =1yXX,x;'V/X,) ' Xin 1V 1

In case response is available on only a subsample s; of size
ni(< n) out of s, then we employ the estimator

ts= YUY+ > UgY,
1€81 1€S—S1
where, with
X' —1V , Ll

=81’ —81 —S1

as submatrices and subvectors corresponding to X/, =71, K;l,

Y ., omitting from the latter the entries correspondlng to the
units in s — sq,

! 31 =S S1 —S1 —S1
Yi = &ilBSy
And it may be shown that

tS = Z UsliYi = t317 Saya

iESl

,B (X/ _1V311X81>‘ (X’ r-ly -ly - ),
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with
-1
U, =1InX (X, n ' VIX,) Xy V!

==81=81 —S1 =51 ==81—81 —S1

and U,,; the ith element of the 1 x n; vector Q;l. This seems
intuitively sensible, and its properties of asymptotic design-
unbiasedness in spite of model failure and under assumption of
random missingness of records have been investigated by CAS-
SEL, SARNDAL and WRETMAN (1983). An alternative proce-
dure in this context of using generalized regression estimator
(GREG estimator) in the presence of nonresponse is considered
as follows by SARNDAL and HUTI (1981) in case every unit is
assumed to have a positive but unknown response probability.

Let q; = q;(X, 0)(> 0) denote an unknown response prob-
ability of ith unit ({ = 1,..., N), which is permitted to de-
pend on the known matrix X and on some unknown parameter
0 =(61,...,60,). SARANDAL and HUI (1981) suggest estimating
0 in g; using the likelihood

e I -

i€sy  les—sp
assuming a simple form of ¢; = ¢;(X, ) = ¢;(8). Suppose that
maximum likelihood or other suitable estimators g; for g; are
available and denote by @ ,, the diagonal matrix of order N x N
withg;’s,i = 1,..., N in the diagonal and by @, QS1 the diag-
onal submatrix of @, accommodating only the entries corre-
sponding to i in s and i in s, respectively. SARNDAL and HUI
(1981) suggest estimating 8 by

B, =X,z 'V QX ) (X7 'V QY ),

==81—51 —*S1 =811 —S1

and
N N 5.
~ l
Y =3 Yibyte =) fg+) =
T
1 1 S1
where
ﬁqi = 3_C§Bq, /e\qi = Yi - ﬁqi
and examine properties of this revised GREG estimator under

several postulated models for g;. One difficulty with this ap-
proach is that the same model connecting both the respondents
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and nonrespondents is required to be postulated to derive good
properties of 4.

In section 3.3.2, we discussed GODAMBE and THOMPSON’s
(1986a) estimating equation

s 4T
i€s i
in deriving optimal estimators based on survey datad = (i, Y;|
i € s). Ifthe response probability g;(> 0) is known and s, is the
responding subset of s, then GODAMBE and THOMPSON (1986)
recommend estimation on solving

AL
i€Sr Tigi
In case g;’s are unknown, they propose further modifications
we omit.

13.6 ADAPTIVE SAMPLING
AND NETWORK SAMPLING

Suppose we intend to estimate the unknown size u of a domain
in a given finite population of individuals, the domain being
characterized by a specified trait that is rather infrequent. Let
such a domain be denoted by

Q=QQ,...,u).
Suppose we have a frame of households
F =(Hy,...,Hy)

and let I;; denote the jth person of ith household H; which
consists of T; household members, j =1,...,T;,i=1,..., M,
and let T = Zzlw T;. We presume that, taking hold of individu-
als I;; from the households H;, we can construct networks to
obtain information about the individual o (¢ = 1, ..., u) in the
domain €. In order to estimate u let us, for example, choose a
counting rule r, as follows, which will enable us to derive an
estimator for u on taking a sample of households from F and
contacting members of selected households who may serve as
informants about the members of the domain .
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Let
84ij(r) = 1is I;; if eligible by rule r to report about «
=0, else.
Then
T;
Soi(r) = 84ij(r)
j=1

is the total number of members of H; eligible by rule r to report
about o and

M
Sa(r) = Zsai(r)
i=1
the total number of members of all the households in the frame
F' eligible to report on « by rule r.
Let an SRSWR in m draws be taken out of F' and define

a; = 1if H; is sampled, i =1,..., M

=0, else.
Let some sampling weights W,,j(e = 1,...,n,i = 1,..., M,
j =1,...,T;) be chosen somehow and consider the weighted
sum

w o T;
M) =D 8aij (r) Wy

a=1j=1
Then

_ MY
u(r) = po ;aiki(r)

is called the multiplicity estimator for . For the sake of un-
biasedness we assumea =1,2,..., 1

(2 Su(r)>0
() TS Suij(r) Wi = 1.
One choice is Wy;j = 1/Su(). Let 4z S-M, 4;(r) = A(r). Then,

the variance of ji(r) is

2
V(i) = Mﬁvmrn,
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where
1Y _
V) == i) -2
M 1

To see an advantage of network sampling instead of traditional
sampling in this context, let us assume that
w T;

Z ZSaij(r) <1lforeveryi=1,..., M,

a=1j=1
that is, (1) no more than one individual of Q will be enumerable
at a household and (2) no individual will be enumerable more
than once at a household. If P = /M is quite small, that is,
the trait characterizing the domain € is relatively rare, then
this assumption should be satisfied. Then, taking

1

Waij(r) = m,
it follows that
VAMr))=P(Kzy—P)=P(1—-P)—-P(1-Kg))

where
1 123
K, =— Z 1/S,(r).
K a=1
Writing
_ 12
S(r) = _ZSa(r)
L]

it follows that

_1 <K@r)<1

S(r)
since K(r) is the inverse of the harmonic mean of the S,) > 1.

For traditional surveys K(r) = 1and V(A(r)) = P(1-P).
Thus P(1 — K(r)) represents the gain in efficiency induced by
network sampling. Introducing appropriate cost consideration,
SIRKEN (1983) has shown that in addition to efficiency, average
cost of survey may also be brought down by network sampling
in many practical situations.
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S. K. THOMPSON (1990) introduced adaptive sampling,
later further developed by THOMPSON (1992) and THOMPSON
and SEBER (1996). CHAUDHURI (2000a) clarified that if a sam-
ple provides an unbiased estimator for a finite population to-
tal along with an unbiased estimator for the variance of this
estimator, then this initial sample can be extended into an
adaptive sample, capturing more sampling units with desir-
able features of interest, yet providing an unbiased estimator
for the same population total along with an unbiased variance
estimator for this estimator.

An important virtue of adaptive sampling compared to the
initial one is its ability to add to the information content of the
original sample, although not necessarily boosting an upward
efficiency level unless one starts with a simple random sample.

Historically, adaptive sampling is profitably put to use in
exploring mineral deposits, inhabitance of land and sea ani-
mals in unknown segments of vast geographical locations, and
pollution contents in various environments in diverse locali-
ties. Recently, CHAUDHURI, BOSE and GHOSH (2004) have ap-
plied it in effective estimation of numbers of rural earners,
principally through specific small-scale single industries in the
unorganized sector abounding in unknown pockets.

Suppose U = (1,...,i,...,N) is a finite population of a
known number of units with unknown values y; which are non-
negative but many are zero or low-valued, but some are large
enough so that the population total Y = Xy; is substantial and
should be estimated through a judiciously surveyed sample. If
a chosen sample contains mostly zero or low-valued units, then
evidently it is unlikely to yield an accurate estimate. A way to
get over this is the following approach.

Suppose every unit ¢ in U has a well-defined neighbor-
hood composed of itself and one or more other units. Any unit
for which a certain prespecified condition c¢*, concerning its y
value is not satisfied is called an edge unit. Starting with
any unit  for which c¢* is satisfied, the same condition is to
be tested for all the units in its neighborhood. This testing is
to be continued for any unit in the neighborhood satisfying c*
and is to be terminated only on encountering those for which
c* is not satisfied. The set of all the distinct units thus tested
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constitutes a cluster c(i) for i including ¢ itself. Dropping the
units of ¢(i) with ¢* unsatisfied the remainder of ¢(7) is called
network A(i) of i. An edge unit is then called a singleton
network. Treating the singleton network also, by courtesy,
as networks, it follows that all the networks thus formed are
nonoverlapping, and they together exhaust the entire popula-
tion. Writing C; the cardinality of A(i) and writing

1
t = Ioh Z Yj
L jeAG)
it follows that T' = X¢t; equals Y = Xy;. Consequently, to esti-
mate Y is same as to estimate T'.

If t = t(s,y;|li € s) is an unbiased estimate for Y, then
t(s,t]i € s) is unbiased for T' and hence for Y as well. Now, in
order to ascertain #(s, ;]I € s), it is necessary to survey all the
unitsin A(s) = > ;.. A(7). This A(s) as an extension of s is called
an adaptive sample. This process of extending from s to A(s)
is called adaptive sampling. Obviously, this is an example of
informative sampling, because to reach A(s) from s one has
to check the values of y; for i in s and also in ¢(i) for i in s.

Let us treat a particular and familiar case of ¢ as

tp = Zyibsilsi with Ep(bsi, I;)=1Vvi... (13.1)
when s is chosen with probability p(s) according to design p.
Then,

VAN v7

Vp(tb):—ZZdijwin' CARNEREAR +Z—l(xi,

i<j wi Wj ; Wi

where w;(# 0) are constants, o; = }°; d;;w; and
dij = Ep(bsils — D)(bsjIs; — 1).

An unbiased estimator for V (#) is

2 2
Yi Yj Y;
v(ty) = =) > daijLsijwiw, (—L - —J> +Y “toCyly
i<j wi Wj . Wi
on choosing constants Cy;, dg;; free of Y = (y1,..., 5, ..., yn)

such that Ep(CsidIsi) = 1and E,(dgjl;) = d;j, for example,
C, = n%’ dsij = # provided T = Zsaij p(s) > OV, j(@ # j),
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in which case also 7; > 0Vi. Now for the adaptive sample A(s)
reached through s, one has only to replace y; by ¢; fori € sin
and v(#p) to get the appropriate revised estimators for adaptive
sampling.

With a different kind of network formation we must con-
sider network sampling, which is thoroughly distinct from
adaptive sampling.

Suppose there are M identifiable units labeled j =1, ...,
M called selection units (su). Also, suppose to each su is linked
one or more observation units (ou), to each of which are linked
one or more of the sus. Let N be the total number of such
unknown ous with their respective values y;s with a total Y =
Zzlv y;, which is required to be estimated on drawing a sample
s of sus and surveying and ascertaining the y; values of all the
ous linked to the sus thus sampled. This process of reaching
all the ous linked to the initially sampled sus is called network
sampling.

Here, a network means a set of ous and sus mutually in-
terlinked. The link here is a reciprocal relationship. One ou
linked to an su is linked to another ou, to which this su is
linked and also several ous may be mutually linked directly as
well. A hospital, for example, may be an su, and a heart pa-
tient treated in it may be an ou. Through a sample of hospitals
exploiting the mutual and reciprocal links, we may capture a
number of ous. Ascertaining their y values, for example, the
number of days spent in hospitals for a heart patient, the ex-
penses incurred for treatment there, etc., it may be possible to
estimate the totals for all the patients who are the ous.

To see this, let us proceed as follows. Let A; denote the
set of ous linked to the jth su and m; be the number of sus to
which the ith ou is linked. Let

w; = &
ieAjmi
Then,
j=1 ! j=tiea; ™ i1 ™ Glagsi)
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Thus, to estimate Y is to estimate W. So, using the data (s, w;|
J € s) one may employ an estimator ¢ = ¢(s,w;|j € s) for
W and hence estimate Y, and also if a variance estimator for
t is available in terms of w;’s, that automatically provides a
variance estimator in terms of y;’s.

The main situation when network sampling is needed and
appropriate is when the same observational unit is associated
with more than one selection unit and vice versa, and it is not
practicable to create a frame of the observation units to be able
to choose samples out of them in any feasible manner.

An outstanding problem that needs to be addressed for
adaptive as well as network sampling is that there is no built-in
provision to keep a desirable check on the sample sizes in either
of the two. SALEHI and SEBER (1997, 2002) have introduced
some devices to keep in check the size of an adaptive sample.
For network sampling, no such procedure seems to be available
in the literature.

One easy solution for adaptive sampling is to take simple
random samples without replacement (SRSWOR) B (i) of suit-
able sizes d;(< C;) independently for every i in s such that
Yiesdi < L, where L is a preassigned suitable number so
that with the resources at hand, ascertainment may be ac-
complished for y; within B(s) = U;¢;B(i). Then, instead of ¢;
one may calculate e¢; = d—li > jeBG)Yj and employ an estimator
for Y based on ¢; for i in B(s).

Similarly, in the case of network sampling one may confine
surveying SRSWORs taken independently from A;’s, say, B ’s
and ascertaining y;’s fori € B; only with cardinality D; of B’s
suitably chosen subject to an upper limit for > ;. D;. Estima-
tion in both adaptive and network sampling with sample sizes
thus constrained may be comfortably accomplished. SIRKEN
(1993) has certain results on efficiency of network sampling.

For adaptive sampling THOMPSON and SEBER (1996) have
observed that, in case the original sample is an SRSWOR, in-
creased efficiency is ensured for adaptive sampling, as is easy
to see considering the analysis of variance, keeping in mind
the between and within network sums of squares. But for gen-
eral sampling schemes, no general claim is warranted about
gain in efficiency through adaptive sampling.
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The techniques of constraining the sizes of adaptive sam-
ples or network samples may essentially be interpreted as
means of adjusting in estimation in the presence of partial non-
response in surveys. This is because the nonresponding units
in the samples from within each stratum may be assumed to
have been actually drawn as simple random samples without
replacement (SRSWOR) by design from the sample already
drawn. Let us illustrate with an example.

Suppose an initial sample of size n has been drawn from
a population by the RA0, HARTLEY, COCHRAN (RHC) scheme
utilizing the normed size measures p; (0 < p; <1, > p; = 1).
From the n groups formed let us take an SRSWOR of m groups
with m as an integer suitably chosen between 2 and (n — 1).
Corresponding to the following entitites relevant to the full
sample, namely,

- 2
tzzn.}’i&; V(t):A Ey_l'_YQ‘|,
2 2 2
¥, =,N2-N N2 - N
:B En i—l_ ’ A: L ’ = :
v(t) Q z ! ] N(N -1) N2 —5,N?

we may work out the following based on the SRSWOR out of it

n Q; Q;
e=—Snyi—, Enle) =t = %,&, & =yi—, Em, Vi
m Di i

as expectation, variance operators with respect to SRSWOR in
m draws from the RHC sample of size n, X,, sum over m groups,

_2(l o L o e
Vm(e) =n (m n) (n_l)En(Sl £,

0 <i_l> 1 (s-—zmri>2
omie) = m n)m-1""\" m ’
E,vn(e) =V, (e)

Writing
n 2

— T Qi — (e® - vm(e))] ,
m p

i

w=RA8
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an unbiased estimator for the variance of e turns out to be

2
—zin—g—ezl.
m )4

i

v=uvple)+w=(1+ B)loyle) + B

This approach may be pursued with other procedures of sample
selection and also in more than one stage of sampling with
equal and unequal selection probabilities at various stages.

13.7 IMPUTATION

If, on an item of enquiry in a sample survey, values are recorded
in respect of a number r of sampled units, the so-called re-
sponses, while the values are missing in respect of the remain-
ing m = n—r sampled units, then for the sake of completeness
of records to facilitate standard analysis of data, it is often
considered useful not to leave the missing records blank but
to ascribe somehow certain values to them deemed plausible
on certain accountable grounds. This procedure of assigning
values to missing records is called imputation. In computer-
ized processing of huge survey data covering prodigious sizes
of ultimate sampling units sampled related to numerous items
of enquiry, it is found convenient to have a prescribed number
of readings on each item rather than arbitrarily varying ones
across the items induced by varying item-wise response rates.
A simple procedure to facilitate this is imputation. The aim of
imputation is, of course, to mitigate the effect of bias due to
nonresponse. So, it is to be conceded that the acid test of its
efficiency is the closeness of the values imputed to the true
ones. Since the true values are unknown, one cannot prove
the merits of this technique, if any. When implementing impu-
tation, one should be careful to announce the extent of im-
putation executed in respect of each item subjected to this
and explicitly indicate how it is done. Let us now mention a
few well-known procedures of imputation. While applying an
imputation process, the population is customarily considered
divisible into a number of disjoint classes, called imputation
classes. Several variables called control on matching on an
item of interest available from the respondents’ records are
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utilized in some form to be assigned to some of the nonre-
sponding units on this item. The respondent for which a value
is thus extracted to be utilized in assigning a value to a missing
record for a nonrespondent is called a donor and the latter is
called a recipient. Some of the imputation methods are:

(1) Deductive imputation
A missing record may sometimes be filled in
correctly or with negligible error, utilizing available
data on other related items, which, for the sake of
consistency, itself may pinpoint a specific value for it
as may be ascertained while applying edit checks at
the start of processing of survey data. This is called
logical or consistency or deductive imputation.
(2) Cold deck imputation
If records are available on the items of inter-
est on the same sampled units from a recent past
survey of the same population, then, based on the
past survey, a cold deck of records is built up. Then,
if for the current survey a record is missing for a
sampled unit while one is available on it from the
cold deck, then the latter is assigned to it. Cold deck
imputation is considered unsuitable because it is
not up-to-date and is superseded by the currently
popular method of hot deck.
(3) Mean value imputation
Separately within each imputation class, the
mean based on the respondents’ value is assigned to
each missing record for the nonrespondents inside
the respective class. This mean value imputation
has the adverse effect of distorting the distribution
of the recorded values.
(4) Hot deck
First the imputation classes are prescribed.
Using past or similar survey data a cold deck is
initiated. For each class, for each item the current
records are run through, a current survey value
whenever available replacing a cold deck value
while a cold deck value is retained for a unit which is
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missing for the current survey when the records are
arranged in a certain order, fixing a single cold deck
value for each class. For example, for an item sup-
pose for the Ath class x;, is a cold value obtained from
past data. Suppose the sampled units are arranged
in the sequence i1, is, i3, i4, I5, g, L7, I3, I9, L1190 and the
current values available are y;3, ¥;¢, y;9 only and the
remaining ones are unavailable. Then, the imputed
values will be Zi1,2i2,2i3,2i4,2i5,2i652i7> 2i85» 2i9, Z2i10
where z;1 = zi2 = xp,2i3 = Yi3,2ia = Vi3, Zi5 =
Vi3> 2i6 = Yi6s ZiT = Yi6, Zis = Yi6,2i9 = Yi9 and z;10 =
¥i9. Two noteworthy limitations of the procedure
are that (a) values of a single donor may be used
with multiplicities and (b) the number of imputa-
tion classes should be small, for otherwise current
survey donors may be unavailable to take the place
of cold deck values.
(5) Random imputation

First the imputation classes are specified. Sup-
pose for the Ath imputation class n; is the epsem
sample size out of which r; are respondents and
mp = ny — ry are nonrespondents. Although m =
> pmp should be less than r = },r;, the over-
all nonresponse rate 7 (writing n = 3, n;) being
required to be substantially less than % for gen-
eral credibility and acceptability of the survey re-
sults, for a particular class A, it is quite possible
that mj; may exceed rj. Keeping this in mind, let
for each h two integers kj; and ¢, be chosen such
that my = kpry + ¢, (kp, tp, > 0, taking kp, = 0 if
my < rp). Then, an SRSWOR of ¢, is chosen out of
the rj respondents to serve as donors for the my
missing records (kj + 2) times each and the remain-
ing (rj, — tp) respondents serving as donors (ky + 1)
times each. Further improvements of this random
imputation procedure are available, leading to more
complexities but possibly improved efficacies. Per-
formances of this procedure may be examined with
considerably complex analysis.
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(6) Flexible matching imputation

This is a modification of hot deck practiced in
the U.S. Bureau of the Census. Here, on the basis
of data on numerous control variables considered
in a hierarchical pattern in order of importance, for
each recipient a suitable matching donor is deter-
mined, and in such determinations stringencies are
avoided by dropping some of the control variables in
the lower rungs of the hierarchy if found necessary
to create a good match.

(7) Distance function matching

After creating imputation classes on the basis
of control variables while fixing up donor-recipient
matching, some ambiguities are required to be re-
solved on the borders of consecutive classes. For a
smooth resolution the closeness of a match is of-
ten assessed in terms of a distance function. Differ-
ent measures of distance, including MAHALANOBIS
distance in case of availability of multiple control
variables, and also those based on transformations
including ranks, logarithmic transforms, etc., are
tried in finding good neighbors or, if possible, near-
est neighbors in picking up right donors for recipi-
ents. FORD (1976) and SANDE (1979) are appropri-
ate references to throw further light on this method

of imputation.
(8) Regression imputation
Suppose x1,...,x are control variables with

values available on both the respondents and non-
respondents, the potential donors and recipients re-
spectively, while y is the variable of interest with
values available only for the respondents. Using y
and x;(j = 1,...,¢) values on the respondents is
then established a regression line, which is utilized
in obtaining predicted values on y for nonrespon-
dents corresponding to each nonrespondent’s x;
value. The predicted value is then usable for impu-
tation either by itself or with a random error com-
ponent added to it. If the control variables are all
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qualitative then log-linear or logistic models are of-
ten postulated in deriving the predicted values. If
both qualitative and quantitative variables are
available, then the former are often replaced by
dummy variables in obtaining a right regression
function. For alternatives and further discussions,
one should consult FORD, KLEWENO and TORTORA
(1980) and KALTON (1983b).
(9) Multiple imputations
While applying any one of several available im-
putation techniques, one must be aware that each
imputed value is fake, as it cannot be claimed to be
the real value for a missing one. Imputation cannot
create any information that is really absent. So, it
is useful to obtain repeated imputed values for each
missing record by applying the same imputation
techniques several, c(> 1) times, and also by apply-
ing different imputation techniques repeatedly to
compare among the resulting final estimates using
the imputed values for satisfaction about their use-
fulness. RUBIN (1976, 1977, 1978, 1983) is an out-
standing advocate for trying multiple imputed val-
ues in examining the performances of one or more
of the available imputation techniques in any given
context. Multiple imputation facilitates variance es-
timation, extending the technique of subsampling
replication variance estimation procedure suitably
adaptable in this context. For example, if z is any
statistic obtained on the basis of multiple imputa-
tions replicated C(> 1) times, z; being its value for
the jth replicate (j = 1,...,C), Z = %chzlzj,
and ¥, is an estimated variance of z;, then RU-
BIN’s (1979) formula for estimating the variance of
Zis
B 18 1 C N
U(Z) = Ezl:vj + mzl:(zj —Z)

For further details, one should consult RUBIN (1983)
and KALTON (1983b).
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(10) Repeated replication imputation

KisH (cf. KALTON, 1983b) recommends a vari-
ation but an analogue of multiple imputation tech-
nique that consists of splitting the sample into two
or more parts, as in interpenetrating or replicated
sampling, each part containing both respondents
and nonrespondents, the response rates in the two
or more such parts being usually different. A method
is then applied using suitable weights, taking ac-
count of these differential response rates in the parts
so that the bias due to nonresponse may be reduced
when the donors are appropriately sampled in the
two or more parts of the sample. In RUBIN’s multiple
imputation, donor values are duplicated to compen-
sate for nonresponse and the process is then repli-
cated. In KISH’s repeated replication technique, first
the sample is replicated and then in each replicate
there is duplication of donor values to compensate
for nonresponse. The latter procedure involves se-
lection of donors without replacement and hence
is likely to yield lower variances than the former,
which involves selection of donors with replacement.
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Epilogue

This book is, of course, not a suitable substitute for a well-
chosen sample of published materials from the entire liter-
ature on theory and methods of survey sampling. In fact, a
careful reader of the contents of even the limited bibliography
we have annexed must be infinitely better equipped with the
message we intend to convey than one depending exclusively
on it. Yet, we claim it justifies itself because of its restricted
size designed for rapid communication.

Requirements in a design- or, randomization- or, briefly,
p-based approach toward estimating a total Y by a statistic
tp based on a sample s chosen with probability p(s) are the
following. (a) The bias B,(¢,) should be absent, or at least nu-
merically small, (b) the variance V,(¢,) as well as the mean
square error M,(¢,) should be small, and (c) a suitable esti-
mator v,(¢,) for V,(¢,) should be available. One may use the
standardized estimator (SZE) (¢, — Y )/\/v,(¢,) to construct a
confidence interval of a limited length covering the unknown
Y with a preassigned nominal confidence coefficient (1 — «),
close to 1, which is the coverage probability calculated in terms
of p(s). If the exact magnitude of its bias cannot be controlled,

327
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tp should at least be consistent, or at least its asymptotic p
bias should be small.

Here the concept of asymptotics is not unique. We men-
tioned briefly one approach due to BREWER (1979). But we did
not discuss one due to FULLER and ISAKI (1981) and ISAKI
and FULLER (1982), which considers nested sequences of fi-
nite populations U,(U, C Up,k < k') of increasing sizes
Np(Np < Np,k < k') from which independent samples s,
of sizes np(< ny, kB < k') are drawn according to sequences pj
of designs.

The SZE mentioned above is required to converge in law
to the standardized normal deviate t. The inference made with
this approach is regarded as robust in the sense that it is valid
irrespective of how the coordinates of Y = (Yq,...,Yxn) are
distributed of which Y is the total. The sampled and unsam-
pled portions of the population are conceptually linked through
hypothetically repeatable realization of samples. So the selec-
tion probability of a sample out of all speculatively possible
samples constitutes the only basis for any inference.

In the p-based approach the emphasis is on the property
of the sampling strategy specified with reference to the hypo-
thetical p distribution of the estimators, rather than on how
good or bad the sample actually drawn is. In the predictive
model-based (m-based, in brief) approach, however, inference
is conditional on the realized sample, which is an ancillary
statistic. The speculation is on how the underlying population
vector Y = (Yq,...,Yyn) is generated through an unknown
process of a random mechanism. In the light of available back-
ground information, a probability distribution for Y is pos-
tulated within a reasonable class, called a superpopulation
model. Under a model, M, a predictor ¢, for Y is adopted that
is m unbiased, that is, E,,(¢,, — Y ) = 0 for every sample such
that V,,,(¢,, — Y) is minimum among m-unbiased predictors
that are linear in the sampled Y;’s.

A design, however, is chosen consistently within one’s re-
sources such that £,V ,(¢,, —Y ) is minimal. An optimal design
here turns out purposive, that is, nonrandom.

To complete the inference, one needs an estimator v, for
Vu(tn —Y ) and an SZE of the form (¢,, —Y )//U;n, which again
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is required to converge in law to . As a result, a confidence
interval for Y may be set up with a nominal coverage
probability calculated with respect to speculated unanswered
questions about the performances of ¢, v, and (¢, — Y )/ /Um
when the postulated model is incorrect. If a correct model is
M, it is not easy to speculate on the m bias of ¢,

Enytm —Y) = Bpy(tn),
the m MSE of ¢,
Enmy(tm — Y)? = My (t)
the m bias of v,
Eng[vm — My ()] = By (om),

and the distribution of (¢,, — Y)/,/U,, when Y is generated
according to Mj. So, the question of robustness is extremely
crucial here.

One approach to retain m unbiasedness of ¢,, in case of
modest departure from a postulated model is to adjust the sam-
pling design. The concept of balanced sampling that demands
equating sample and population moments of an auxiliary x
variable is very important in this context, as emphasized by
ROYALL and his colleagues. They also demonstrate the need
for alternatives to v,, as m variance estimators that retain
m unbiasedness and preserve asymptotic normality of revised
SZEs. A net beneficial impact of this approach on survey sam-
pling theory and practice has been that some classical p-based
strategies like ratio and regression estimators with or without
stratification, weighted differentially across the strata, have
been confirmed to be serviceable predictors and, more impor-
tantly, alternative variance estimators for several such com-
mon estimation procedures for total have emerged.

A further important outcome is the realization that a re-
evaluation of p-based procedures is necessary and useful in
terms of their performances, not over hypothetical averaging
over all possible samples, but through their conditional be-
havior averaging over only samples sharing in common some
discernible features with those in the sample at hand.
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ROYALL, the chief promoter of predictive methodology
in survey sampling, and his colleagues CUMBERLAND and
EBERHARDT, have demonstrated that x-dependent variation
of variance estimators of ratio and regression estimators is a
behavior worthy of attention that is not revealed if one blindly
follows the classical p-based procedures. Inspired by this
demonstration WU, DENG, SARNDAL, KOTT, and others have
derived useful alternative variance estimators, keeping eyes
to their conditional behaviors. HOLT and SMITH (1979) have
emphasized how in poststratified sampling the observed sam-
ple configuration n = (n4, ..., nr) for the given L post-strata
should be used in a variance estimator rather than averag-
ing over it, and then its variation conditional on n and how
it is useful to set up conditional confidence intervals should
be studied. J. N. K. RAO (1985) has further stressed how effi-
cacious is conditional inference in survey sampling, but also
illustrated several associated difficulties. GODAMBE (1986),
SARNDAL, SWENSSON and WRETMAN (1989), and KOTT (1990)
have also given new variance estimators with good design- and
model-based properties. SARNDAL and HIDIROGLOU (1989)
recommended setting up confidence intervals with preassigned
conditional coverage probabilities that are maintained uncon-
ditionally and have given specific recipes with demonstrated
serviceability.

Followers of HANSEN, MADOW and TEPPING (1983) would
agree to live with model-based predictors provided, in case of
large samples, they have good design-based properties. Espe-
cially if a ¢, has small |B,(¢5,)| and hence, hopefully, also a
controlled M,(t,), then it may be admitted as a robust proce-
dure. BREWER (1979) (a) recommended that to avoid exclusive
model dependence ¢,,, need not be chosen as the BLUP and (b)
discouraged purposive sampling. Instead he based his #,, on
a design to invest it with good design properties. At least the
limiting value of |B,(t,)| for large samples should be zero. A
preferred ¢,, is one for which the lower bound of the limiting
value of E,, E ,(t,, — Y)? is attained, and the right design is
one for which this lower bound is minimized. SARNDAL (1980,
1981, 1982, 1984, 1985) has alternative recommendations in
favor of what he called the GREG predictors, which are robust
in the sense of being asymptotically design unbiased (ADU).
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WRIGHT (1983) introduced the wider class of QR predic-
tors covering both linear predictors (LPRE) including BREWER’s.
GREG, and SARNDAL and WRIGHT (1984) examine their ADU
properties. MONTANARI (1987) enlarges this class, further ac-
commodating correlated residuals. LITTLE (1983) considers
GREG predictors inferior to LPRE and shows that the lat-
ter are ADU and ADC provided they originate from a modeled
regression curve with a non-zero intercept term for each of
a number of identifiable groups into which the population is
divisible. This leads to expensive strategies demanding group-
wise estimation of each intercept term. An adaption of JAMES-
STEIN procedures as empirical Bayes estimators, which
involve borrowing strength across the groups with unrepre-
sented or underrepresented groups is, however, recommended
in case one cannot afford adequate group-wise sampling.

An accredited merit of this approach is that a predictor
is good if the underlying model is correct, but is nevertheless
robust in case the model is faulty because it is ADU or ADC.
But a criticism against it is that its model-based property is
conditional on the chosen sample, while its asymptotic design
property is unconditional and based on speculation over all
possible samples. For a better design-based justification a pro-
cedure should fare well conditionally when the reference set
for the repeated sampling is a proper but meaningful subset of
all possible samples. For example, averaging should be over a
set of samples sharing certain recognizable common features of
the sample at hand. SARNDAL and HIDIROGLOU (1989), how-
ever, have shown that GREG predictors and some modified
ones adapted from them have good conditional design-based
properties.

Advancing conditional arguments, ROBINSON (1987) has
proposed a conditional bias-corrected modification to a ratio
estimator of Y in case X is known, given by

0 (29 (%)

where

b= (Y - PX; )/ Y (X; — %)
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postulating asymptotic bivariate normality for the joint distri-
bution of (%, y) with an approximate variance estimator as

=\ 2
X 1-f 7o \2
U2 (f) Vo, Vo n—1 §s ( 12 . l)

Asymptotics have been effectively utilized in the survey sam-
pling context by KREWSKI and RAO (1981), who have estab-
lished asymptotic normality of nonlinear statistics given by (a)
linearization, (b) BRR, and (c) jackknife methods and consis-
tency of the corresponding variance estimators when they are
based on large numbers of strata, although with modest rates
of sampling of psus within strata. As their first-order analysis
proves inconclusive to arrange these three procedures in order
of merit, RAO and WU (1985) resort to second-order analysis
to derive additional results.

Earlier comparative studies of these procedures due, for
example, to KISH and FRANKEL (1970) were exclusively em-
pirical. Incidentally, MCCARTHY (1969) restricted BRR with
two sampled units per stratum, while GURNEY and JEWETT
(1975) extended allowing more but common per stratum sam-
ple size provided it is a prime number. KREWSKI (1978) has
examined stabilities of BRR-based variance estimation.

What now transpires as a palpable consensus among sam-
pling experts is that superpopulation modeling cannot be ruled
out from sampling practice. It is useful in adopting a sampling
strategy, but the question is whether the inference should be
based on (a) the model ignoring the design, (b) the specula-
tion over repeated sampling out of all possible samples, (c) the
speculation over repeated sampling out of a meaningful proper
subset of all possible samples, (d) the speculation over repeated
sampling in either of these two ways and also over realization
of the population vector in the modeled way.

A model, of course, is a recognized necessity (a) in the
presence of nonresponse and (b) in inference concerning small
domain characteristics that needs borrowing strength, implic-
ity or explicitly postulating similarity across domains with in-
adequate sample representation. But, in other situations, its
utility is controversial. Even if one adopts a model, inference
procedure must have an built-in protective arrangement to
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remain valid even in case its postulation is at fault. We have
mentioned a few robustness preserving techniques. We may
also add that sensitivity analyses to validate a postulated
model for the finite population vector of variate values through
a consistency check with the realized survey data are imprac-
ticable in large-scale surveys. More information is available
from RAO (1971), GODAMBE (1982), CHAUDHURI and VOS
(1988), SMITH (1976, 1984), KALTON (1983a), IACHAN (1984),
CUMBERLAND and ROYALL (1981), VALLIANT (1987a, 1987Db),
RAO and BELLHOUSE (1989), ROYALL and PFEFFERMANN
(1982), ScoTT (1977), SCOTT, BREWER and Ho (1978), and
the references cited therein.

The generalized regression estimators of CSW (1976) are
the pioneering illustrations of the outcomes of the model-
assisted approach. Their forms are motivated by an underlying
regression model, for example,

Yi = Bxit+ €

with 8 as an unknown slope parameter, x;’s as known positive
numbers, and €;’s as unknown random errors.

In estimating Y = Xy; = X + X €; one is motivated to
estimate 8 by

_ Dy Qils
DEEIAN N

with @; as an estimator for %

This motives the choice of
. X
ty = 2%131- +bg (X _ 2;11&-)
or of
tap = Tyibsi Iy + b (X — Tu;bgi L) .

Atgortg is privileged to have the purely design-based property
of being an ADU as well as an ADC estimator for Y for any
choice of @; as a positive number. However, a right choice of
Q; is needed in rendering £ or tg close to Y along with an
estimated measure of its error in repeated sampling from U =
(1,...,i,..., N) under control.

© 2005 by Taylor & Francis Group, LLC



334  Epilogue

An alternative purely design-based motivation for the in-
troduction of ¢, or ¢y is also available, called the calibration
approach thanks to the intiative taken by ZIESCHANG (1990),
and DEVILLE and SARNDAL (1992), with plenty of follow-up
activities as well.

The GREG estimator ¢, for Y is a modification of a basic
estimator (HORVITZ-THOMPSON, HT, 1952)

ty =21,

T
Writing q; = =~ and supposing positive numbers x;’s are avail-
able, let us rev1se the initial weights q; for y; by way of a pos-
sible improvement in the following possible ways:

(a) The revised weights w;’s are to be chosen such that
(b) they satisfy the side conditions, better known as cal-
ibration constants or calibration equations
Ewixilsi = Exi
and

(¢) that w;’s are close to g;’s is terms of the minimized
distance to be measured by

(d) Slei(w; — ;)% /a1

with suitably chosen positive constants ¢;’s.
The resulting choice of w;’s is

X xi/(ciag) .

-=1+(X—E—I>——————
8si ; st ¥ (xlz/ci)lm
The resulting estimator for Y, namely,

2yiaigsiLsi

coincides with tg on choosing ¢; = 4-,i € s. Then the purely
design-based ¢, is the same as the model assisted GREG pre-
dictor for Y expressing ¢, in the form

— box;

T

=XbQ + ZJT_LiISi
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Calling e; = y; — bgx; the residual, we may recall that it is a
special case of the QR predictors for Y introduced by WRIGHT
(1983), namely,

tor = Xbg + Xrib I

with r;(> 0) chosen as certain non-negative constants free of
K:(y17""yi, “'7yN)'
ROYALL’s (1970) predictor for Y is of the form
tro = Xyilg + b(X — ;1)
= XbQ + Xe; ;.

Thus the choices r; = %, 1, respectively, yield from ¢gp the
GREG predictor and ROYALL’s predictors. For the choicer; = 0
in ¢gR one gets the projective estimator

tpro = XbQ forY.

It is possible also to establish tgr as a calibration estimator.

If tgo coincides with ¢pg( for a specific choice of @;, it is
called a cosmetic predictor or estimator. One possible example
for it is the ratio estimator or predictor namely

Syl

trh=X .
R Yx; 1

A QR is called a restricted QR predictor ¢rgr if some restric-
tions are imposed on the possible magnitudes allowed for @;
and r;’s. For a calibration estimator, sometimes the assignable
weights w;’s are restricted or limited to certain preassigned
ranges like L; < w; < U;, especially w; > 0. Then they are
called limited calibration estimators. In the recent volumes
of Survey Methodology, many relevant illustrations are avail-
able. For the sake of simplicity, we have illustrated the case
of only a single auxiliary variable x, but the literature covers
several of them.

An advantage of this interpretation of a GREG estima-
tor or predictor as a calibration estimator is that it gets rec-
ognized as a robust estimator as it is totally model free, not
only for large sample sizes in an asymptotic sense. Its ADU
or ADC property alone is not its only guarantee to be robust.
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In the finite population context, CHAMBERS (1986) pointed out
the need for outler-robust estimators, and prior to him BAR-
NETT and LEWIS (1994) also discuss the problem with outliers
in survey sampling, suggesting ways and means of tackling
them.

SARNDAL (1996) made an epoch-making recommenda-
tion of employing procedures that bypass the need to include
the cross-product terms in the quadratic forms in which vari-
ance or mean square error estimators for linear estimators
for finite population totals are expressed covering HORVITZ—
THOMPSON and generalized regression estimators. The prime
need for this is that exact formulae for 7;; for many sam-
pling schemes are hard to develop. They occur in too many
cross-product terms destabilizing the magnitudes of the vari-
ance or MSE estimators for large- and moderate-sized samples.
He prescribes the use of Poisson sampling or its special case,
Bernoulli sampling, for which 7;; = m;7; as noted by HAJEK
(1964, 1981). His second prescription is to employ approxima-
tions for the variance or MSE estimators that are expressible
in terms of squared residuals with positive multipliers avoid-
ing the cross-product terms. He has shown that stratified sim-
ple random sampling (STSRS) or stratified Bernoulli sampling
(STBE) employing GREG estimators in suitable forms yields
quite efficient procedures. DEVILLE (1999), BREWER (1999a,
2000), and BREWER and GREGOIRE (2000) also propagate the
utility of this approach, especially by approximating =;;’s in
terms of 7;’s with suitable corrective terms.

For sampling schemes with sample sizes fixed at a num-
ber, n, BREWER (2000) expresses

i oy T
as
. Y \ 2
V(tg) = Tmi(1 — 1) (& — —)
T n
Y Y
+> 0 (myj — mimy) (% - ﬁ) <i—1 - ;) 5
it i J
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approximates m;;, for example, by

7(B) = mim; (Ci +cJ')

2
with ¢; chosen in (0, 1), approximates V (¢g) by
. Y 2
Vi(tn) = om (1 - cim) <& _ _)
TT; n

and estimates it by

. Y \2
V(tg) = Zmi(1 — ;) (ﬁ — —>
TT; v
i YN[y Y
S (2-1) (21)
1#£]
1 1 2V
—Y2 (1= 4 53 Ny |+ s (S
VooVt VoG

which is correct for any number of distinct units v(s) for a
sample s with v = E,(v(s)).

Thus, with BREWER’s (2000) approximation for r;; as
given earlier V (¢z) approximates to

) +272(c; — 1) <— — K>2

TV

1 _
Vap(ty) = Sy2 (

T
for which an estimator is

1—m Iy 1 o tm\2
vaB(ty) = Ty? nli-l-Em <1——) (&—£> I

TT; TT; C; T Vv

Poisson’s sampling scheme needs no such approximations but
is handicapped because v(s) for it varies over its entire range
(0,1,...,N — 1, N), which is undesirable. To avoid this,
GROSENBAUGH’s (1965) 3P sampling, OGUS and CLARK’s
(1971) modified Poisson sampling, further discussed by
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BREWER, EARLY and JOYCE (1972), and BREWER, EARLY and
HANIF’s (1984), use of collocated sampling, and OHLSSON’s
(1995), use of permanent random numbers (PRN) to effect co-
ordination in rotation vis-a-vis Poisson sampling, are all impor-
tant developments receiving attention over a protracted time
period.

In modified Poisson sampling (MPS) one has to repeat the
Poisson scheme each time it culminates in having v(s) = 0 with
revised selection probabilities to retain =; in tact. CHAUDHURI
and VOS (1988, p. 198) have clarified that for MPS one has

i = ﬂiﬂj(l — P())

where Py = Problv(s) = 0] derivable as a solution of
N
H [1 — 7Ti(1 — P())] = P()
i=1

because 7;(1 — Py) is the revised selection probability of i for
this MPS.
For MPS, V (¢tg) turns out to be

2
Vitg) = =(1 - m)fr—‘ — Po(Y2 - 5p?)

i

with an unbiased estimator as

271 . 27 .
U(tH)=Z(1—ni)3i£— Po (tlzf_gﬁﬁ>

T TG 1-P 0 T TG
An alternative approach is to employ original Poisson sampling
combined with the estimator

I..
trg = LtH = Lzyii if w(s) #0
v(s) v(s) ;

with its MSE estimators as

1— 71 . 27.
miy = ) ( nl) (yl — lt[—[) L
T v(s) T;

=0, ifv(s)=0
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or

v 2
m= (o) ™

For any general sampling scheme, STEHMAN and OVERTON
(1994) use two approximations

(n—l)mnj
n—(m+mj)/2

(n — 1)7Ti7Tj

m;(1) = m;j(2) =

n—m —mj+ tux?

with the compulson that 7; < 1 Vi.

For circular systematic sampling (CSS) with probabilities
proportional to sizes (PPS) that are positive integers x; with
the total X, we know from MURTHY (1957) that the execution
steps are the following.

Let £ = [%] and R be a random integer chosen out of
1,2,...,X. Then let

ar =(R+kj)mod(X), j=0,1,...,n—1,

C; = Zé’:o xj. Then the sample consists of the unit N ifa, =0
and of z if

Ci—l <a < Ci, taking Co =0.

For this scheme, the intended sample size n may not be realized
unless np; < 1Vi, writing p; = 3. Also, m; = % (number of
samples with i), 7;; = % (number of samples with i and j).

But 7;; turns out zero for many i, j’s (i # j). CHAUDHURI
and PAL (2003) have shown that if, instead of this fixed interval
equal to £ CSSPPS, one employs its revised random interval
k chosen at random out of 1,2,...,X — 1 form, then 7;; >
ovi, j(@ # ).

In order to avoid this shortcoming of CSSPPS that “r;;
equals zero for many i # j”, rendering nonavailability of an
unbiased estimator for the variance of a linear estimator for Y,
HARTLEY and RAO (1962) gave their random CSSPPS scheme
where CSSPPS method is applied with a prior random permu-
tation of the units of U = (1,...,i,..., N). For this scheme,
provided np; < 1Vi, the intended sample size n is realized,
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7; = np; and also

n—1 n—1
= (552 (5

-1 2n—1)
— ( 3 )mrerni2+ — 5 (n T+ +n2nj2)

n
3(n—1 (n—1
8D ) e+ 2 D
2(n—1
— %ninj EniS >0Vi#£j

Let us now briefly discuss concepts of coordination in rotation
sampling and of permanent random number (PRN) technique
in sample selection.

If sampling needs to be repeated from the same popula-
tion or essentially the same population subject to incidences
of deaths, that is, dropouts, and of births, that is, addition of
units, then in estimation of a population total or mean, it seems
necessary that some of the units in every sample should be re-
tained for ascertainment of facts on one or more subsequent oc-
casions too. This is called rotation in sampling. Thus rotational
sampling involves a problem of coordination. If two samples
have an overlap of units, then there is positive coordination
and one needs to adopt a policy of maximizing or minimizing
positive coordination. If there is no overlap, then there is neg-
ative coordination. A useful technique of retaining the essen-
tial properties of a basic sampling scheme involving rotation
of units is to use PRNs for the units. OHLSSON (1995) has de-
scribed PRN technques for SRSWOR Bernoulli and Poisson
sampling schemes with rotations allowing birth and deaths in
respect of an initial population. Details are omitted here.

We conclude this text by recounting in brief one of our lat-
est innovative techniques of cluster sampling in a particular
mode. While commissioned by UNICEF in 1998, Indian Statis-
tical Institute (ISI) undertook a health survey in the villages of
an Indian district. It was found useful to first take an SRSWOR
of a kind of selection units called PHC, the primary health cen-
ters, a few of which are localized in proximity to a bigger unit
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called BPHC (big PHC) such that the villages are to be treated
in a separate and territorially nearby PHC or a BPHC. The
PHCs linked to a BPHC together form a cluster. The sampling
scheme actually employed added purposively each BPHC to
which an initially chosen PHC was linked. This is a version of
cluster sampling attaching varying inclusion probabilities to
the BPHCs in the district and thus allowing various choices of
unbiased estimation procedures. A simpler possible two-stage
sampling with BPHCs as the first-stage units and the PHCs
linked to the BPHCs as the second-stage units was avoided
with the expectation of achieving wider territorial coverage of
the district’s PHCs and BPHCs and hence of higher informa-
tion contents and resulting increased accuracy in estimation.
Details are given by CHAUDHURI and PAL (2003).
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Abbreviations Used in the References

AISM Annals of the Institute of Statistical
Mathematics

AJS Australian Journal of Statistics

AMS The Annals of Mathematical Statistics

ANZJS The Australian and New Zealand Journal
of Statistics

Appl. Stat. Applied Statistics

APSPST Applied Probability, Stochastic Processes

and Sampling Theory (see MacNeill
and Umphrey, eds. [1987])

AS The Annals of Statistics

ASA The American Statistical Association

BISI Bulletin of the International Statistical
Institute

Bk Biometrika

Bms Biometrics

CDSS Current Developments in Survey Sampling
(see Swain [2000])

CSAB Calcutta Statistical Association Bulletin
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CSTM
CTS

CSA
FSI

HBS

ISR
JASA

JISA
JISAS

JOS
JRSS
JSPI
JSR
Mk

N
NDSS

NPTAS

PJS
RISI
Sa
SJS
SM
SSM

St
SUM
SESA, NIDA
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Current Statistics Theory and Methods
(Abstract)

Current Topics in Survey Sampling
(see Krewski, Platek, and Rao, eds. [1981])

Commaunications in Statistics A

Foundations of Statistical Inference,
(see Godambe and Sprott [1971])

Handbook of Statistics, vol. 6, (see
Krishnaiah and Rao, eds. [1988])

International Statistical Review

Journal of the American Statistical
Association

Journal of the Indian Statistical
Association

Journal of the Indian Society of Agricultural
Statistics

Journal of Offical Statistics

Journal of the Royal Statistical Society

Journal of Statistical Planning and Inference

Journal of Statistical Research

Metrika

Nature

New Developments in Survey Sampling,
(see Johnson and Smith, eds. [1969])

New Perspectives in Theoretical and
Applied Statistics, (see Puri, Vilalane
and Wertz, eds.[1987])

Pakistan Journal of Statistics

Revue de Statistique Internationale

Sankhya

Scandinavian Journal of Statistics

Sociological Methodology

Survey Sampling and Measurement, (see
Nanboodiri, ed.[1978])

The Statistician

Survey Methodology

Synthetic Estimates for Small Areas, (see
Steinberg, ed.[1979])
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least squares estimator

linear unbiased

linear unbiased estimator

maximum likelihood
estimator

mean square error

sample size
non-unicluster design
ordinary least squares

probability proportional
to size

probability proportional
to size without
replacement

probability proportional
to size with replacement

primary stage unit

Rao-Hartley-Cochran

Rao-Hartley-Cochran
estimator

2.4.7
1.2

1.2
13.4
9.3

3.2.5
422
1.2
2.2
6.1
3.3.1
3.1.1
3.1.1

3.3.1
1.2
3.2.2
3.2.5
7.3
1.2
3.1.1
11.2.2
3.7
3.2.5

7.5

246
2.2
8.1
7.4

7.4

308

208

53
94

13
113
63
36
36

162
46
54
155
36
268
52
53

171

26
14
176
165

165



Appendix 371

RR randomized response 12 275
S effective sample size 1.2 2
SDE symmetrized Des Raj

estimator 2.4.6 29
SL significance level 11.1.1 254
SPRO simple projection 6.1 113
SRSWOR simple random sampling

without replacement 1.2 3
SRSWR simple random sampling

with replacement 1.2 4
3 Horvitz—Thompson

estimator 244 23
tQR QR predictor 6.1.3 118
UCD unicluster design 3.1.1 36
UE unbiased estimator 1.2 4
UMV uniformly minimum

variance unbiased

estimator 3.1.1 33
UMVUE uniformly minimum

variance unbiased

estimator 3.1.1 33
WOR without replacement 1.2 3
WR with replacement 1.2 3
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